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Abstract. With the advent of Docker, it becomes popular to bundle
Web applications (apps) and their libraries into lightweight linux con-
tainers and offer them to a wide public by deploying them in the cloud.
Compared to previous approaches, like deploying apps in cloud-provided
virtual machines (VMs), the use of containers allows faster start-up and
less overhead. However, having containers inside VMs makes the decision
about elastic scaling more flexible but also more complex. In this con-
temporary approach to service provisioning, four dimensions of scaling
have to be considered: VMs and containers can be adjusted horizontally
(changes in the number of instances) and vertically (changes in the com-
putational resources available to instances). In this paper, we address
this four-fold auto-scaling by formulating the scaling decision as a multi-
objective optimization problem. We evaluate our approach with realistic
apps, and show that using our approach we can reduce the average cost
per request by about 20–28 %.

1 Introduction

With the advent of Docker1, lightweight containers are gaining wide-spread popu-
larity among early adopter-type companies, including Facebook and Google [15].
Such containers are also particularly suitable to power recent trends like microser-
vices andDevOps [1].We consider the approachwhere a variety of different services
or Web applications (apps) are running inside containers, each app deployed in
instances of a particular container type. Various container instances are deployed
on top of VM instances, which can be obtained from Infrastructure-as-a-Service
(IaaS) providers, e.g., Amazon Web Services (AWS).

Virtualization brought the benefit of detaching the setup of a machine from a
physical machine (PM), and enabled IaaS cloud offers. VMs contain a full oper-
ating system (OS) and all software required for a specific purpose. Further, a
1 http://docker.io, accessed 29/7/15.
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VM’s configuration can be packaged into an image and cloned arbitrarily often.
This mechanism is commonly used for apps running in the cloud [19]. Most
recently, the idea of having an additional abstraction layer has been picked up
by lightweight containers which can be described as smaller variants of VMs:
the OS is not included in a container; instead, the one from the host machine
is used. However, most additional programs are included inside the container.
Like VMs, containers offer resource elasticity, isolation, flexibility and depend-
ability. Containers do need to run on compatible versions of the OS, and they
share resources through the outside OS, but these limitations are compensated
by benefits of faster start-up times (on the order of seconds, where booting a
VM takes on the order of minutes) and less overhead in terms of used resources
(since the containers do not require a separate OS). One can certainly use Docker
containers (from now on only called containers)2 instead of VMs directly on an
OS that runs on private PMs. However, in public cloud platforms such as AWS,
the norm is running containers inside VMs obtained from the IaaS providers.
These VMs are initially launched with only the OS and no app-specific software.
That raises a complicated question of allocation: how many VMs are needed, and
how should the containers be configured and distributed among the VMs? Com-
pared to instance allocation of VMs in former approaches, container deployment
requires making allocation decisions from a much larger space of options. As in
all cloud platforms, allocation needs to be dynamic and elastic: as the load on an
application changes, the amount of resources used should be adjusted to match
the change, so the costs can be scaled up and down following usage.

In this paper we propose to use a multi-objective optimization model to solve
the allocation problem for lightweight containers on top of VMs. In this model,
we consider horizontal and vertical auto-scaling on both the container and VM
level. Hence, we make the following contributions:

– We offer a multi-objective optimization model for scaling a contemporary
deployment platform (consisting of containers and VMs) including the inter-
actions between the different layers. This has more degrees of freedom than
scaling just VMs as in traditional cloud deployment scenarios.

– We show how the optimization model can be used for making auto-scaling
decisions for this deployment platform. The control decisions require solving
the optimization problem, which we can do for reasonably-sized distributed
systems, even though the additional degrees of freedom make the optimization
task more complex than for traditional approaches.

– Using a prototype, we provide a realistic evaluation of our approach against
two baseline scenarios which consider fewer dimensions of scaling. In our
experiments we achieved total savings of up to 28 %.

The remainder of the paper is structured as follows. We start with a motivating
example and give an overview of our approach in Sect. 2. In Sect. 3 we present the
2 In our current implementation we use Docker as container technology. The app-

roach however would work for any lightweight container supporting resource and
application isolation, scalability and dependability.
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details of the optimization problem. We discuss the results of our experimental
evaluation in Sect. 4 and related work in Sect. 5. Section 6 concludes the paper.
An accompanying technical report (TR) [8] provides details that were omitted
here for brevity.

