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Abstract. It is important to predict the total workload for facilitating
auto scaling resource management in service cloud platforms. Currently,
most prediction methods use a single prediction model to predict work-
loads. However, they cannot get satisfactory prediction performance due
to varying workload patterns in service clouds. In this paper, we pro-
pose a novel prediction approach, which categorizes the workloads and
assigns different prediction models according to the workload features.
The key idea is that we convert workload classification into a 0–1 pro-
gramming problem. We formulate an optimization problem to maximize
prediction precision, and then present an optimization algorithm. We
use real traces of typical online services to evaluate prediction method
accuracy. The experimental results indicate that the optimizing workload
category is effective and proposed prediction method outperforms single
ones especially in terms of the platform cumulative absolute prediction
error. Further, the uniformity of prediction error is also improved.

Keywords: Cloud computing · Resource provisioning · Workload pre-
diction · 0–1 programming

1 Introduction

Service clouds are a kind of service platform using cloud computing technol-
ogy, on which lots of application systems are running. These applications are
designed according to Service-Oriented Architecture (SOA), and it encapsulates
business processes into services. Adoption of the new platform paradigm by ser-
vice provider could make energy and cost to reduce obviously due to the resource
provisioning advantages of cloud computing.

With the ability of dynamic provisioning resources, cloud computing platform
can adjust the resource to meet the demand of application, which is an important
characteristic and is different from traditional platform. By using auto scaling
technology, service clouds provide on-demand resource to users. Service providers
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are free from considering over-provisioning or under-provisioning for a service.
In order to enable the scalability, it is necessary to develop a mechanism to scale
up or down virtual machine (VM) automatically. Many cloud providers, such as
AWS EC2 [1] and Google the App Engine [2], focus on the scalability, that means
providing on-demand computing power and storage capacities dynamically. In
these cases, cloud computing is a good choice to liberate service providers from
deploying physical infrastructures.

In order to take advantage of scalability, service clouds need to support auto
scaling technology in a way that service clouds manage VM instances automati-
cally [3]. Therefore, it is of important significance to realize the resources predis-
tribution via predicting workload. Workload prediction is a key step to realize
predistribution and improve the accuracy of distribution in service clouds.

Currently, most workload prediction methods generally utilize a single pre-
diction method [3–18], which choose special predicting model aiming at a certain
workload feature. However, these methods could not get satisfactory prediction
performance for service clouds. Because the service is different in service clouds
and the service workload changes in a variety forms.

Service workloads have various patterns influenced by service type. As key
characteristic of workloads, burstiness and self-similarity [19–21] have been
reported for some kinds of application in cloud. There are also research works
[22–24] analyze that the actual cloud computing workloads are highly time-
varying in nature. Wang [21] classified the workloads into slow time-scale data
and fast time-scale data according to the speed of load change in form of time-
series employing. They described the relationship of two kinds of workload and
characterized the impact of the workload on the value of dynamic resizing.

Focus on the variation pattern of workloads, a prediction method based on
feature discriminations could be used to obtain a more accurate prediction effect
in service clouds. In the project, the common workload classification method is to
extract the feature of workload, classify the workload by comparing the feature
value with a threshold value. Therefore, the determination of threshold value
greatly influence the workload category. However, the workloads are dynami-
cally changing in service clouds. The threshold need dynamic change with the
service numbers floating on account of the service adding or reducing at any
time in service clouds. However, dynamic adjustment of the threshold needs a
lot of historical statistics or experience, and this increases the computation and
management difficulty. The key problem of workload classified prediction is how
to catalog workload effectively, which is the crux of the matter to obtain more
accurate total prediction results.

In this paper, we propose a prediction approach based on feature discrimi-
nation. The key idea is that we transform the workload classification threshold
problem into the task assignment one. By modeling and solving the integer
programming, the service is allocated a suitable forecasting method automati-
cally. We formulate an optimization problem to maximize prediction precision.
The problem is then converted to a 0–1 programming problem. Our objective is
to design an intelligent workload prediction management architecture with more
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robust characteristics to adapt various workload change modes and minimize the
predicting error of service clouds. Our contributions are summed up as follows:

1. We propose a categorical prediction approach according to different change
mode of workload in order to get higher platform prediction accuracy. Our
work applies feedback from the latest observed workloads to a prediction
model and update the model parameter on the run. Our method has well
robustness and adaptive ability.

