
Verification of GSM-Based Artifact-Centric
Systems by Predicate Abstraction

Pavel Gonzalez1, Andreas Griesmayer2, and Alessio Lomuscio1(B)

1 Department of Computing, Imperial College London, London, UK
{pavel.gonzalez09,a.lomuscio}@imperial.ac.uk

2 ARM, Cambridge, England
andreas.griesmayer@arm.com

Abstract. Artifact-centric systems are a recent paradigm to model and
implement business workflows. They describe data, processes, internal
and external agents and include mechanisms for data hiding and access
control. GSM is a language for the implementation of artifact-centric sys-
tems. Since GSM programs have infinitely many states, their verification
is challenging. We here present a predicate abstraction technique that
enables us to verify GSM programs against rich specifications built on
an epistemic, first-order variant of the μ-calculus. We give the theoreti-
cal underpinnings of the technique and present GSMC, the first model
checker for GSM that implements SMT-based, three-valued abstraction
for GSM.

1 Introduction

Artifacts are structures that “combine data and process in an holistic manner”
to describe business interactions, typically in a service-oriented architecture [1].
The data component is given by the relational databases underpinning the arti-
facts in a system, whereas the workflows are described by “lifecycles” associated
with each artifact schema. Artifacts systems define complex workflow schemes
based on artifacts. The system’s participants, or agents, interact with the artifact
system by performing events on it.

Differently from services where typically only the process interfaces are adver-
tised, in artifact-centric systems the data structures are also made public. Due to
their expressiveness and flexibility, Artifact-centric architectures are increasingly
being used in variety of application areas including case management systems [2].
Artifact centric systems are executed in a hub which provides the functionality
for service execution. A flexible and powerful language for modelling and execut-
ing artifact-centric systems is the Guard-Stage-Milestone programming language
(GSM). The open-source design and runtime engine Acsi Hub [3,4] is an envi-
ronment whereby system orchestration and choreography are executed.

If artifact-centric environments are to fulfil their promise to drive the future
generation of data-intensive services, they need to be verifiable. This should
involve not only the hub itself governing the interactions between artifact calls,
but also, and crucially, the agents implementing the services in the system, as
is normally done when reasoning about services [5]. In addition to providing
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 253–268, 2015.
DOI: 10.1007/978-3-662-48616-0 16

254 P. Gonzalez et al.

correctness guarantees and rapid prototyping, techniques such as model check-
ing can form the underpinnings for the implementation of automatic service
orchestration and choreography [6].

In this paper we develop verification methodologies for artifact-centric sys-
tems implemented in GSM. Since GSM programs include data models, they
are infinite state programs; it follows that traditional model checking methods
based on finite-state machines cannot be applied to them. To address this prob-
lem we develop a novel predicate abstraction methodology [7] for GSM defined
on a three-valued semantics to account for over- and under-approximation of the
models. We also present GSMC, the first model checker for GSM, that imple-
ments the technique discussed. We evaluate the technique on a large industrial
scale example.

RelatedWork. Several techniques for the verification of artifact-centric systems
have been put forward [8–13].While these provide considerable insight in the decid-
ability and complexity of the verification problem, they do not provide a concrete
verification technique for actual systems. The first contributions concerning the
practical verification of GSM systems appeared in [14,15]. These, however, are
defined on coarse, user-given abstractions of GSM models where little data is
present and ad-hoc restrictions on variable ranges are applied to obtain finite state
systems. Additionally the specification language used is limited.

Incomplete verification methodologies operating directly on the source code
have been developed in software verification. The abstraction techniques devel-
oped in this context normally target reachability properties only. However,
3-valued abstraction can be applied to specifications based on the μ-calculus [16].

This paper extends existing work by providing 3-valued abstractions for GSM
programs specified by a first-order version of the epistemic μ calculus. This
enables us to specify services not in purely propositional terms as it is tradition-
ally done but, instead, by referring to the underlying databases.

