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Abstract. A somewhere statistically binding (SSB) hash, introduced by
Hub&g¢ek and Wichs (ITCS ’15), can be used to hash a long string z to
a short digest y = Hnk(x) using a public hashing-key hk. Furthermore,
there is a way to set up the hash key hk to make it statistically binding
on some arbitrary hidden position ¢, meaning that: (1) the digest y com-
pletely determines the ¢’th bit (or symbol) of x so that all pre-images
of y have the same value in the i’th position, (2) it is computationally
infeasible to distinguish the position ¢ on which hk is statistically binding
from any other position i’. Lastly, the hash should have a local opening
property analogous to Merkle-Tree hashing, meaning that given x and
y = Hu(z) it should be possible to create a short proof 7 that certi-
fies the value of the i’th bit (or symbol) of x without having to provide
the entire input x. A similar primitive called a positional accumulator,
introduced by Koppula, Lewko and Waters (STOC ’15) further supports
dynamic updates of the hashed value. These tools, which are interesting
in their own right, also serve as one of the main technical components in
several recent works building advanced applications from indistinguisha-
bility obfuscation (iO).

The prior constructions of SSB hashing and positional accumulators
required fully homomorphic encryption (FHE) and iO respectively. In
this work, we give new constructions of these tools based on well studied
number-theoretic assumptions such as DDH, Phi-Hiding and DCR, as
well as a general construction from lossy/injective functions.
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1 Introduction

SSB Hashing. A somewhere statistically binding (SSB) hash, introduced by
Hubdcek and Wichs [HW15], can be used to create a short digest y = Hu(z)
of some long input = (z[0],...,2[L — 1]) € %, where ¥ is some alphabet.
The hashing key hk < Gen(i) can be chosen by providing a special “binding
index” ¢ and this ensures that the hash y = Hp(x) is statistically binding for
the i’th symbol, meaning that it completely determines the value z[i]. In other
words, even though y has many preimages x’ such that Hyk(z') =y, all of these
preimages agree in the i’th symbol 2'[i] = x[f]. The index ¢ on which the hash
is statistically binding should remain computationally hidden given the hashing
key hk. This is formalized analogously to semantic security so that for any indices
i,i’ the hashing keys hk < Gen(i) and hk’ « Gen(i’) should be computationally
indistinguishable. Moreover, we will be interested in SSB hash functions with a
“local opening” property that allows us to prove that j’th symbol of = takes on
some particular value z[j] = u by providing a short opening 7. This is analogous
to Merkle-Tree hashing, where it is possible to open the j’th symbol of = by pro-
viding a proof 7w that consists of the hash values associated with all the sibling
nodes along the path from the root of the tree to the j’th leaf. In the case of
SSB hashing, when j = ¢ is the “binding index”, there should (statistically) exist
only one possible value that we can open z[j] to by providing a corresponding
proof.

Positional Accumulators. A related primitive called a positional accumulator,
was introduced at the same time as SSB hashing by Koppula, Lewko and Waters
[KLW15]. Roughly speaking, it includes the functionality of SSB hashing along
with the ability to perform “local updates” where one can very efficiently update
the hash y = Hu(z) if a particular position z[j] is updated. Again, this is
analogous to Merkle-Tree hashing, where it is possible to update the j’th symbol
of x by only updating the hash values along the path from the root of the tree
to the j’th leaf.!

Applications of SSB Hashing and Positional Accumulators. The above tools,
which are interesting in their own right, turn out to be extremely useful in
several applications when combines with indistinguishability obfuscation (iO)
[BGI+12,GGH+13]. An iO scheme can be used to obfuscate a program (given
by a circuit) so that the obfuscations of any two functionally equivalent pro-
grams are indistinguishable. Although this notion of obfuscation might a-priori

! The formal definitions of SSB hashing and positional accumulators as given in
[HW15,KLW15] are technically incomparable. On a high level, the latter notion
requires additional functionality in the form of updates but only insists on a weaker
notion of security which essentially corresponds to “target collision resistance” where
the target hash value is computed honestly. In this work, we construct schemes that
achieve the best of both worlds, having the additional functionality and the stronger
security.
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seem too week to be useful, recent work has shown it to be surprisingly pow-
erful (see e.g., [SW14]). Very recently, several results showed how to use iO in
conjunction with SSB hashing and positional accumulators to achieve various
advanced applications. The work of [HW15] uses SSB hashing and iO to con-
struct the first general Multi-Party Computation (MPC) protocols in the semi-
honest model where the communication complexity essentially matches that of
the best insecure protocol for the same task. The work of [KLW15] uses positional
accumulators and iO to construct succinct garbling for Turing Machines, and
recent work extends this approach to RAM programs [CH15,CCC+15]. Lastly,
the work of [Zhal4] uses SSB hashing and iO to construct the first adaptively
secure broadcast encryption with short system parameters.

Ezxample: The Power of 10O + SSB. To see the usefulness of combining iO and
SSB hashing (or positional accumulators), let’s take a simple illustrative exam-
ple, adapted from [HW15].? Imagine that Alice has a (small) secret circuit C,
and both Alice and Bob know a public value z € £¥. Alice wishes to communi-
cate the values {C(x[i]) };¢[z) to Bob while hiding some information about C'. In
particular, Bob shouldn’t learn whether Alice has the circuit C' or some other
C’ that satisfies C(z[i]) = C'(x[i]) for each ¢ € [L]. Note that C and C’ may
not be functionally equivalent and they only agree on the inputs {x[i]};c[z) but
might disagree on other inputs. A naive secure solution would be for Alice to
simply send the outputs {C(x[i])};c[z) to Bob, but this incurs communication
proportional to L. An insecure but communication-efficient solution would be for
Alice to just send the small circuit C' to Bob. Can we get a secure solution with
comparable communication independent of L? Simply sending an obfuscated
copy of C is not sufficient since the circuits C, C’ are not functionally equivalent
and therefore their obfuscations might be easily distinguishable. However it is
possible to achieve this with iO and SSB hashing. Alice can send an obfuscation
of a circuit that has the hash y = Hp(z) hard-coded and takes as input a tuple
(j,u, m): it checks that j € [L] and that 7 is a valid opening to z[j] = u and if so
outputs C(u). Bob can evaluate this circuit on the values {z[j]};cz) by provid-
ing the appropriate openings. It is possible to show that the above hides whether
Alice started with C' or C’. The proof proceeds in a sequence of L hybrids where
in the 7’th hybrid we obfuscate a circuit C; that runs C” instead of C' when j < i
and otherwise runs C. To go from hybrid ¢ to ¢ + 1 we first switch the SSB hash
key hk to be binding in position i + 1 and then we can switch from obfuscating
C; to Ci41 by arguing that these are functionally equivalent; they only differ in
the code they execute for inputs of the form (j =+ 1, u, ) where 7 is a valid
proof but in this case, by the statistical binding property, the only possible value
u for which a valid proof 7 exists is the unique value v = z[j] for which both
circuits produce the same output C(z[j]) = C'(z[j]).