2. We present the optimal way to classify workloads in order to allocate predic-
tion models adaptively. We establish a 0–1 programming model and use the
sum of l2-norm of workload average rate to trade off the prediction accuracy
and time. The optimizing solution can dynamically determine the type of
service workloads effectively.

The rest of the paper is organized as follows. Section 2 describes the design of
our adaptive management architecture for workload prediction. The workload
classification optimize model is established and solution is given online in Sect. 3.
Section 4 shows the evaluation. We present the related work in Sect. 5, and con-
clude this paper with Sect. 6.

2 System Architecture

We propose the architecture of workload prediction based on feature discrimina-
tion in service clouds. In the proposed architecture, adaptive workload manage-
ment can automatically allocate a prediction model to each service by solving
the optimal problem.

Figure 1 shows the architecture of the classified workload prediction in ser-
vice clouds. There are Admission Controller module, Resource Manager module,
Predictor module and Data Warehouse module in the proposed architecture.
Infrastructures include compute, storage and network resources. The services

Fig. 1. Adaptive management architecture for workload prediction in service clouds
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request is scaled in response to change infrastructures at fixed interval. The
fixed interval is denoted as reconfiguration interval. The Admission Controller
module determines the user’s access. The Resource Manager module adjusts the
allocation of resources according to the change of user requests dynamically.
All of the service workload logs are transferred to workloads database, named
as Data Warehouse. The historical workload information is used to distinguish
workload type. It is also used to train and test the prediction model.

The Predictor module is the key module of this paper, it is highlighted in
the figure. Once a new service is added, or an old service is down, the Workload
Classifier is triggered. Then service workloads could be divided into different data
types according to the change pattern of workload. Different prediction method
is allocated to appropriate workload based on the optimal solution provided
by Workload Classifier. The output of the Predictor is the total workloads of
the platform. The total predicting workloads are estimated as the number of
VMs and the Resource Manager module takes the number as input. Then the
Resource Manager makes the decision to scale up or down VMs for the next
reconfiguration interval.

The Workload Classifier automatically allocates suitable prediction model
according to the change pattern of each service. In service clouds, there are web
service, blog service, audio service, video service, e-mail service and so on. We
classify workloads of these services into fast time-scale data or slow time-scale
data according to the speed of load change in form of time-series employing. The
fast time-scale data is stochasticity and nonlinearity, in which the burstiness of
arrivals was high. The slow time-scale data is similar to linearity, in which the
peak-to-mean ratio was low. The major difference between fast time-scale data
and slow time-scale data is the intensity and speed of change. Therefore, we
consider workload average change rate in the workload classification model. The
result of workload classification is affected by the behavior of each load recently.
Compared with slow time-scale workload, the fast time-scale workload changes
violent and its average change rate is larger. This classification well distinguishes
the load from the perspective of the change rate.

A constant prediction model cannot cover two kinds of data sets which are
with contrary change pattern. In this paper, we utilize linear regression (LR)
model and support vector regression (SVR) model to predict the workload,
because they are naturally efficient and effective in the forecasting paradigm.
Especially SVR is very suitable for the prediction of small sample nonlinear
data. Therefore, they are suitable to these change patterns in this paper.

Workload Classifier component is the key to realize adaptive classification
prediction. More detailed description can be seen in Sect. 3.

3 Model Formulation and Solution

In this section, the workload category problem is transformed into task assign-
ment one which has a good solution. A 0–1 mixed integer programming of min-
imum assignment model is established, and an online solution is given in this
section.
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3.1 The Workload

We consider a discrete-time model that there is a time interval which is evenly
divided into “frames” t ∈ {1, . . . , K} . In practice, the length of a frame could
be 5–10 min. Given a set of time series data wt, t ∈ {1, . . . , K} , t = 1 is the first
frame of the time series, wt stands for the actual data in frame t.