2 The Guard-Stage-Milestone Language and Multi-agent
Systems

While GSM provides a language for the realisation of artifact-centric systems,
GSM on its own is not equipped with constructs for the implementation of
external actors operating on the system. In GSM these are abstracted by events
reaching the system.

However, to verify the possible executions of the system we need to represent
how the agents interact with it. Artifact-centric Multi-Agent Systems (AC-MAS)
were put forward in [15] to provide a semantics for GSM and the behaviours
of external agents. We summarise these concepts below but refer to the cited
literature for more details.

The Guard-Stage-Milestone (GSM) has recently been put forward as a
declarative language for implementing artifact systems [17]. GSM describes an
artifact system Γ that depends on of artifact types that correspond to classes of

Verification of GSM-Based Artifact-Centric Systems 255

Fig. 1. A lifecycle model.

key business entities. A system comprises of a number of artifact instances of
artifact types. Each type has an information model, which gives an integrated
view of the business data, and a hierarchical lifecycle model, which describes the
structure and evolution of the business process. The artifact system interacts
with its environment via events. The information model is partitioned into the
set of data attributes, which hold business data, and the set of status attributes,
which capture the state of the lifecycle model. Figure 1 illustrates a portion of
the lifecycle of a manufacturing process and represents the core concepts: The
boxes denote stages, which represent clusters of activity designed to achieve mile-
stones (◦) that represent operational objectives. A guard (�) triggers activities
in a stage when a certain condition is fulfilled. Both milestones and guards are
controlled declaratively through sentries. A sentry of an artifact instance ι is an
expression χ(ι) in terms of incoming events, guards and milestones, and the sta-
tus of the instance. In the example above, the Stage ‘Collecting Parts’ contains
‘Research & Order’, which is triggered by an external event; upon reaching the
milestone ‘parts ordered’ the next stage ‘Receiving’ is activated.

The operational semantics for GSM is based on the notion of a business step
(B-step). This is an atomic unit that corresponds to the effect of processing one
incoming event. A B-step has the form of a tuple σ = (Σ, e,Σ′), where e is an
incoming external event and Σ, Σ′ are snapshots that capture the current and
next state of the information model respectively.

The programming language GSM [4] provides the construct for the realisation
of GSM systems; the semantics of GSM programs is given in terms of B-steps.

Artifact-Centric Multi-agent Systems. While GSM models the business
artifacts, agents model the possible interactions that external actors and ser-
vices may have with the artifact system. Below we summarise the key elements
from [15] where a formalism for defining the behaviour of the agents, and their
access to the artifact system, is described. The concepts of views and windows
are used define which attributes and artifact instances are visible to an agent;
events represent external actions that cause a change in the system. In the exam-
ple above, views can be used to hide details like procurement of parts from a
customer, while allowing access to higher level information, e.g., the start and
end of the parts assembling process. Window, instead, can be used to hide orders
that do not belong to a particular customer. While a view ν and an event ε are

256 P. Gonzalez et al.

simple lists, a window ωi(ι) is a formula that is evaluated for a specific artifact
instance ι and an agent i. The instance is exposed to the agent only if ωi(ι)
evaluates to true. The behaviour of an agent is given by its protocol ℘ in terms
of the visible state of the artifact system, and the agent’s unique ID and set of
private variables var.

We formalise an agent-based GSM system for a set of agents A operating
on an environment given by the artifact system E through an Artifact-centric
Multi-Agent Systems (AC-MAS) [9]. An AC-MAS P = 〈S, I, Act, τ, Λ〉, where
S ⊆ LE × L1 × · · · × Ln is the set of reachable global states, I is the initial
state, Act = ActE × Act1 × · · · × Actn is the set of actions, τ : S × Act → 2S

is the global transition relation, and Λ : S → 2AP is the evaluation relation for
a set of propositions AP . A global state (lE , l1, . . . , ln) ∈ S for the system is
given in terms of the snapshot Σ of the artifact system for lE , and the accessible
variables of each agent for l1, . . . , ln. We also write li(s) to extract the visible
state for agent i from a global state s ∈ S. The sets of actions ActE and Acti
are directly defined by the events the system provides and the permissions of the
agents. The global transition relation τ(s, α) with s ∈ S and α ∈ Act is given by
the corresponding B-steps defined by GSM in combination with the protocols ℘
of the agents, where only one agent can interact with the artifact system at a
time while the others are idle.