2 The contents of this paragraph and the notion of iO are not essential to understand
the results of the paper, but we provide it to give some intuition for how SSB hashing
and positional accumulators are used in conjunction with iO in prior works to get
the various applications described above.
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Prior Constructions of SSB and Positional Accumulators. The work of [HW15]
constructed a SSB hash by relying on fully homomorphic encryption (FHE).
Roughly speaking the construction combines FHE with Merkle Hash Trees. To
hash some value z = (2[0],...,z[L — 1]) the construction creates a full binary
tree of height log L (for simplicity, assume L is a power of 2) and determin-
istically associates a ciphertext with each node of the tree. The L leaf nodes
will be associated with some deterministically created encryptions of the values
z[0],...,z[L — 1], say by using all Os for the random coins of the encryption
procedure. The hash key hk consists of an encryption of a path from the root of
the tree to the i’th leaf where i is the binding index; concretely it contains log L
FHE ciphertexts (cty,...,ctiog ) Which encrypt bits 31, ..., Biog 1 correspond-
ing to the binary representation of the binding index 4 so that 3; = 0 denotes
“left” and @; = 1 denotes “right”. The ciphertext associated with each non-leaf
node are computed homomorphically to ensure that the value z[i] is contained
in each ciphertext along the path from the root to the i’th leaf. Concretely, the
ciphertext associated with some node at level j is determined by a homomor-
phic computation which takes the two child ciphertexts ¢ (left) and ¢; (right)
encrypting some values mg, m; and the ciphertext ct; contained in hk which
encrypts §; and homomorphically produces a ciphertext encrypting mg,. (For
technical reasons, the actual construction is a bit more complicated and needs
to use a different FHE key at each level of the tree — see [HW15] for full details.)
This ensures that the binding index i is hidden by the semantic security of FHE
and the statistically binding property follows by the correctness of FHE.

The work of [KLW15] constructs positional accumulators by also relying on
a variant of Merkle Trees. However, instead of FHE, it relies on standard public-
key encryption and i0. (It is relatively easy to see that the scheme of [HW15]
would also yield an alternate construction of a positional accumulator).

1.1 Owur Results

In this work we give new constructions of SSB hashing and positional accumu-
lators from a wide variety of well studied number theoretic assumptions such as
DDH, DCR (decisional composite residuocity), ¢-hiding, LWE and others.

Two-to-One SSB. We first abstract out the common Merkle-tree style approach
that is common to both SSB hashes and positional accumulators, and identify
a basic underlying primitive that we call a two-to-one SSB hash, which can be
used to instantiate this approach. Intuitively a two-to-one SSB hash takes as
input « = (2[0], z[1]) € £? consisting of just two alphabet symbols and outputs
a value y = Hpy(z) which is not much larger than a single alphabet symbol. The
key hk can be set up to be statistically binding on either position 0 or 1.

Instantiations of Two-to-One SSB. We show how to instantiate a two-to-one SSB
hash from the DDH assumption and the decisional composite residuocity (DCR)
assumption. More generally, we show how to instantiate a (slight variant of) two-
to-one SSB hash from any lossy/injective function. This is a family of functions
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fok(x) where the public key pk can be picked in one of two indistinguishable
modes: in injective mode, the function fy«(z) is an injective function and in lossy
mode foc(x) it is a many-to-one function. To construct a two-to-one SSB hash
from injective/lossy function we pick two public keys hk = (pkg, pk;) and define
Hy(2[0], 2[1]) = h(fok, (2[0]), fok, (x[1])) where h is a universal hash function.
To make the hk binding on index 0 we choose pk, to be injective and pk; to be
lossy and to make is binding on index 1 we do the reverse. With appropriate
parameters, we can ensure that the statistically binding property holds with
overwhelming probability over the choice of h.

From Two-to-One SSB to Full SSB and Positional Accumulators. We can instan-
tiate a (full) SSB hash with arbitrary input size ©* by combining two-to-one
SSB hashes in a Merkle Tree, with a different key at each level. To make the
full SSB binding at some location i, we choose the hash keys at each level to
be binding on either the left or right child in such a way that they are binding
along the path from the root of the tree to the leaf at position i. This allows us
to “locally open” the j’th position of the input in the usual way, by giving the
hash values of all the siblings along the path from the root to the j’th leaf. If
j =i is the binding index, then there is a unique value z[j] = u for which there
is a valid opening. To get positional accumulators, we use the fact that we can
also locally update the hashed value by modifying one location z[j] and only
updating the hashes along the path from the root to the j’th leaf.

A Flatter Approach. We also explore a different approach for achieving SSB hash-
ing from the ¢-hiding assumption, which does not go through a Merkle-Tree type
construction. Roughly our approach uses a construction is structurally similar
to standard constructions RSA accumulators [BAM93]. However, we construct a
modus N to be such that for some given prime exponent e we have that e divides
@(N). This means that if y € Zy is not an e-th residue mod N, then there
exists no value m € Zy where 7° = y. This will lead to our statistical binding
property as we will leverage this fact to make the value e related to an index we
wish to be binding on. Index hiding will follow from the ¢-hiding assumption.

2 Preliminaries

SSB Hash (with Local Opening). Our definition follows that of [HW15], but
whereas that work only defined SSB hash which included the local opening
requirement by default, it will be convenient for us to also separately define a
weaker variant which does not require the local opening property.

Definition 2.1 (SSB Hash). A somewhere statistically binding (SSB) hash
consists of PPT algorithms H = (Gen, H) and a polynomial £(-,-) denoting the
output length.

~ hk « Gen(1*,1%, L,4): Takes as input a security parameter X a block-length
s an input-length L < 2* and an index i € {0,...,L — 1} (in binary) and
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outputs a public hashing key hk. We let ¥ = {0,1}® denote the block alphabet.
The output size is £ = £(\, s) and is independent of the input-length L.

~ Hy : B8 — {0,1}: A deterministic poly-time algorithm that takes as input
x = (z[0],...,2[L — 1]) € ©F and outputs Hy(x) € {0,1}".

We require the following properties:

Index Hiding: We consider the following game between an attacker A and a
challenger:

~ The attacker A(1%) chooses parameters 1°,L and two indices ig,i1 €
{0,..., L —1}.

— The challenger chooses a bit b« {0,1} and sets hk «— Gen(1*,1°, L, ).

— The attacker A gets hk and outputs a bit .

We require that for any PPT attacker A we have |Prb = V'] — 3| < negl(\) in
the above game.

Somewhere Statistically Binding: We say that hk is statistically binding for
an index i € [L] if there do not exist any values x,x' € X with x[i] # 2'[i]
such that Hp(x) = Hp(z'). We require that for any parameters s, L and
any integer i € {0,...,L — 1} we have:

Prlhk is statistically binding for index i : hk — Gen(1*,1° L,4)] > 1 — negl()\).
We say that the hash is perfectly binding if the above probability is 1.

Definition 2.2 (SSB Hash with Local Opening). An SSB Hash with local
opening H = (Gen, H, Open, Verify) consists of an SSB hash (Gen, H) with output
size L(-,-) along with two additional algorithms Open, Verify and an opening size
p(+,+). The additional algorithms have the following syntaz:

— 7 « Open(hk,z,j): Given the hash key hk, x € ¥ and an inder j €
{0,...,L—1}, creates an opening © € {0,1}F. The opening size p = p(\, s) is
a polynomial which is independent of the input-length L.

~ Verify(hk, y, j,u, m): Given a hash key hk a hash output y € {0,1}¢, an integer
index j € {0,...,L — 1}, a value u € ¥ and an opening © € {0,1}P, outputs
a decision € {accept, reject}. This is intended to verify that a pre-image x of
y = Hy(z) has z[j] = u.

We require the following two additional properties.

Correctness of Opening: For any parameters s, L and any indices
i, €40,...,L—1}, any hk «— Gen(1*,1°, L,3), x € ©F, © « Open(hk, z, 5):
we have Verify(hk, Hu (), 4, z[j], ) = accept

Somewhere Statistically Binding w.r.t. Opening:®> We say that hk is sta-
tistically binding w.r.t opening (abbreviated SBO) for an indez i if there do
not exist any values y,u # u', 7,7 s.t.