3.2 The Workload Classification Problem

Supposed there are i kinds of services Ai(i = 1, · · · , n) in service clouds. There
are j kinds of prediction models Mj(j = 1, 2) for Ai, which are fit for forecasting
workload according to the characteristic of each kind of application workload
provided by service clouds. Assign Mj to Ai, the predicting time is denoted
by tij , the predicting error is denoted by εij (i = 1, · · · , n, j = 1, 2). Here, εij
expresses Mean Absolute Percentage Error (MAPE) of a service workload i by
model j at the frame t, defined as εij = 1

n

∑n
s=1

∣
∣
∣(ŵs − ws)/ws

∣
∣
∣, where ws is the

actual output, and ŵs is the prediction output, s is the observing time point,
n is the data number of observation dataset at frame t. Cumulative Absolute
Error at frame t denoted by cεt, and expresses the sum of MAPE of all services
loads in service clouds, defined as cεt =

∑n
i=1 εti .

In order to achieve the minimum cεt and satisfy the time requirement mean-
while, it is the key to improve the platform prediction performance that assigns
suitable prediction models to each service in service clouds. While the workload
feature is hard to extract and dynamic changing threshold is difficult to deter-
mine, we transform that problem into an assignment problem by establishing
the optimization model.

Supposed xij expressed as distributing prediction model Mj to service Ai.

xij=
{

0 Ai is not assigned prediction model j
1 Ai is assigned prediction model j

(1)

When a new service is adding, or an old service is down at frame t, we need
to reorganize the service type and reassign the prediction model. Then we need
to determine xij .

3.3 The Workload Classification Optimization

Given the workload classification component above, the platform has one con-
trol decision vector xij , i.e. the allocation of prediction models when service
number is changing at each frame. Given the limited error vector and time
vector for Ai that satisfy the SLA requirements are ε = (ε1, · · · εi · · · , εn) and
T = (T1, · · · , Ti, · · · , Tn). The goal of the service clouds is to determine xij to
minimize the predicting error during [0, K]:
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min
n∑

i=1

2∑

j=1

εijxij

s.t. 0 < tij < Ti i =1, · · · ,n, j =1, 2
0 < εij < Ei i =1, · · · ,n, j =1, 2
n∑

i=1

xij = 1 j =1, 2

xij ∈ {0, 1}n

(2)

where:
Ti is the upper limit of predicting time for Ai. It equals to configuration

time - VM restart time - service deployment time.
εij is the predicting error of Ai under current predicting model scheme j, Ei

is the maximum error limit of Ai.
This model generalizes the service cloud optimization problem by accounting

the total error of the platform. However, there is an issue in the model: the object
of minimum platform error leads to the results that the optimal solution tends
to be fast time-scale type. If it is assigned as fast data, it will use SVR model to
forecast workload. Compared with LR model, SVR model has small predicting
error and long predicting time. Predicting time of platform at frame t defined as
the maximum predicting time of each service used in frame t. This would lead
to more fast items and a long predicting time in the optimal solution for the
workload classification.

With regard to this issue, we consider time factor, instead of only consider-
ing minimum platform error in the model. There is a significant difference in the
average change rate of workload between fast time-scale and slow time-scale. The
fast time-scale workload changes violent and the average change rate of work-
load is larger. Defined workload average change rate as ω=

∑n
j=1 (yj+1 − yj)/N .

There is obviously difference between fast time-scale and slow time-scale in term
of ω. The ω value of fast type is greater than that of slow type. In a classification
result, the more fast type number, the larger sum of l2-norm for ω. Therefore,
to deal with the above issue, the Eq. (2) can be more balanced by introducing
the sum of l2-norm for ω to tradeoff the overall prediction performance includ-
ing prediction accuracy and time. Constant λ trades off a priori knowledge as
throughout on the influence degree of the model. It needs to be determined
before solving the optimization problem. Then the problem (2) may be written
as Eq. (3). The influence of λ value on the prediction results will be discussed
in Sect. 4.4.

min
n∑

i=1

2∑

j=1

εijxij+λ
n∑

i=1

2∑

j=1

‖ωi · xij‖2
s.t. 0 < tij < Ti i =1, · · · ,n, j =1, 2

0 < εij < Ei i =1, · · · ,n, j =1, 2
n∑

i=1

xij = 1 j =1, 2

xij ∈ {0, 1}n.

(3)
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3.4 The Optimal Solution

Equation (3) is a 0–1 integer programming, branch and bound method is a
primary algorithm to solve this kind of problem. The classical branch and bound
algorithm works for the low efficiency when the scale of the problem is bigger. The
branch and sub-problem choice strategies are important factors of the algorithm
efficiency [26,27]. We adopt a search approach to solve Eq. (3). In order to
achieve the better time performance, we choose the minimum cost priority and
feasibility pruning strategies in searching, pruning and bounding process in this
section. There is a detailed description in Fig. 2.