The initial state I is a global state with not artifact instances in Σ and with
all private variables set to their initial value. We write s → s′ iff there exists an
α, such that s′ ∈ τ(s, α); in this case s′ a successor of s. A run r from s is an
infinite sequence s0 → s1 → . . . with s0 = s. We write r[i] for the i-th state in
the run and rs for the set of all runs starting from s. A state s′ is reachable from
s if there is a run from s that contains s′, formally ∃r′ ∈ rs : ∃i ≥ 0 : r′[i] = s′.
Note that portions of the global state may not be visible to an agent. In line
with the standard semantics of epistemic logic [18], we say that the states s and
s′ are epistemically indistinguishable for agent i, or s ∼i s′, iff li(s) = li(s′), i.e.,
if agent i’s local state is the same in s and s′.

3 Three-Valued Abstraction for AC-MAS

Predicate Abstraction [7] is a technique used to generate sound approximations of
infinite state systems by grouping together system states satisfying certain prop-
erties into abstract states. May transition between abstract states correspond to
possible transitions between some of corresponding concrete states. This leads to
an over-approximation of the possible behaviour that is conservative for safety
properties but may lead to unsound results otherwise. Three-valued abstrac-
tion has been employed [16,19] to overcome these limitations. In three-valued
abstraction a second transition relation (or must relation) is introduced to encode
when a change in the corresponding concrete states must happen. This allows
to concurrently maintain over- and under-approximations that are conservative
for both positive and negative specifications and allows to detect when a result
cannot be determined.

Verification of GSM-Based Artifact-Centric Systems 257

To extend this technique to AC-MAS, we introduce the three-valued seman-
tics for the epistemic μ-calculus and replace τ with τm, the global may transition
relation, and τM , the global must transition relation, to get P = 〈S, I, Act, τm, τM ,
Λ〉. Analogously to the concrete case, we write s

may−→ t (s must−→ t) for t ∈ τm(s, a)
(t ∈ τM (s, a)). Over- and under-approximations for the epistemic relations are
denoted as may∼i and must∼i respectively. This extended definition of AC-MAS allows
us to define abstraction formally as:

Definition 1 (Abstraction). Let P = 〈S, I, Act, τm, τM , Λ〉 and P ′ = 〈S′, I ′,
Act′, τ ′

m, τ ′
M , Λ′〉 be AC-MAS over the same set A of agents and sets AP ′ ⊆ AP

of propositions. We say that P ′ is an abstraction of P if:

1. s′ ∈ I ′ iff there exists s ∈ I, such that s ∈ γ(s′);
2. s′ may−→′

t′ iff there exist s ∈ γ(s′) and t ∈ γ(t′), such that s
may−→ t;

3. s′ must−→′
t′ iff for each s ∈ γ(s′) there exists t ∈ γ(t′), such that s must−→ t;

4. s′ may∼i
′
t′ iff there exist s ∈ γ(s′), t ∈ γ(t′) such that s

may∼i t or there exists u′

such that s′ may∼i u′ and u′ may∼i t′;
5. s′ must∼i

′
t′ iff for each s ∈ γ(s′) there exists t ∈ γ(t′), such that s must∼i t, and for

each t ∈ γ(t′) there exists s ∈ γ(s′), such that t must∼i s;
6. p ∈ Λ′(s′) iff p ∈ Λ(s) for each s ∈ γ(s′);

where γ : S′ �→ 2S is the concretisation function that maps each abstract state
s′ ∈ S′ to the non-empty set of concrete states Ss′ ⊆ S it represents; may−→′

and may−→
are the may transition relations in P ′ and P respectively; must−→′

and must−→ are the must
transition relations; may∼i

′
and may∼i are the may epistemic relations; and must∼i

′
and must∼i

are the must epistemic relations.