Verify(hk, y, i,u, ) = Verify(hk,y,i,u', ') = accept.

3 Note that the “somewhere stat. binding w.r.t. opening” property implies the basic
“somewhere stat. binding” property of SSB hash.
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We require that for any parameters s, L and any index i € {0,...,L — 1}
Prlhk is SBO for index i : hk — Gen(1*,1°, L,i)] > 1 — negl()).

We say that the hash is perfectly binding w.r.t. opening if the above proba-
bility is 1.

Fized-Parameter Variants. The above definitions allow for a flexible input-length
L and block-length s specified by the user as inputs to the Gen algorithm. This
will be the default throughout the paper, but we also consider variants of the
above definition with a fized-input-length L and/or fized-block-length s where
these values cannot be specified by the user as inputs to the Gen algorithm but
are instead set to some fixed value (a constant or polynomial in the security
parameter \) determined by the scheme. In the case of a fixed-input-length
variant, the definitions are non-trivial if the output-length ¢ and opening-size p
satisfy £,p < L - s.

Discussion. There are several constructions of SSB hash that do not provide
local opening. For example, any PIR scheme can be used to realize an SSB
hash without local opening. The hash key hk consists of a PIR query for index
¢ and the hash Hp(x) simply computes the PIR response using database x.
Unfortunately, we do not know how to generically add a local opening capability
to such SSB hash constructions.

3 Two-to-One SSB Hash

As our main building block, we rely on a notion of a “two-to-one SSB hash”.
Informally, this is a fixed-input-length and flexible-block-size SSB hash (we do
not require local opening) that maps two input blocks (L = 2) to an output
which is roughly the size of one block (up to some small multiplicative and
additive factors).

Definition 3.1 (Two-to-One SSB Hash). A two-to-one SSB hash is an SSB
hash with a fized input-length L = 2 and flexible block-length s. The output-length
is (A, s) =s- (1 4+1/902(N)) + POLY(N).

We give three constructions of a Two-to-One SSB Hash systems. Our first
construction is built from the DDH-hard groups with compact representation.
This construction achieves perfect binding. Our next construction is built from
the DCR assumption. Lastly, we generalize our approach by showing a (variant
of) Two-to-One SSB hashing that can work from any lossy function. We note
that lossy functions can be built from a variety of number theoretic primitives
including DDH (without compact representation), Learning with Errors, and the
¢-hiding assumption.
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Remark: Impossibility without Overhead. We note that the need for some “slack”
is inherent in the above definition and we cannot get a two-to-one SSB hash
where the output is exactly £()\, s) = s matching the size of one of the inputs.
This is because in that case, if we choose hk « Gen(1*,1% i = 0) then for each
xg € {0,1}® there is a unique choice of y € {0,1}® such that Hp(zo,21) =y
no matter what x; is. In other words, the function Hyk(xo, 1) does not depend
on the argument x;. Symmetrically, if hk « Gen(1*,1%,i = 1) then the function
Hy (20, 21) does not depend on the argument x. These two cases are easy to
distinguish.

3.1 Two-to-One SSB Hash from DDH

DDH Hard Groups and Representation Overhead. Let G be a PPT group
generator algorithm that takes as input the security parameter 1* and outputs
a pair G, p where G is a group description of prime order p for p € ©(2%).

Assumption 1 (Decision Diffie-Hellman Assumption). Let (G,p)
G(1*) and b «— {0,1}. Choose a random generator g € G and random z,y € Z,
Let T — G if b=0, else T «— ¢g*¥. The advantage of algorithm A in solving the
decision Diffie-Hellman problem is defined as

1
AdVA = PT’U) — A(G7pag7gxagyaT)] - 5 .

We say that the Decision-Diffie Hallman assumption holds if for all PPT A,
Adv 4 is negligible in \.

Representation Overhead of Group Elements. In this work we will be concerned
with how efficiently (prime order) group elements are represented. We are inter-
ested in the difference between the number of bits to represent a group element
and |lg(p)]. In our definition we consider the bit representation of a group to be
intrinsic to a particular group description.

Definition 3.2 (Representational Overhead). Consider a family of prime
order groups output from some group generation algorithm G(1*) that outputs a
group of prime order p for 2* < p < 2 1. Notice that for a generator g in such
a group that g* # ¢’ fori,j €10,2*] andi # j. (Le. no “wraparound” happens.)

We define the representational overhead 6(\) to be the function which
expresses mazximum difference between the number of bits used to represent a
group element of G and X\, where G,p «— G(1*).

For this work we are interested in families of groups who representational
overhead () is some constant c. Examples of these include groups generated
from strong primes and certain elliptic curve groups.
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Construction of Two-to-One SSB. We now describe our Two-To-One SSB
Hash. We will use a group generation algorithm G that has constant represen-
tational overhead c as defined in Definition 3.2. Consider a matrix M over Z,
and group generator g of order p we will use the notation g™ as short hand for
giving out g raised to each element of M.

The construction sets up a hash function key hk for a function that takes two
s bit inputs x4 and zp. If the index bit 8 = 0 it will be statistically binding on
T 4; otherwise it is statistically binding on xp. At a high level the construction
setup is intuitively similar to the Lossy trapdoor function algorithms of Peikert
and Waters [PWO08] where the setup creates two functions — one injective and
the other lossy and assigns whether the lossy function corresponds to the A or
B input according to the index bit 3.

There are two important differences from the basic PW construction. First
the PW construction encrypted the input bit by bit. This low rate of encoding
was needed in order to recover the input from a trapdoor in [PW08], but a trap-
door is not required for our hash function. Here we cram in as many bits into a
group element as possible. This is necessary to satisfy the SSB output size prop-
erties. We note [BHK11] pack bits in a similar manner. The second property we
have is that the randomness used to generate both the injective and lossy func-
tion is correlated such that we can intuitively combine the outputs of each into
one output where the output length is both small and maintains the committing
property of the injective function. We note that our description describes the
procedures directly and the connection to injective and lossy functions is given
for intuition, but not made formal.

GenTwo-to-One(l)\7 187 ﬁ € {07 1})
The generation algorithm first sets ¢ = max(\, |\/s-¢|). (The variable ¢ will
be the number of bit each group element can uniquely represent.) It then calls
G(1") — (G, p) with 2! < p < 2!71 and chooses a random generator g € G.
Next, it lets d = [$]. It then chooses random wy, ..., wq € Zj, two random
column vectors @ = (a1, ...,aq) € Zg and b = (b1,...,bq) € Zg. We let A be
the d x d matrix over Z, where the (i, j)-th entry is a; - w; and B be the d x d
matrix over Z, where the (i, j)-th entry is b; -w;. Finally, let A be A+ (1—3)-1
and B be B + 3 - I where I is the identity matrix. (I.e. we add in the identity
matrix to A to get the A matrix if the selection bit 8 = 0; otherwise, if § =1
add in the identity matrix to B to get B.)
The hash key is hk = (g2, g%, g*, ¢B).

Hy - {0,1}° x {0,1}° — G4+!

The hash function algorithm takes in two inputs z4 € {0,1}* and zp € {0,1}*.
We can view the bitstrings x4 and xp each as consisting of d blocks each of ¢ bits
(except the last block which may be less). The function first parses these each
as row vectors €4 = (£a1,...,24,4) and g = (p,1,...,2p,q4). These have the
property that for j € [d] we have x4 ; is an integer < 2° < p representing the
j — th block of bits as an integer.
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Next, it computes

v :ga:Aa+me7 Y :gwAA+mBB.