Given integrate programming as shown in Eq. (3), S(P) is the feasible solu-
tion set of Eq. (3), x is the feasible solution, Fu is the upper bound of the opti-
mal value. Programming (3) can be divided into sub-programmings, denoted by
(P1), (P2) · · · (Pi), and each sub-programming has corresponding relaxation pro-
gramming, denoted by (P1), (P2), · · · , (Pi) , S(Pi) is the feasible solution set of(
Pi

)
, x(i) is the optimal solution and fi is the optimal value. NF is the subscript

set of the detecting problem Pi.
All the children nodes are produced from the current node in branch process.

Those nodes that are impossible to generate feasible solutions are abandon, and
other children nodes are adding to activated nodes set NF. Then new expansion
node is chosen from the activated nodes set. In branch process, the minimum cεk
is the strategy to choose the branching node. We select the appropriate subscript
k ∈ {1, 2, · · · , n} according to Eq. (4).

k = arg min{f(
⌊
x0
j

⌋
), f(

⌈
x0
j

⌉
)|x0

j is fraction} (4)

After k is determined, xk = 0 or xk = 1, and the original problem is divide
into two sub-problems.

The boundary of objective function for the sub-problems is established in
a bounding process. If a sub-problem value is outside the boundary, this sub-
problem will be pruned. To solve the relaxed programming

(
Pi

)
can obtain the

optimal solution x(i) and the optimal value fi.
In step i ≥ 0, the low boundary of the optimal value fi for (Pi) can be

obtained, denoted as:

LFLi = min{fi |i ∈ NF }

In step i ≥ 0, the upper boundary of the optimal value fi for (Pi) can be
obtained, denoted as:

UFUi = min{LF (fi)
∣
∣fi ∈ S(P )}

To repeat branching, bounding and pruning process until there is no node in
NF, the best feasible solution is the optimal solution of the original problem as
shown in Eq. (3).

Through the above discussion, the branch and bound algorithm for the pre-
diction model assignment program solving is described as Fig. 2.
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Fig. 2. Flow chart of branch and bound algorithm
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4 Experimental Analysis

In order to illustrate the effectiveness of the proposed approach in service clouds,
we conduct experiments with the data set built from some typical services of the
application system developed by our lab. First, each service is allocated a suitable
prediction model according to the optimal solution. With this assignment, we
compare our method with single prediction methods in term of the platform
cumulative absolute predicting error proposed in this paper. In order to obtain
more accurate workload classification by optimal solution, we discuss the effect
of parameter λ in optimization model on optimal solution followed.

4.1 Setup of the Experiment

There are some application systems in the experimental service clouds, such
as Social Network Sites(SNS), Multimedia Conference System(Video System),
Online Learning System(Learning System) and so on. Each of them is composed
of more than one services. Table 1 lists some of the services of these systems.
They are running in service clouds which are based on OpenStack, using two IBM
x3650 servers as control nodes and three IBM x3650 servers as computing nodes.

Table 1. Services of the application system in service clouds

Application Service

SNS Web service

Picture service

Blog service

Comment service

E-mail service

Video system Video service

White board service

Discuss service

Cache service

Learning system Web service

White board service

Video service

Discuss service

E-mail service

The data set of optimal classification experiment is built from the real trace of
requests to service servers. We sample workloads of these services every 10 min
time interval for 48 h in service clouds. The time interval is set by the time
spending on booting a VM. The data set is composed of 30 groups workload
traffic samples include 20 groups fast time-scale data plus 10 groups slow time-
scale data to evaluate the workload classification optimization result. We would
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Fig. 3. Comparative prediction results on two kinds of workload: Web Service and
Video Service. Figures on the left column illustrate comparative results using LR and
SVR algorithm; figures on the right column enlarge the results for more clear illus-
tration. (a) Web Service workload, (b) Enlarged part, (c) Video Service workload,
(d) Enlarged part.