May transition relations in the abstract model P ′ over-approximate may
transition relations in the concrete model P: whenever there is a may transition
between two states in P, there is is a transition between the corresponding
abstract states of P ′. Conversely, must transition relations in the abstract model
P ′ under-approximate must transition relations in the concrete model P; they
are only created for concrete transitions that are common to all of the states of
P represented by the source abstract state.

We define may and must epistemic possibility relations in the abstract sys-
tem similarly to the temporal case; however, there are additional constraints
due to the nature of the relations. Specifically, we require both to be equivalence
relations. This is achieved by building the transitive closure for may∼i , while rela-
tions in must∼i that are not symmetric are removed. By insisting on equivalence
relations, we ensure that the usual KT45 axioms [18] for knowledge are satisfied
in the abstract model.

Note that if the abstract may epistemic possibility relation were defined
analogously to abstract may transition relations, it would not necessarily be
transitive. Therefore, we define the abstract may epistemic possibility relation
as the transitive closure of this relation. Similarly, if the abstract must epistemic
possibility relation were defined analogously to abstract must transition rela-
tions, it would not be necessarily symmetric. Therefore, we remove the abstract

258 P. Gonzalez et al.

must epistemic possibility relations that are not symmetric. The labelling of an
abstract state is defined so that it is consistent with the labelling of all the con-
crete states it represents. The bi-implication ensures that the abstract labelling
function is exact.

We use an extension of the epistemic μ-calculus [20] as our specification
language. We use the observational semantics for the epistemic component Ki

in addition to the standard μ-calculus [21] and define the language L in BNF
notation as follows. Let AP be a finite set of atomic propositions and V a set of
propositional variables, then:

ϕ ::= | p | Z | ¬ϕ | ϕ ∧ ϕ | �ϕ | Kiϕ | μZ.ϕ | νZ.ϕ

where p ∈ AP and Z ∈ V. Here Kiϕ means agent i knows ϕ [18].
The syntactic combinations μZ and νZ are the least and greatest fix-point

operators respectively. An interpretation ρ : V → 2S assigns the free proposi-
tional variable Z as a set of states. Any occurrence of Z in ϕ falls within an
even number of negations. Furthermore, we assume that formulas are closed
and well-named, i.e., all propositional variables are bound exactly once in any
formula.

To evaluate a formula ϕ, we compute sets of states such that a state s satisfies
ϕ if s ∈ [[ϕ]]P,ρ

tt ; a state s refutes ϕ if s ∈ [[ϕ]]P,ρ
ff . In addition to satisfaction (tt)

and refutation (ff), we write ⊥ to express that the truth value is unknown. We
define the three-valued semantics for L in line with [16] and extend it by the
epistemic operator Ki as follows:

Definition 2 (Three-Valued Semantics). Let P be AC-MAS. The three-
valued semantics of ϕ ∈ L in P for an environment ρ, denoted [[ϕ]]M,ρ

3 , is defined
by a mapping S → {tt, ff,⊥} such that:

[[ϕ]]P,ρ
3 (s) =

⎧
⎨

⎩

tt, if s ∈ [[ϕ]]P,ρ
tt

ff, if s ∈ [[ϕ]]P,ρ
ff

⊥, otherwise

The sets [[ϕ]]P,ρ
tt ⊆ S and [[ϕ]]P,ρ

ff ⊆ S for ϕ ∈ L over P are defined as:

[[]]P,ρ
tt = S [[]]P,ρ

ff = ∅
[[p]]P,ρ

tt = {s ∈ S : p ∈ Λ(s)} [[p]]P,ρ
ff = {s ∈ S : p /∈ Λ(s)}

[[Z]]P,ρ
tt = ρ(Z) [[Z]]P,ρ

ff = ρ(Z)