We observe that V' is one group element in G and Y is a vector of d group
elements. Thus the output size of the hash is (d + 1) - (¢t + ¢) bits.

Analysis. We now analyze the size overhead, index hiding and binding proper-
ties of the hash function.

QOverhead. The output of the hash function is d + 1 group elements each of
which takes ¢ + ¢ bits to represent for a total output size of (d+ 1)(t+ ¢) bits. In
the case where |y/s-c¢] > A, we can plug in our parameter choices for ¢,d and
see that the outputsize £(), s) = s + O(y/s), thus matching the requirements of
Definition 3.1. In the case where |y/s-c| < A we have that £(\,s) = s + O(N)
thus also matching our definition.

Somewhere Statistically Binding. We show that the hash function above is selec-
tively binding respective to the bit 5. We demonstrate this for the 5 = 0 case.
The 8 =1 case follows analogously.

Suppose a hash key hk were setup according to the process GenTyo—_to—One
as above with the input 8 = 0. Now consider the evaluation Huk(2a,zp) =
(V.Y = (Y1,...,Yy)). We have that for all j € [1,d] that Y;/V"i = g®4i. Let’s
verify this claim. First from the hash definition we can work out that

V = gzz‘e[d]wA.iai‘i‘l'B,ibi
and

Y; = gfIfA,jJrEie[d]xA,i(aiw]')+IB,i(biwj) — gIA,jgwj(Eie[d]mA,iaierB,z‘bi)_

The claim that Y;/V™ = g4 follows immediately from these equations.

Now suppose that we are given two inputs (z4,zp) and (z/4,23) such
that x4 # 24 There must then exist some j such that xa; # 24 ;. Let
Hu(za,zp) = (V)Y = (Y1,...,Yy)) and Hu(2/y, 25) = (V'Y = (Y{,...,Y])).
From the above claim it follows that Y; /V" = g4 and Y; /V"i = g“4.3. There-
fore (V,Y;) # (V',Y]) and the outputs of the hashes are distinct.

Index Hiding. We now prove index hiding. To do this we define Game ,ormal to be
the normal index hiding game on the two-to-one construction and Game anqom to
be the index hiding game, but where the matrices A and B are chosen randomly
when constructing the hash function hk.

We first argue that if the decision Diffie-Hellman assumption holds, then the
advantage of any PPT attacker A in Game ,oma must be negligibly close to
its advantage in Game random- To show this we apply a particular case of the
decision matrix linear assumption family introduced by Naor and Segev [NS12].
They show (as part of a more general theorem) that if the decision Diffie-Hellman
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assumption holds that a PPT attacker cannot distinguish if a 2d x (d+ 1) matrix
M over Z, was sampled randomly from the set of rank 1 matrices or rank d + 1
matrices given gM.

Suppose that the difference of advantage for some attacker in Game pormar and
Game yandom 1s some non-negligible function of A\. Then we construct an algorithm
B on the above decision matrix linear assumption. B receives a challenge g™ and
breaks this into g™4 and g™? where My is the top half of the matrix M and
Mp is the bottom half. It then takes g from the first column of gM4 and g
as the remaining d columns. Similarly, B takes g® from the first column of g™&
and gP as the remaining d columns. It then samples a random index 3 € {0,1}
and continues to use these values in executing GenTyo_to—One, giving the hash
key hk to the attack algorithm.

If g™ were sampled as a rank 1 matrix, then the view of the attacker is the
same as executing Game yormal. Otherwise, if g™ were sampled as a rank d + 1
matrix the attacker’s view is statistically close to Game random (as choosing a
random rank d + 1 matrix is statistically close to choosing a random matrix). If
the attacker A correctly guesses ' = 3, then B guesses the matrix was rank 1,
else it guesses it was rank d + 1. If the difference in advantage of A in the two
games is non-neglgibile, then B has a non-negligible advantage in the decision
matrix game.

Finally, we see that in Game .nqom any attacker’s advantage must be 0 as
the distributions of the outputs are independent of 3.

3.2 Two-to-One SSB Hash from DCR

We can also construct a two-to-one hash with perfect binding from the deci-
sional composite residuocity (DCR) assumption. We do so by relying on the
Damgard-Jurik cryptosystem [DJO1] which is itself a generalization of the Pal-
lier cryptosystem based on the DCR assumption [Pai99]. We rely on the fact
that this cryptosystem is additively homomorphic and “length flexible”, mean-
ing that it has a small ciphertext expansion. When we plug this construction of
a two-to-one SSB hash into our full construction of SSB hash with local open-
ing, we essentially get the private-information retrieval (PIR) scheme of Lipmaa
[Lip05]. Note that, in general, PIR implies SSB hash but only without local open-
ing. However, the particular PIR construction of [Lip05] already has a tree-like
structure which enables efficient local opening.

Damgard-Jurik. The Damgard-Jurik cryptosystem consists of algorithms
(KeyGen, Enc, Dec). The key generation (pk, sk) « KeyGen(1*) generates a pub-
lic key pk = n = pg which is a product of two primes p, ¢ and sk = (p, q). For any
(polynomial) w the scheme can be instantiated to have plaintext space Z,» and
ciphertext space Z7 ... The encryption/decryption procedures ¢ = Ency(m;7)
and Decy(c) satisfy perfect correctness so that for all m € Z,» and all pos-
sible choices of the randomness r we have Decg (Encpk(m;r)) = m. Moreover
the scheme is additively homomorphic, meaning that there is an operation @
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such that Encpk(m;r) @ Enco(m/;r’) = Enco(m + m/; ") for some r” (the
operation + is in the ring Z,w). Similarly, we can define homomorphic sub-
traction ©. Furthermore, by performing repeated addition we can also imple-
ment an operation ® that allows for multiplication by a plaitnext element
Encpk(m;r) @ m’ = Encp(m - m/; ') for some 7’ (the operation - is in the ring
Znw). The semantic security of the cryptosystem holds under the DCR assump-
tion.

Construction of Two-to-One SSB. We use the Damgard-Jurik cryptosystem to
construct an SSB hash as follows.

hk < Gen(1*,1%, 3 € {0,1}) Choose (pk,sk) « KeyGen(1?) to be a Damgard-
Jurik public/secret key. We assume (without loss of generality) that the
modulus n satisfies n > 2*. Set the parameter w which determines the
plaintext space Z,» and the ciphertext space Z ., to be w = [s/logn] so
that we can interpret {0,1}® as a subset of Z,». Choose ¢ < Encp(3) and
output hk = (pk, ¢).

Hy(zg,x1): Parse hk = (pk,c) and interpret the values xg,z7 € {0,1}° as
ring elements x9,21 € Zpw. Define the value 1, = Ency(1;79) to be a
fixed encryption of 1 using some fixed randomness ry (say, all 0s). Compute
c* = (210¢)®(2o®(1e©c¢)). By the homomorphic properties of encryption,
c* is an encryption of z3.

Theorem 3.3. The above construction is a two-to-one SSB hash with perfect
binding under the DCR assumption.

Proof. The index hiding property follows directly from the semantic security of
the Damgard-Jurik cryptosystem, which in turn follows from the DCR assump-
tion.

The perfect binding property follows from the perfect correctness of the cryp-
tosystem. In particular, if hk « Gen(1*,1%,3) then y = Hp.(zo,21) satisfies
y = Encpi(x; ) for some r which perfectly determines zs.