conduct our prediction experiment with two typical workloads to evaluate the
proposed prediction approach. Workload variation pattern is a stochastic fea-
ture, closely related to the characteristics of service applications. For example,
the traffic workload of web service is greatly influenced by a web content and
change drastically with the arrivals burstiness. Video service mainly provides
video transmission and decoding process for multimedia conference system. Its
users mainly in the campus tend to use the video service in the daily work time.
The traffic curve appears certain regularity and takes the shape of a flat curve.
The ratio of peak to average is low and has cyclical change. Then we choose
these two service workloads to verify the prediction result.
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4.2 Workload Prediction Methods Analysis

The prediction models used in the prediction experiment are LR and SVR. LR
[28] models the relationship between one or more input variables z and a depen-
dent output variable y by using a linear equation. We take the following form.

yt = β1 + β2zt (5)

where y is the target variable, here is prediction workload. z is the explained
variable, here is the time. t indexes the sample interval. The coefficients β1, β2 are
determined by solving a linear regression equation based on previous workloads
yt−1, yt−2, yt−3 and so on. β1, β2 change with different previous workloads, that
is to say, this model can change with the workload trend. We use the Ordinary
Least Squares to solve the Eq. (5).

Before using the SVR to predict time series, sample space reconstruction is
required. We analyze our time series data, and give the reconstruction process
as follow. Given time series xt (t = 1, 2, · · · , T ), from Takens phase space delay
reconstructing theory, we use the m-dimensional vector, it is defined as

x(t − 1) = [x(t − τ), x(t − 2τ), · · · , x(t − mτ)] (6)

where m is an embedding dimension and τ is delay constant. The prediction
model can be described as x(t) = g(x(t−1)), g is a non-linear map. For our time
series data, the input variables should be reconstructed using Eq. (6) of all data
sets in the beginning, the values of embedding dimension and delay constant for
the data set are set as follows: m = 3, τ = 1.

Weused theGaussianRBFkernel anddefinedasK(xi, xj) = exp(−‖xi − xj‖2)
/(dδ2)), where d is the dimensionality of x, d = 2 , δ2 is the variance of the kernel.
We used the leave - one out cross validation approach to select model parame-
ters, which chose the test and training sets randomly [29]. This method divided
sample data into two parts, 70 % of the data is processed as a training set and
30 % of the data is processed as a test set. We used LIBSVM toolbox [30] to
implement SVR algorithm. SVR parameter Settings are as follows: m = 3, c =
100, g = 0.5, s = 3, p = 0.001, t = 2.

Because of adopting cross validation, we use another half of the data set to
test the prediction effect. As shown in Fig. 3, both SVR and LR make a good
prediction effect for slow time-scale data. For fast time-scale data, the traffic
changes drastically, more burstiness of arrivals come out near the sudden change.
LR could not adapt the change and it produces a greater predictive error and
phase deviation. SVR could adapt the dramatic change tendency well, because
it conducts nonlinear kernel transforms. SVR has better prediction effect for
fast time-scale data. But SVR needs more predicting time than LR. Therefore,
we allocate the linear regression model for slow time-scale data as well as the
support vector machine model for fast time-scale data in classified prediction
approach.
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4.3 Classified Prediction Effect Analysis

According to the above prediction model allocation scheme, we compare the
prediction effect of classified prediction approach with SVR and LR prediction
model. We evaluate the accuracy of the prediction approaches based on a num-
ber of metrics: Mean Absolute Percentage Error (MAPE), Cumulative Absolute
Error at the frame t (cεt).

We select 20 points uniformly within prediction period and compute the
MAPE and cεt. Then we compare the prediction effect of three approaches in
terms of the mean value, the square error, and the mean square deviation of
MAPE.

Figure 4 shows cεt of service clouds at 20 prediction points. It illustrates that
the MAPE of the classified prediction is minimum, SVR comes second, and LR
is the highest.

In regard of the mean value, the square error and the mean square error
at 20 prediction points with three methods, the statistical results are listed in
Table 2. The mean cεt of three prediction methods (e.g. classified prediction,
SVR, LR) are 11.227, 13.544 and 10.266 respectively. Therefore, compared with
SVR and LR, the classified prediction method reduces the platform cumulative
absolute predicting error by 8.56 % and 24.20 % respectively. For different ser-
vice load predictions, the cumulative error of a single prediction method is far
bigger than the adaptive classification prediction method depending on the load
characteristics.