[[¬ϕ]]P,ρ
tt = [[ϕ]]P,ρ

ff [[¬ϕ]]P,ρ
ff = [[ϕ]]P,ρ

tt

[[ϕ1 ∧ ϕ2]]
P,ρ
tt = [[ϕ1]]

P,ρ
tt ∩ [[ϕ2]]

P,ρ
tt [[ϕ1 ∧ ϕ2]]

P,ρ
ff = [[ϕ1]]

P,ρ
ff ∪ [[ϕ2]]

P,ρ
ff

[[�ϕ]]P,ρ
tt = ax([[ϕ]]P,ρ

tt) [[�ϕ]]P,ρ
ff = ex([[ϕ]]P,ρ

ff)

[[μZ.ϕ]]P,ρ
tt = lfp(λg.[[ϕ]]P,ρ[Z �→g]

tt) [[μZ.ϕ]]P,ρ
ff = gfp(λg.[[ϕ]]P,ρ[Z �→g]

ff)

[[νZ.ϕ]]P,ρ
tt = gfp(λg.[[ϕ]]P,ρ[Z �→g]

tt) [[νZ.ϕ]]P,ρ
ff = lfp(λg.[[ϕ]]P,ρ[Z �→g]

ff)

[[Kiϕ]]P,ρ
tt = axi([[ϕ]]P,ρ

tt) [[Kiϕ]]P,ρ
ff = exi([[ϕ]]P,ρ

ff) ∪ [[ϕ]]P,ρ
ff

Verification of GSM-Based Artifact-Centric Systems 259

where for X ⊆ S: ax(X) = {s | ∀s′ : s
may−→ s′ ⇒ X}, ex(X) = {s | ∃s′ : s must−→

s′ ∧X}, axi(X) = {s | ∀s′ : s
may∼i s′ ⇒ X}, and exi(X) = {s | ∃s′ : s must∼i s′ ∧X}.

Intuitively, ax returns states whose may successors are all in X. In contrast, ex
computes all states for which at least one must transition exists. Similarly, axi

and exi are the corresponding operators for the epistemic relations for a given
agent i and give the set of the respective indistinguishable states. The definition
for [[Kiϕ]]P,ρ

ff allows for a tighter under-approximation since agents do not know
ϕ in states where ϕ is false.

An AC-MAS P satisfies a formula ϕ, or [P |3= ϕ] = tt, if all its initial states
are in [[ϕ]]P,ρ

tt . An AC-MAS P refutes ϕ, or [P |3= ϕ] = ff, if at least one initial
state is in [[ϕ]]P,ρ

ff . Otherwise we say [P |3= ϕ] = ⊥. Note that the abstraction for
AC-MAS models P as defined above is consistent, i.e., [[ϕ]]tt ∩ [[ϕ]]ff = ∅ for any
ϕ ∈ L. Therefore the set [[ϕ]]P,ρ

⊥ can be computed as S\([[ϕ]]P,ρ
tt ∪ [[ϕ]]P,ρ

ff).

Abstracting GSM. To instantiate the theory above, we now outline a method-
ology for constructing abstract AC-MAS models from concrete GSM programs.
This process includes abstracting the data to build a finite model using predi-
cates, as well as the computation of the temporal and epistemic may and must
relations. Observe that GSM programs only regulate the evolution of the artifact-
centric system in the presence of external events and do not include a description
of the agents’ behaviour with the system. To account for the evolution of both
we combine GSM programs with procedural agent descriptions, thereby obtain-
ing a GSM-MAS program. We do not present the agents descriptions here; we
simply assume that they define the local states for the agents and define their
evolution, both in terms of the actions performed on the artifact-centric system
(or events) and the changes to their local state in the presence of actions. By
GSM-MAS we refer to the combined programs consisting of the GSM code and
the agents descriptions. It can be checked that AC-MAS provide a semantics for
GSM-MAS programs.