2 Motivating Example

Consider the Following a Platform-as-a-Service (PaaS) Scenario: we assume the
role of a provider hosting various apps using a public IaaS cloud service3. Apps
have a specific type and are provided by different customers or content providers
who want to have a fixed hosted solution. Each app may come with an optional
Service Level Agreement (SLA), e.g., defining a maximal response time which
should not be exceeded or a specific throughput which should be achieved. For
the sake of simplicity, say the provider hosts the following three apps for three
customers, all subject to varying workloads. App A: Joomla with extensions
for appointment management, for customer 1, a hairdresser; App B: Wordpress
with plugins for CRM and Lead Management, for customer 2, a tech startup;
and App C: NodeJS with the web site of customer 3, a skiing tour operator. As
these apps would interfere with each other, each app is packaged into a separate
container type. For that, a dockerfile specifies the configuration necessary to
start containers, i.e., a new container instance of the same container type. New
containers for the apps can then be instantiated as desired. Common practice is
to specify version and build numbers or commit hashes in the dockerfile, so that
all containers spawned from the same dockerfile start off as being the same, i.e.,
running the same application code, versions and libraries. If an app needs to be
upgraded, this is initiated by changing the dockerfile.

The provider leases VMs of different types, i.e., each VM type has a different
configuration in terms of supplied resources. In order to deploy containers onto
a VM, a VM needs to be instantiated resulting in a VM instance. Notably, the
provider can deploy many different containers (of different types) on a single
VM instance. In addition, the provider may deploy a specific container type
on several VM instances, resulting in various container instances where each
container instance may have a different configuration. This configuration can be
used to ensure the app’s SLA is met, by defining requirements on the underlying
VM, e.g., the resource demand in terms of CPU and RAM. The requirements
on CPU are defined in CPU shares. By default, each VM has 1024 CPU shares
available which are split between the hosted container instances. Say the provider
leases a dual-core VM for all three apps and the respective numbers of requests
rise during peak times – therefore the system needs to be scaled. The problem
then is: how many VMs of which types are needed, and how should the containers
for the different apps be distributed among them, with which configuration?
3 Internal IT operation units face a very similar situation when providing container

hosting to their organization. Hence, instead of a public cloud IaaS a private cloud
can be used.
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If the demand for all three apps increases more or less uniformly, it may be
sufficient to lease more VMs, each hosting all three apps. However, if the demand
for App A grows a lot faster than for App B and C, more resources need to be
provisioned for it. If later App A’s demand shrinks, the freed up resources may
be released. Alternatively, if App B experiences increased demand at that point,
the resources freed up by App A can be re-purposed for App B.

As can be seen, the decision of how many VMs of which type should be
leased when and how to distribute and configure the containers is not straight
forward. Hence, in this paper, we make use of an optimization approach and
define four-fold auto-scaling as a multi-objective optimization model.

3 Optimization Approach

Building on the example scenario and the main aspects of our problem landscape,
we now give an overview of our multi-objective optimization model. Due to space
constraints, we present only the main objective function and refer to our technical
report (TR) for more information [8]. The optimization model takes as input a set
of different VM types (V = {1, ..., v#}) and container types (D = {1, ..., d#}).
v corresponds to a VM type and kv to a specific VM instance. Accordingly,
d refers to a container type and cd to a specific container instance (having a
certain configuration). Each VM instance and container instance comprises a
certain specification in terms of CPU and RAM. For the sake of simplicity, we
generalize all types of resources here; in our implementation we differentiate
CPU shares and RAM.

The goal of the objective function below is minimizing the overall cost, i.e.,
the cost for all leased VMs. Hence, the output of the model is two-fold: first it
defines how many VM instances of which types are needed, and second, which
container (including its configuration) should be deployed on which VM instance.
The decision variable x(cd,kv,t) is set by the solver and defines which container
cd should be deployed on which VM instance kv at time t.

min

[∑
v∈V

cv · γ(v,t) +
∑
d∈D

∑
cd∈Cd

∑
v∈V

∑
kv∈Kv

(
(1 − z(d,kv,t)) · (x(cd,kv,t) · Δd)

)

+
∑
v∈V

∑
kv∈Kv

ωR
f · f(R,kv,t) +

∑
d∈D

∑
cd∈Cd

∑
v∈V

∑
kv∈Kv

(
ωs · s(i,cd,t) · x(cd,kv,t)