Lastly, the output size of the hash function is

(5, %) = (w+ Dlogn] = ([s/logn] + 1)[logn]
< (1+1/logn)s+ O(logn) = (1 +1/2(X))s + poly(A).

3.3 SSB with Local Opening from Two-to-One SSB

We now show how to construct a SSB hash with local opening from a two-to-

one SSB hash via the “Merkle Tree” construction. Assume that H = (Gen, H)

is a two-to-one SSB hash family with output length give by £(s, \). We use this

hash function in a Merkle-Tree to construct an SSB hash with local opening

H* = (Gen™, H*, Open, Verify) as follows.

— hk « Gen*(1*,1%, L,i): Let (b, . ..,b1) be the binary representation of 4 (with
b1 being the least significant bit) where ¢ = [log L]. For j € [q] define the

block-lengths s1,...,s, where s; = s and sj1; = £(sj,A). Choose hk; «—
Gen(1*,1%,b;) and output hk = (hki,. .., hk,).
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— y = H}(x): For # = (z[0],...,z[L — 1]) € L, hk = (hky,...,hk,) proceed
as follows. Define T' to be a complete binary tree of height ¢ where level 0
of the tree denotes the leaves and level ¢ denotes the root. We will assign a
label to each vertex in the tree. The L leaf vertices are assigned the labels
x[0],...,2z[L — 1]. The rest of the labels are assigned inductively where each
non-leaf vertex v at level j of the tree with children that have labels ), z}
gets assigned the label Hy,(z,}). The output of the hash is the label y
assigned to the root of the tree.

— m = Open(hk, z, j): Compute the labeled tree T' as above. Output the labels
of all the sibling nodes along the path from the root to the j’th leaf.

— Verify(hk, y, j,u, 7): Recompute all of the labels of the nodes in the tree T' that
lie on the path from the root to the j’th leaf by using the value u for that
leaf and the values given by 7 as the labels of all the sibling nodes along the
path. Check that the recomputed label on the root of the tree is indeed y.

Theorem 3.4. If H is a two-to-one SSB hash then H* is a SSB hash with local
opening.

Proof. Firstly, the index hiding property of H* follows directly from that of H
via ¢ hybrid arguments. In particular, if ip = (b, ...,by) and iy = (bg,...,b})
are the two indices chosen by the attacker during the security game for index
hiding, then we can prove the indistinguishability of hk® «— Gen*(1*, L, s, i)
and hk! — Gen*(1*, L, s,41) via ¢ hybrid games where we switch the component
keys hk = (hki,..., hk,) from being chosen as hk; < Gen(1*, 1s,b2) to hk; «
Gen(1*,1%,b).

Secondly, to show that H* is somewhere statistically binding w.r.t. open-
ing, assume that there exist some y,u # u/,m, 7" s.t. Verify(hk,y,i,u,m) =
Verify(hk,y,,u’,7’) = accept. Recall that the verification procedure assigns
labels to all the nodes along the path from the root to the i’th leaf. During
the two runs of the verification procedure with the above inputs, let 0 < j < ¢
be the lowest level at which both runs assign the same label w to the node at
level j (this must exist since the root at level ¢ is assigned the same label y in
both runs and the leafs at level 0 are assigned different values w,u’ in the two
runs). Let v,v" be the two different labels assigned to the node at level j — 1
by the two runs. Then w = Hyy,(x) = Hpy, (2") for some z,2" € ¥2 such that
z[bj] = v # 2'[b;] = ¢'. This means that hk; is not statistically binding on
the index b;, but this can only happen with negligible probability by the some-
where statistically binding property of the 2-to-1 SSB hash H. Therefore H* is
somewhere statistically binding w.r.t. opening.

Lastly, the output length of H* is given by £*(s,\) = sgz41 where s; =
s and for each other j € [q], sj4+1 = ¢(sj,A). The output length of a SSB
hash guarantees that ¢(s;, A) = s;(1 4+ 1/£2()\)) + a(\) where a(-) is some fixed
polynomial. This ensures that

05(5,2) = s(1+1/02(N)? + a(A QZ:H—l/Q = 0(s) + a(N)O(N)
7=0
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elilom—]  2om

Fig.1. Illustration of the SSB hash from a lossy function with key hk «
Gen*(1*,15,L = 29,4,A), i.e., Hul(x) perfectly binds z[i = 2]. For every level
j € {1,...,q} we sample a pairwise independent function h; : {0,1}>™ — {0,1}™,
where m = 2(s 4+ gA) + X for a statistical security parameter A, and two functions
hk9, hkj : {0,1}™ — {0, 1}™ from an (m, A)-lossy family of functions, one lossy and
one injective (we decide which one of the two is the injective one such that the path
from the perfectly binded value — here z[2] — to the root only contains injective func-
tions). The injective and lossy functions are shown in green and red, respectively. The
SBB hash is now a Merkle-hash with the hash function H;(a,b) = h;(hk}(a), hk; (b))
used in level j. An edge label ¢ in the figure means that there are at most 2 possible
values at this point, e.g., there are 2° values of the form «[0]||0"™~° and the output of
a lossy function like hki has at most 2" values. To locally open a value, say x[2], we
reveal z[2] all the siblings of the nodes on the path from z[2] to the root, those are
marked with 4/ in the figure.

is polynomial in s, \. We rely on the fact that ¢ < X to argue that (14+1/2()))? <
(1+1/2(X\)* =0(1).

4 SSB Hash from Lossy Functions

In this section we describe a simple construction of an SSB Hash with local
opening, the main tool we’ll use are lossy functions, introduced by Peikert and
Waters [PWO08]. They actually introduced the stronger notion of lossy trapdoor
functions, where a trapdoor allowed to invert functions with injective keys, we
only need the lossiness property, but no trapdoors.

Definition 4.1. An (m, A)-lossy function is given by a tuple of PPT algorithms

— For m,A € N and mode € {injective = 1,lossy = 0}, Gen_g(m, A, mode)
outputs a key hk.
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— Every such key hk defines a function hk(.) : {0,1} — {0,1}™" (for some
m' > m).

We have the following three properties:

injective: If hk — Gen_g(m, A, injective), then hk(.) is injective.
lossy: If hk < Genig(m, A, lossy), then hk(.)’s output domain has size < 2™, i.e.

{y : 3w e{0,1}™ hk(z) =y} < 2"

indistinguishable: Lossy and injective keys are computationally indistinguish-
able. More concretely, think of A as a security parameter and let m =
poly(A), then the advantage of any PPT adversary in distinguishing
Gen g (m, A, injective) from GenLg(m, A, lossy) is negligible in A.

The Construction. Our construction (Gen®, H*, Open, Verify) is illustrated in
Fig. 1, we define it formally below.

— hk « Gen*(1*,1%, L = 27,4, A): Set m = 2(s + qA) + \. For i € {0,...,29 —
1}, let (by,...,b1) be the binary representation of ¢ (with b; being the least
significant bit).

For every j: Choose hk! « Genig(m, A, 1 —b;) and hk} < Gen_g(m, A, bj).
Sample a pairwise independent hash function h; : {0, 1}27”/ — {0,1}™ and
let hk; = (hk), hk}, h;). Each hk; defines a mapping H; : {0,1}*™ — {0,1}™
defined as

Hj(a,b) = hj(hk(a), hkj (b))

Output hk = (hkq, ..., hkg).