Table 2 shows the cεt statistical results of service clouds at 20 prediction
points. The mean value of the classification prediction method is the smallest,
LR is the highest. It illustrates that the cεt of the classification prediction distrib-
utes more concentrated and forecasts more accurately. Variance and standard
deviation of cεt at each time are consistent. Variance and standard of classifica-
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Table 2. Statistical results of cumulative absolute error

Mean value Square error Mean square error

SVR 11.227 2.5997 1.6124

LR 13.544 1.7377 1.3182

Classified prediction 10.266 1.6702 1.2924
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Fast time−scale data protportion(%)

In
cr

ea
se

predicting error
predicting time

Fig. 5. Influence of fast time-scale data proportion on error and time.

tion prediction method are the smallest, and that of SVR are the biggest. This
illustrates that the cεt of the classification prediction method distribute more
stably, compared with single prediction methods.

4.4 Influence of the Parameters λ on Workload Classification
Optimization

As analysis in the previous section, the proportion of fast time-scale data in
workload classification produces an effect on platform prediction accuracy and
platform prediction time in classified predicting approach.

We measure the platform prediction error and platform prediction time by
classified prediction approach, which the proportion of fast time-scale data
increases from 0 to 100 % with 30 groups of load respectively. Figure 5 illustrates
the influence of fast time-scale data proportion on accuracy and time. Obviously,
with the increase of proportion, the platform prediction error decrease distinctly.
Meanwhile, this would increase the platform prediction time. Therefore, finding
the optimal ratio of fast time-scale workload is the key to improve the platform
prediction result and keeping the balance of the forecasting accuracy and time
performance to satisfy the response time of SLA.

In the workload classification optimization model, parameter λ plays the
role to control the ratio of fast time-scale data in the solution of optimization.
λ trades off a priori knowledge of workload on the influence of the model. It
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Table 3. The relation between λ and optimal classification results

λ Accuracy of
classification

Average cumu-
lative absolute
error

Average
predicting
time (ms)

0 73.33 % 3.456 72.026

[0.11,1) 93.33 % 3.47 54.053

+∞ 33.33 % 8.028 0.0525

needs to be determined before solving the optimization problem. Thus the value
of parameter λ on the optimal solution and predicting accuracy performance is
studied in this section.

Table 3 illustrates the effect of λ. Here, accuracy of classification is defined
as the correct classification number divided by the total number of load. Aver-
age cumulative absolute error equals to cεt divided by the number of services.
Average predicting time equals to the sum of predicting time divided by the
number of services.

From Table 3, we analyze the effect of λ range where global optimal solution
can be found.

(1) λ = 0 that is only the error term, no regular item to play a role. In opti-
mal solution X, there are 26 workloads identified as fast time-scaled data,
4 workloads identified as slow time-scaled data. Classification accuracy is
73.33 %.

(2) As λ value is gradually increasing from 0.11 to 1, regular item plays more
important role. In optimal solution X, there are 22 workloads identified as
fast time-scaled data, 8 workloads identified as slow time-scaled data. 2 slow
time- scaled workloads identified as fast time-scaled data on account of severe
changing in the test interval. Classification accuracy is 93.33 %. Compared
with (1), workload predicting model scheme, average cumulative absolute
error only increase 0.4 % but average predicting time reduce 33.25 % in this
scheme.

(3) λ = +∞ that is regular item to play an important role, the error term nearly
play no function. In optimal solution X, 30 workloads are identified as slow
time-scaled data. Because in this optimal model, the objective is only time
performance and the predicting time of slow time-scaled is much better than
fast time-scaled. Classification accuracy is only 33.33 %. The model with no
information of workload average rate of change leads to poor performance.

5 Related Work

At present, the approaches for workload or resource prediction in cloud can be
classified in two categories according to the feature of a prediction method.