)]

The objective function comprises four terms. The first term
∑

v∈V cv · γ(v,t)
computes the overall VM leasing cost: γ(v,t) many VM instances of type v with
cost cv are leased at time t. The second term

∑
d∈D

∑
cd∈Cd

∑
v∈V

∑
kv∈Kv(

(1 − z(d,kv,t)) · (x(cd,kv,t) · Δd)
)

sums up the time needed to deploy a container
(Δd) on a VM instance kv. If a specific container of type cd gets deployed the
first time on a VM instance kv, some data needs to be downloaded from the con-
tainer registry. Hence, this procedure may take some time. However, this data
is cached on the VM instance as long as it is running, thus future deployments
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of the same container type will be much faster. In case a VM instance’s cache
contains already the needed data (z(d,kv,t)=1), the product inside the sums is
0. Further, this term prioritizes placement of containers on VM instances where
they are cached already, since the term is minimized as part of the overall objec-
tive function. The third term

∑
v∈V

∑
kv∈Kv

(ωR
f ·f(R,kv,t)) computes the amount

of free resources (f(R,kv,t)). This term ensures that containers are deployed on
already leased VM instances instead of leasing additional ones, provided enough
resources are available. In order to control the contribution of this term towards
the objective function, we weigh the free resources using the weight ωR

f . The
fourth term

∑
d∈D

∑
cd∈Cd

∑
v∈V

∑
kv∈Kv

(
ωs · s(i,cd,t) · x(cd,kv,t)

)
sums up the

amount of deployed containers for each container type at time t. It aims at avoid-
ing over-provisioning on the container level by demanding to lease the smallest
amount of resources to containers while still fulfilling the demand. As before,
the term is weighed with a constant value ωs.

The full optimization model can be found in the TR [8]. It includes numerous
constraints, which define limits on valid container deployments and VM leasing
plans. Overall, the optimization model ensures that enough resources are leased
to handle the demand for each app at any time. Hence, the outcome of the opti-
mization model is two-fold: (1) it determines whether additional VM instances
need to be leased or if already leased VM instances can be terminated, and
(2) it determines which container types to instantiate on which VM instance.
Consequently, the system landscape subject to continuous change: VMs may
appear or disappear at any time and containers may be moved between them.

4 Evaluation

Our optimization-based control of auto-scaling has been evaluated through mea-
suring the behavior of a prototype. The source code is available at http://
reliableops.com. Details of the architecture and evaluation can be found in the
TR [8]. We compare our optimized approach against two state-of-the art base-
lines for making scaling decisions: One-for-All and One-for-Each. In both cases,
additional resources are leased or released based on a threshold. One-for-All
leases only quad-core VMs, where each VM hosts one container of each type.
One-for-Each leases only single-core VMs, each hosting exactly one container.
As in the example scenario in Sect. 2, we have three different container types
(i.e., three apps). We test using two request arrival patterns, sending different
and varying amounts of requests to each app.

Table 1. Evaluation results

Arrival Pattern 1 Arrival Pattern 2

Optimized One-for-All One-for-Each Optimized One-for-All One-for-Each

Leased cores (σ) 28.13 (0.38) 39.5 (0) 29.68 (0.14) 28.75 (0.43) 39.5 (0) 29.88 (0.25)

Leasing cost (σ) 378.4 (0.92) 505.6 (0) 474.67 (2.31) 393.2 (1.38) 505.6 (0) 478.00 (4)

Cost/Invocations (σ) 0.17 (0.012) 0.23 (0.22) 0.21 (0.02) 0.17 (0.03) 0.24 (0.06) 0.22 (0.04)