~ H;, (2): For x = ([0],...,2[27 — 1]) € {0,1}*%", hk = (hky, ..., hk,) proceed
as follows. Define T' to be a complete binary tree of height ¢ where level 0
of the tree denotes the leaves and level ¢ denotes the root. We will assign a
label to each vertex in the tree. The 27 leaf vertices are assigned the labels
x[0]]]0™*, ..., x[29 — 1]||0™* (i.e., the input blocks padded to length m).
The rest of the labels are assigned inductively where each non-leaf vertex v at
level j of the tree with children that have labels xf, 2] gets assigned the label
y = Hj(xf,2}). The output H}, (x) is the root of the tree.

— 7 = Open(hk, z, j): Compute the labeled tree T as above. Output the labels
of all the sibling nodes along the path from the root to the j’th leaf.

Figure 1 the values to be opened to reveal x[2] are marked with /.

— Verify(hk, y, j, u, 7): Recompute all of the labels of the nodes in the tree T that
lie on the path from the root to the j’th leaf by using the value u for that
leaf and the values given by 7 as the labels of all the sibling nodes along the
path. Check that the recomputed label on the root of the tree is indeed y.

Theorem 4.2. The construction of a SSB Hash (with local opening) described
below, which maps L = 27 blocks of length s bits to a hash of size m = 2(s +
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gA) + X bits where X is a statistical security parameter and we assume (m, A)-
lossy functions, is secure. More concretely, the somewhere statistically binding
property holds with probability

1—q/2*

over the choice of the hash key, and the index hiding property can be reduced to
the indistinguishability property of the lossy function losing a factor q.

Proof. The index hiding property follows immediately from the indsitinguisha-
bility of injective and lossy modes.

To show that the hash is somewhere statistically binding, consider a key
hk « Gen*(1*,1°,L = 29,4,A). We must prove that with overwhelming
probability no hash y € {0,1}2(stM)+X exists where Verify(hk,y,i,u, ) =
Verify(hk,y,i,u', ') = accept for some u # u’, that is, z[i] can be opened to
u and u'.

In a nutshell, the reason why with high probability (over the choice of hk) the
hash Hy is perfectly binding on its ith coordinate is that the value z[i] at the
leaf of the tree only passes through two kinds of functions on its way to the root:
injective functions and pairwise independent hashes. Clearly, no information can
be lost when passing through an injective function. And every time the value
passes through some hash hj, the other half of the input is the output of a lossy
function, and thus can take at most 2% possible values. Thus even as we arrive
at the root, there are only 25742 possible values. We now set the output length
m = 2(s+q-A) + X of the h;’s so that 2™ is a larger — by a factor 2* — than
the square of the possible values. This then suffices to argue that every h; will
be injective on its possible inputs (recall that there are at most 2579 of them)
with probability > 1 — 277,

For the formal proof it’s convenient to consider the case i = 0 (i.e.,
the leftmost value should be perfectly binding). Let 7 = (w1,...,w,) and
m’ = (wy,...,wy) be two openings for values z[0] # 2'[0], we'll prove that with

probability ¢/2* (over the choice of hk) the verification procedure will compute
different hashes corresponding to any two such openings (i.e., for every opening
(m,x[0]), there’s at most one y which makes Verify(hk,y,i = 0,2[0], 7) accept),
and thus the hash is perfectly binding on index 0.

Let v = [i][|0™~* and for j = 1,...,q define v; = h;(hk}(v;_1), hk}(w;)),
the U;—’S are defined analogously for the other opening. Note that v, is the final
hash value, so we have to show that v, # v;.

We will do so by induction, first, we claim that (for any hk) there are at most
25+3A possible values v; can take. This is true for j = 0 as vy = z[0][j0™*
can take exactly 2° values by definition. Assume it holds for j — 1 and let
S;_1,]8;_1] < 2°FU=DA denote the set of values v;_; can take, then

19;] = | {h;(hk}(v;_1),hk;(2)) : vj_1 € Sj1,2 € {0,1}™)}| (1)
< H(vj1,hkj(2)) : vj1 € 551,2 € {0,1}™)}] (2)
<|Sj_1|- 2% (3)
< 28 Hih (4)
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where the first step follows by definition of the set .S;, the second step follows as
applying deterministic functions cannot increase the number of possible values,
the third step follows as hk}(.) is lossy and thus can take at most 2" possible
values. The last step follows by the induction hypothesis for j — 1.

For the proof we will think of the hash key hk = (hky,..., hky), where hk; =
(hk?, hk}, hj), as being lazy sampled. Initially, we sample all the hk?, hk; keys.
Let L; C {0,1}™ denote the range of the (lossy) hk}(.) functions, note that
|L;| < 22 for all j. The h;’s will be sampled one by one in each induction step
below.

Assume so far he have sampled hq,...,h;_1, and so far for any openings
where z[0] # 2'[0] we had v; # v}. For j = 0 this holds as z[0] # 2/[0] implies
vo = 2[0)[0m=5 # & [o] Jo™—.

The inputs to the function h; (which is still to be sampled) are from I;_; =
h9(S;-1) x Lj_1, which (as shown above) contains at most |S;_| - [L; 1| <
2st(U—1A9A — 95+7°A clements.

We now sample the pairwise independent hash hj, as it has range 2" the
probability that any two elements (v,l) # (v',1') € I;_; collide is 27, taking
the union bound over all pairs of elements we get

22(S+j-A)/2m S 27A

Taking the union bound, we get that the probability that the induction fails for
any of the ¢ steps is ¢/2* as claimed.

5 SSB from ¢-hiding

We now move on to building SSB from the ¢-hiding assumption [CMS99]. This
construction will be qualitatively different from the prior ones in that we will not
employ a Merkle tree type structure for proving and verifying opens. In contrast
a hash output will consist of two elements Z}, and Z};, for RSA primes Ny, Ni.
An opening will consist of a single element of either Z}; or Zj, .

Our construction is structurally similar to standard constructions RSA accu-
mulators [BAM93]. Intuitively, the initial hash key will consist of two RSA moduli
Ny, N7 as well as two group elements hg, h; and keys Ky, K1 which hash to prime
exponents. To compute the hash on input z € {0,1}¥ let Sy = {i : z[i] = 0} be
the set of all indices where the i-th bit is 0 and S7 = {i : 2[i] = 1} be the set of
indices where the i-th bit is 1. The function computes the output

Hzeso FKo(i) Hiesl Frey (3)

Yo = hyg mod Ng, y1 =hy mod Nj.

To prove that the j-th bit was 0 the open algorithm will give the Fik,(j)-
th root of yo. It computes this by letting So = {i : z[i] = 0} and setting

4 Note that we prove something slightly stronger than required as we only need to
consider pairs where v # v'.
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s Frey (i
hOH eso Mo g Ny. A proof can be checked by simply checking if

——
Yo = 7Fx0() mod Np. (Proving an opening of 1 follows analogously).

The algorithms as described above very closely match a traditional RSA
accumulator. The key distinction is that we can achieve statistical binding on
index j by setting Ny such that Ko(j) divides ¢(Ny) (and similarly for Ny). The

idea is that in this setting if yo is not an Ko(j)-th residue then there will not

exist a value 7 such that yq L 7P mod Ny. The index-hiding property will
follow from the ¢-hiding assumption.

5.1 RSA and ¢-hiding Preliminaries

We begin by developing our notation and statement of the ¢-hiding assumption
both of which follow closely to Kiltz, O'Neill, and Smith [KOS10]. We let P

denote the set of odd primes that are less than 2%. In addition, we let (V, p, q) &
RS Ay, be the process of choosing two primes p, ¢ uniformly from P, and letting

N = pq. Further we let (N,p,q) & RSAi[p =1 mod e] be the be the process
of choosing two primes p, ¢ uniformly from P with the constraint that p = 1
mod e, then letting N = pq.