The first category prediction methods employed classical prediction mod-
els by studying the application characteristic in the cloud platform. To satisfy
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upcoming resource demands, Islam et al. [4] used Neural Network (NN) and
Linear Regression (LR) to get new prediction-based resource measurement and
provisioning strategies. Markov method is also used to predict workload. Studies
[5–7] show that web and data center workloads tend to present behavior that
can be effectively captured by time series-based models. Regard workload as
time series, the Autoregressive Integrated Moving Average (ARIMA) model was
applied to estimate the future need of applications. Roy et al. [8] utilized lin-
ear prediction method such as the exponential moving average, a second order
autoregressive moving average and moving average method, to forecast the time
series workloads. Sapankevych et al. [9] provided a survey of time series predic-
tion applications using support vector machines (SVM) approach. It points out
that the motivation for using SVMs is the ability of this methodology to accu-
rately forecast time series data when the underlying system processes are typ-
ically nonlinear, nonstationary and not defined a priori knowledge. SVMs have
also been proven to outperform other non-linear techniques including neural-
network based non-linear prediction techniques such as multi-layer perceptrons.
The work of [10] shows SVM provides the best prediction model among SVM,
NN and LR with the SLA metrics for Response Time and Throughput. John
et al. [11] analyzed the cloud workloads and used Markov modeling and Bayesian
modeling to predict workload. Mathias et al. [12] developed a Markov framework
to model the capacity variability of a service cluster for VM provisioning.

The second category prediction methods tended to propose a new prediction
approach according to the feature of workload. They usually adopted the single
prediction strategy at the same time to predict all the services resources. As
typical ones, Caron et al. [13] proposed a Pattern Match algorithm to predict
workload taking advantage of the self-similar feature. The main idea is to find out
the historical load data similar to the load in current stage by using the feature
of web traffic self-similar. Meanwhile, Gong et al. [14] presented a predictive
elastic resource scaling scheme named as PRESS, which monitored CPU usage
of VM, and derived signature-driven resource demand prediction by employing a
Fast Fourier Transform. For applications with no repeating patterns, a discrete-
time Markov chain based method was proposed to obtain state-driven resource
demand prediction. Ghorbani et al. [15] introduced a fractal operator to account
for the time-varying fractal and bursty properties of the cloud workloads.

However, these methods mentioned above usually adopt the single predic-
tion strategy, that is, at the same time using the same method to predict all the
services resources. Although many works were dedicated to resource prediction
in clouds, there are few researches related to the application scenarios in which
a variety of businesses run on the cloud platform at the same time. Consider-
ing the influence of cross correlation between servers’ workloads, Khan et al.
[16] analyzed the interaction between these workloads from the perspective of
multiple time series, and then used hidden Markov chain model to predict the
workload. Zhang et al. [17] designed a workload factoring service for proactive
workload management. It segregated flash crowd workload from base workload
with a data item detection algorithm.
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Finally, Kupferman et al. [18] recommended a set of scoring metrics to mea-
sure the effectiveness and efficiency of dynamic scaling algorithms in terms
of availability and cost. Copil et al. [31] presented a framework for estimat-
ing and evaluating cloud service elasticity behavior to estimate the expected
elasticity behavior in time. It advise elasticity controllers about cloud service
behavior to improve cloud service elasticity. Islam et al. [4] discussed a set of
predicting metrics to evaluate the accuracy of the prediction algorithms, includ-
ing Mean Absolute Percentage Error(MAPE), PRED(25), Root Mean Squared
Error(RMSE) and R2 Prediction Accuracy.

6 Conclusions and Future Work

To facilitate auto scaling resource management in service clouds, one of the
crucial technologies is to predict resources in advance. In service clouds, it is
difficult to predict accuracy due to the variation pattern of workloads.

In order to solve the above problem, we have presented an adaptive workload
prediction approach in this paper. The approach categorizes the workloads and
assigns different prediction models according to the speed of workload change.
The key idea is that we formulate an optimization problem to maximize predic-
tion precision, then convert workload classification into a 0–1 programming prob-
lem. It is solved quickly by employing an improved branch and bound algorithm.

We evaluated its accuracy using real traces from some typical services of
the application system developed by our lab. We also analyzed the parameters
value and the influence of the fast time-scale data on workload classification
optimization. The experiment results demonstrate that our approach predicts
more accurately in terms of the platform cumulative absolute predicting error.
Moreover, the predicting error is well-distributed.

Our approach is also generic, and it can be used well in most service-cloud
scenarios. In future, we plan to implement and evaluate our classification predic-
tion approach for a wide variety of workloads by integrating the existing service
platforms of our laboratory. We also intend to introduce more prediction models
for these workload patterns. We need to modify the optimal model accordingly.
This strategy will facilitate the prediction framework to make business-level
SLAs constraint (such as, response time, accuracy performance and cost etc.)
for adaptive and optimal resource provisioning in the cloud.
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