SLA adherence 97.47% 98.02% 98.22% 96.95% 96.92% 97.1%

http://reliableops.com
http://reliableops.com
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The result of our evaluation are shown in Table 1. As the numbers reveal, the
SLA adherence for both arrival patterns and for each scaling strategy are very sim-
ilar, varying by less than 2.5 %. This can be expected given that we used the same
thresholds for scaling up or down. Hence, in the following we focus on the leased
CPU cores and incurred cost. It is not surprising that the One-for-All scenario pro-
duced the highest cost. In this scaling strategy, only quad-core VMs were leased,
each hosting one container instance per app.This leads to a highly over-provisioned
system when some apps experience relatively low load, as VMs are not be fully
used in this case. Hence, leasing single-core VMs with only one app as in One-for-
Each is∼5 %cheaper.However, even leasing smallerVMsmaynot beperfect. Since
single-core VMs can not service as much load as more powerful VMs, more VMs are
needed. In addition, in our cost model, leasing two single-core VMs is more expen-
sive than leasing one dual-core VM (∼20 % more expensive). Thus vertical scaling
can be helpful: leasing the rightVMsize depending on the needmay eventually lead
to less leasing cost. Our four-fold optimization approach can take advantage of this,
as can be seen in the Cost/Invocations row in Table 1: Eventually, for Arrival Pat-
tern 1, we achieved savings of ∼28 % (with ∼33 % less cores) over the One-for-All
scenario and monetary savings of ∼23 % (∼4 % less cores) over the One-for-Each.
For Arrival Pattern 2, we achieved with our optimization cost savings of ∼25 %
(∼32 % less cores) over the One-for-All scenario and savings of ∼20 % (∼4 % less
cores) over the One-for-Each scenario.

5 Related Work

Resource allocation and auto-scaling are major research challenges in the field of
cloud computing [3]. Several different approaches have been proposed for scaling
single services, scientific workflows and business processes. Approaches for both
fields differ in a number of aspects, e.g., process perspective, timeliness, resource
insensitivity, scheduling on step-level or for the full process, etc. [6,7,16,17]. The
major difference of process-based scaling versus scaling single services lays in the
versatility, i.e., the amount of parallel requests may jump within a few seconds
from a low to a very high number. Hence, the demand of resources may also
change quickly which makes scaling decisions more complicated [2]. As resources
are commonly paid for a fixed Billing Time Unit (BTU) (several minutes to a
few hours), releasing resources before the end of such a cycle should be avoided.

The adherence to SLAs has also been investigated. SLAs are defined by cus-
tomers under the objective of optimizing profit for the IaaS provider [11], or
to achieve a high resource utilization [5,9,10]. For that, most approaches apply
threshold-based scaling, i.e., fixed rules apply depending on the current load.
Li et al. propose using reinforcement learning to reason about the best config-
uration to ensure a certain level of QoS [12]. However, it is more realistically
for service providers to isolate different apps: they may have conflicts amongst
each other, like exposing the same ports, using incompatible libraries, or privacy
constraints preventing their deployment in the same VM [18].
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To overcome this configuration problem, commonly apps and their libraries
are packed into a single VM. Doing so, a more fine grained scaling is possi-
ble. However, from the point of view of a IaaS provider, the problem of unused
resources has only been shifted. Now the question is how to use the PMs effi-
ciently. A number of solutions have been proposed which consider different VM
placement approaches with the aim of utilizing the physical resources efficiently
[4,14,20]. As it is common that apps communicate with each other, having them
in separate VMs will eventually lead to high data transfer. Cloud providers often
charge for in and out-bound traffic. Hence, VM placement should consider a col-
location of VMs which communicate regularly with each other [6,13]. Approaches
for scaling VMs and placing them on PMs are particularly relevant to our work.
However, using VMs instead of containers should be limited to cases where a
full OS is needed while containers should be used to isolate single apps. Further,
optimizing VM placement is only applicable for datacenter operators with hard-
ware access. Where this is not the case, using containers in combination with
VMs allows much finer-grained scaling and resource usage optimization.

6 Conclusions

The traditional approach of hosting apps directly on VMs suffers from sev-
eral disadvantages, such as the overhead of a full OS and slow start-up time,
a degree of vendor lock-in, and relatively coarse-grained units for scaling. In
order to overcome those problems more and more organizations use lightweight
container technologies like Docker. These add an additional abstraction layer on
top of VMs, enabling more efficient use of VMs. When running containers on
top of VMs, auto-scaling decisions have greater flexibility and greater complex-
ity. In this paper, we defined a four-fold auto-scaling decision problem for this
deployment scenario as a multi-objective optimization model, and we proposed a
control architecture that dynamically and elastically adjusts VM and container
provisioning. Based on a prototype implementation, which uses IBM CPLEX as
optimization solver, we evaluated our approach extensively, comparing it against
two näıve scaling strategies. We showed that our approach can choose and exe-
cute scaling decisions, achieving a cost reduction of 20–28 % over the baselines.
In our future work we want to extend this optimization model and consider the
location of containers, privacy aspects, and long-running transactions.
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