We can now state the ¢-hiding assumption relative to some constant 0 < ¢ <
.5. Consider the following distributions relative to a security parameter .

R:{(evN):eve/iPcA;(N,pgq)iRSA)\[p:]. mod 6’]}
L={(e,N):e& Por;(N,pq) & RSA\p=1 mod €]}

Cachin, Micali and Stadler [CMS99] show that the two distributions can
be efficiently sampled if the Extended Riemann Hypothesis holds. The ¢-hiding
assumption states that for all ¢ € (0,.5) no PPT attacker can distinguish between
the two distributions with better than negligible in A\ probability.

5.2 Conforming Function

Before we give our construction we need one further abstraction. For any integer
L we require the ability to sample a keyed hash function F(K, -) that hashes from
an integer ¢ € [0,L — 1] to a random prime in P.y. Furthermore, the function
should have the property that it is possible to sample the key K in such a way
that for a single pair i* € [0,L — 1] and e* € P,y F(K,i*) = e*. Moreover such
programming should be undetectable if e* is chosen at random from P,).

We give the definitions of such a function system here and show how to con-
struct one in Appendix A. A conforming function system is parameterized by a
constant ¢ € (0,.5) and has three algorithms.

SAMPLE-NORMAL(1}, L) — K
Takes in a security parameter A and a length L (in binary) and outputs a function
key K.
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SAMPLE-PROGRAM(1, L, i*,e*) — K
Takes in a security parameter A and a length L (in binary) as well as a program
index i* € [0, L — 1] and e* € P.y. It outputs a function key K.

FK 11— ’PC)\
If SAMPLE-NORMAL(1*, L) — K, then Fi takes in an index i € [0, L — 1] and
outputs a prime from P.y.

Properties. Such a system will have four properties:

Efficiency. The programs SAMPLE-NORMAL and SAMPLE-PROGRAM run in
time polynomial in A and L. Let SAMPLE-NORMAL(1*, L) — K, then Fix
runs in time polynomial in A and lg(L).

Programming at i*. For some \, L, i*, e* let SAMPLE-PROGRAM(17, L, 4%, e*)
— K. Then Fk(i*) = e* with all but negligible probability in A.

Non colliding at i*. For some \, L,i*, e* let SAMPLE-PROGRAM(1?*, L, i*, e*)
— K. Then for any i # i* the probability that Fk (i*) = Fk (i) is negligi-
ble in A.

Indistinguishability of Setup. For any L,i* consider the following two dis-
tributions:

Ry ={K :e* & Pex; SAMPLE-NORMAL(1Y, L) — K}
L~ ={K:e" & Pex; SAMPLE-PROGRAM(1?, L, 7%, e*) — K}

The indistinguishability of setup property states that all PPT adversaries
have a most a negligible advantage in distinguishing between the two distri-
butions for all L,d*.

5.3 Our ¢-hiding SSB Construction

We now present our ¢-hiding based SSB construction. Our construction is for an
alphabet of a single bit, thus s is implicitly 1 and omitted from our notation. In
addition, the construction is parameterized relative to some constant ¢ € (0, .5).

Gen(1*, L,i*)

The generation algorithm first samples two random primes eg, €1 & Per. Next,
it sets up two conforming functions as SAMPLE-PROGRAM (1*, L,i*,eq) — Ko
and SAMPLE-PROGRAM (1*,L,i*,e;) — Ki. Then it samples (No,po,qo) &
RSAwlpo = 1 mod eg] and (N1,p1,q1) <& RSAilpr = 1 mod ey]. Finally, it
chooses hg € Zj, randomly with the constraint that hPo=D/€0 £ 1 mod py and

hy € Z}, randomly with the constraint that hﬁpl‘”/el #1 mod p;.
It outputs the hash key as hk = {L, (No, N1), (Ko, K1), (ho, h1)}-

Hy: 0,1} — Zy,, Zy, -
On input x € {0,1}¥ let Sy = {i : z[i] = 0} be the set of all indices where the
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i-th bit is 0 and Sy = {i : z[i] = 1} be the set of indices where the i-th bit is 1.
The function computes

) F i ) Fg, (4
Yo = h(l)_LGSO KU() mod NO, Y1 = h{LGS1 Kl()

mod Nj.
The hash output is y = (yo,y1)-

We note that the computation in practice will be done by iteratively with
repeated exponentiation as opposed to computing the large integer Hie 50 F'Ko (4)
up front.

Open(hk, z, j):
If z; = 0 it first lets Sy = {4 : z[i] = 0}. Then it computes

s, Freo (i
= h(l)_[’ﬂeso @ hod No.
Otherwise, if z; = 1 it first lets S = {4 : z[¢] = 1}. Then it computes

Hi;éjesl Fry (2)

T =h; mod N;.

Verlfy(hk7 Y= (y07 y1)7j7 be {05 1}7 7‘-):
The verify algorithm checks

UYb z %) mod Ny.

Properties. We now show that the above construction meets the required prop-
erties for SSB with local opening. One minor difference from the original def-
inition is that we weaken the statistically binding requirement. Previously, we
wanted the binding property to hold for any hash digest y, even one which does
not correspond to a correctly generated hash output. In the version we achieve
here, we require that y = Hpk(x) for some x. We define the property formally
below.

Weak Somewhere Statistically Binding w.r.t. Opening: We say that
hk is weak statistically binding w.r.t opening (abbreviates wSBO) for an
index i if there do not exist any values x € Xl o # z[i],n s.t.
Verify(hk, Hp (), 4,4, m) = accept. We require that for any parameters s, L
and any index i € {0,...,L — 1}

Pr[hk is wSBO for index i : hk « Gen(1*,1%, L,4)] > 1 — negl()\).

We say that the hash is perfectly binding w.r.t. opening if the above proba-
bility is 1.
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Correctness of Opening. Consider any hk generated from the setup algorithm

and let 7 be the output from a call to Open(hk,z, ) for some x,j where that

s Fre, (i ies Fr, (i
z[j] = b € {0,1}. Then y, = hbnlesb e (0 mod N, and 7 = hll:l'#ﬁsb 4 (0

mod N,. It follows that 7f% (1) = yp mod Np.

Weak Somewhere Statistically Binding with Respect to Opening. Suppose that
Gen(1*, L,i*) — hk. We argue that with all but negligible probability for all
inputs € {0,1}* that the function is statistically binding with respect to
opening.

Consider a particular input  where z[i*] =1 — b and Hyp(z) =y = (yo,41)-
We want to show that there does not exist a value 7 such that Verify(hk,y =
(yo,y1),7",b € {0,1},m) = 1. Let e, € P.x be the prime value chosen at
hash function setup. By the setup process we have that ep|p, — 1 and that of
ep = Fi,(i*). The latter follows from the Programming at ¢* property of the
conforming hash function. Therefore we have that (7€ )®e=1/¢ = 1 mod p;

(i.e. w is an ep-th residue mod py).

B G
Recall that y, = h})_[les" e (0 mod Ny. Let a = [[;.q, Fk, (7). By the non-

colliding property of F' coupled with the fact that x[i*] # b and thus i* ¢ S,
with all but negligible probability for all ¢ € S, we have that F, (¢) is a prime
= ep. Therefore « is relatively prime to ep. Since hy, was chosen to not be a ep-th
residue mod p, and o is relatively prime to e, it follows that y, = h{ is also
not an ep-th residue mod p,. However, since 7 is an e,-th residue mod py, it
cannot be equal to y, and the verification test will fail.

Index Hiding. We sketch a simple proof of index hiding via a sequence of games.
We begin by defining the sequence.

— Game o: The Index Hiding game on our construction.

— Game ;: Same as Game o except that an additional prime e, & ) 1S sam-
pled and (Ny,po, qo0) & RSAxp = 1 mod e]. Note that we still sample
(1*, L, iy, e0) — Ko where w.h.p eg # efy. additional prime e & Pex is sam-
pled and (Ny,p1,q1) & RSAx[p = 1 mod ¢f]. Note that we still sample
(1*, L,iy,e1) — K1 where w.h.p e; # €}.

— Game 3: Same as Game 5 except that K is sampled as SAMPLE-NORMAL
(1*, L) — K.

— Game 4: Same as Game 3 except that K7 is sampled as SAMPLE-NORMAL
(1, L) — K;.

It follows directly from the ¢-hiding assumption that no PPT attacker can
distinguish between Game ; and Game ; and that no attacker can distinguish
between Game ; and Game 5. At this point the primes eg and e; are used only in
the programming of the hash function and are not reflected in the choice of the
RSA moduli. For this reason we can now use the Indistinguishability of Setup
property of the conforming has to show that no PPT attack can distinguish
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between Game 5 and Game 3 and Game 3 and Game 4. Finally, we observe that
the index 4; is not used at Game 4 and thus the bit b is hidden from the attacker’s
view.

6 Positional Accumulators

In the full version of this paper, we also discuss how to extend some the above
results to positional accumulators. In particular, we show how to construct posi-
tional accumulators from a (perfectly binding) two-to-one SSB hash. The con-
struction can also be naturally extended to one based on lossy functions.

A Constructing a Conforming Function

We now give our construction of a conforming hash function per the definition
given in Sect. 5.2.

Recall, our goal is to construct a keyed hash function F(K,-) that hashes
from an integer ¢ € [0,L — 1] to a prime in P.y. Furthermore, the function
should have the property that it is possible to sample the key K in such a way
that for a single pair i* € [0, L — 1] and e* € P,y we have F(K,i*) = e*. (The
constant ¢ € (0,.5) is considered a parameter of the system.) Moreover, such
programming should be undetectable if e* is sampled at random from P.}.

Our construction below is a simple implementation of this abstraction and all
properties are statistically guaranteed (i.e. we do not require any computational
assumptions).

SAMPLE-NORMAL(1*, L) — K
We first let B = 2lA and let T = X2. The algorithm chooses random
wi,...,wr € [0,B —1]. The key K is set as K = (A\,wy,...,wr).

SAMPLE-PROGRAM(1, L,i*,e*) — K
We first let B = 2L°M and let T = A2 Initialize a bit (local to this computation)
PROGRAMMED to be 0. Then proceed in the following manner:

For j =1 to T if PROGRAMMED Z 1 choose v; randomly in [0, B — 1] and
set w; = v; —4* mod B. This corresponds to the case where the value e* was

“already programmed”. Else, if PROGRAMMED < 0, it first chooses v; randomly
in [0, B — 1]. If v; is not prime it simply sets w; = v; —¢* mod B. Otherwise,
it sets w; = e* —¢* mod B and flips the bit PROGRAMMED to 1 so that e* will
not be programmed in again.

The key K is output as K = (A, wq,...,wr).

FK 11— Pc)\
The function proceeds as follows. Starting at j = 1 to T' the function tests if
w; + 1 is a prime (i.e. is in P,y). If so it outputs w; + ¢ and halts. Otherwise, it
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increments 7 and tests again. If j goes past T and no primes have been found,
the algorithm outputs a default prime 3 € P.y.%

Properties. We now confirm that our function meets all the required properties.

Efficiency. The programs SAMPLE-NORMAL chooses 7" random values where
T is polynomial in A and SAMPLE-PROGRAM also chooses T' random values
as well as performing up to T primality tests. The keysizes of both are T
integers in [0, B]. Thus the running times and keysizes are polynomial in A
and 1g(L).

Programming at i*. Consider a call to SAMPLE-PROGRAM(1?, L, i*,e*) — K.
The function Fi (i*) will resolve to the smallest j such that w; + i* is a
prime (if any of these are a prime). By the design of SAMPLE-PROGRAM
this will be e* since it puts in w; = e* —4* mod B the first time a prime is
sampled. In constructing the function if all v; sampled were composite then
Fg(i*) # e*, however, this will only occur with negligible probability since
the probability of choosing T random integers in 2l*) and none of them
being prime is negligible.

Non colliding at i*. For some ), L,i*, e* let SAMPLE-PROGRAM(1?, L, 4%, e*)
— K. Let’s assume that Fx(i*) = e*. We first observe that the chances
that there exist any pairs (i, jo) # (i1,71) such that w;, + i = w;, + 41
is negligible. We consider the probability of this happening on an arbitrary
pair and them apply the union bound.

Consider a pair (i, jo) # (i1,71) If jo = j1 this cannot happen since the
two terms differ by i; — ig. Otherwise, we notice that the probability of a
particular pair colliding is at most 1/B (which is negligible) since v;, and v;,
are chosen independently at random. Since there are at most a polynomial
(TéL) such pairs the chances that any collide is negligible.

It follows that the chances of Fg(i*) = Fk (i) for ¢ = i* is negligible since
the above condition would be necessary for this to occur.

Indistinguishability of Setup. For any L,:* consider the following two dis-
tributions:

Rpi-={K:e" & P.x; SAMPLE-NORMAL(1Y, L) — K}
Lr»={K:e" & P.x; SAMPLE-PROGRAM(1%, L, i*, ¢*) — K}

We argue that these two distributions are identical for all L,7*. We show
this by also considering an intermediate distribution Z7, ;«. This distribution
is generated by randomly sampling v; in [0, B — 1] and setting w; = v; —
+* mod B. This distribution is clearly equivalent to the SAMPLE-NORMAL
distribution as for all j selecting w; randomly and selecting v; randomly and
setting w; = v; —¢* mod B both result in w; being chosen uniformly at
random.

® Note there is nothing special about choosing 3. Any default prime would suffice.
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We now argue that this intermediate distribution is equivalent to the
Ly i+ distribution which is equivalent to calling SAMPLE-PROGRAM with
sampling e* randomly from P.. We will step through an execution of
SAMPLE-PROGRAM and argue that at each step j from j = 1,...,T v,
is chosen randomly from [0, B — 1] independently of all other v;, for j' < j.
Consider an execution starting with j = 1 and PROGRAMMED = 0 and for
our exposition let’s consider that e* € P,y has not been sampled yet. While

PROGRAMMED = 0 the algorithm samples v; is sampled at random. If v;
is composite it is kept and put in the key, otherwise if it is prime in Py,
v; is replaced with e* as another randomly sampled prime. Thus, for any
composite value = the probability that w; 4+¢* = x is 1/B and for any prime
value = the probability that w; + i* = = is also 1/B. The reason is that
replacing any sampled prime with a different randomly sampled prime does
not change the distribution.

After PROGRAMMED is set to 1 all further v; values are chosen uniformly
at random.

Remark A.1. We note that the Indistinguishability of Setup property holds per-
fectly while the programmability property holds statistically. One way to flip
this is to always program vy = e* at the end if if e* has not been programmed
in already.
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