Given a GSM-MAS program P and a specification ϕ as input, we generate an
abstract P ′ such that if checking P ′ |= ϕ returns either true or false, then the
same result also applies to P; if P ′ |= ϕ returns undefined, then no conclusion
can be drawn on P and the abstraction needs to be refined.

States in the abstract system are represented by predicates, which are Boolean
variables that represent the validity of expressions in the concrete system. Pred-
icates are selected by analysing the GSM-MAS program and the specification
to be verified. In doing so we retain the status attributes of the lifecycles, as
these are already Boolean, but replace the potentially unbound data attributes.
To capture key conditions in the system, binary relations (=, �=, <,≤, >,≥) or
quantifications over sets of data (∃,∀) are selected by syntactically analysing the
GSM-MAS program to get an initial set of predicates pi.

In contrast to classical approaches, which build abstractions locally to single
execution blocks, the declarative nature of GSM-MAS programs and the quan-
tification over artifact instances results in predicates that are shared between
instances or agents. While predicates that are local to an artifact instance or
agent can be treated as instance variables, shared predicates need to be treated

260 P. Gonzalez et al.

concrete

must & may

may
p : x < 3
q : x = 3
x := x + 1

0

1

2

3

4

5

pqpq

pq

Fig. 2. Concrete and abstract transi-
tions of a non-negative integer counter.

(1,0)

(0,1)

(0,0)

(1,1)

concrete

must & may

may
p : x = 1
q : x > y

(x, y) ∈{0, 1} × {0, 1}

Fig. 3. Indistinguishable states of an
agent given y ∈ ν.

carefully to avoid incorrect abstractions for the local states of the agents. Build-
ing the abstract state using data predicates along with the original status
attributes guarantees that the abstract system retains the same structure, while
maintaining an over-approximation of the data space of the concrete system.

Since several concrete states correspond to an abstract state, temporal
changes in the abstract system can only approximate the corresponding changes
in the concrete data. Rather than giving the full procedure, instead we here
compute the may and must transition relations on a simple example. Consider
the abstraction of a non-negative integer counter with a single integer variable x
that is initialised to 0 and gets incremented by 1 at each step using the assign-
ment x := x + 1. If we base our abstract states on the predicates p : x < 3
and q : x = 3, we have three possible abstract states, which are shown in Fig. 2.
Between the abstract states pq and pq we have a may transition because the
concrete system can transition to a state that is in pq. There is no must transi-
tion, however, because from a state in pq the concrete system can also transition
to a state that is still in pq. In contrast, all concrete states in pq transition to
pq, which means that we have both may and must transitions.

In line with existing literature in epistemic logic [18], the agents’ knowledge
is computed on the basis of the equality of their local components. In our case,
however, the agents’ local states are given by private variables, but also their
view ν and the window ω. In the labelling algorithm for computing the sets
in which an epistemic formula holds, the existential pre-image ∼i (X) of the
set of global states X with respect to the appropriate epistemic relation (may∼i or
must∼i) is computed by existential quantification of variables outside of the view,
and restriction to the window. The pre-image can be directly used to compute
[[Kiϕ]]P,ρ

ff , since must∼i ([[ϕ]]P,ρ
ff) = exi([[ϕ]]P,ρ

ff) = {s | ∃s′ : s must∼i s′ ∧ [[ϕ]]P,ρ
ff }. This

is not the case for [[Kiϕ]]P,ρ
tt , where may∼i (X) = {s | ∃s′ : s

may∼i s′ ∧X}; in this case
we first compute the pre-image of [[ϕ]]P,ρ

ff and then take its complement.
To build the abstract epistemic relations, views and windows have to be

defined in terms of the predicates for the abstract states. The window ω can be
expressed as a formula using relations between variables. Since we build our set
of predicates using exactly those relations, we can build a direct mapping to an

Verification of GSM-Based Artifact-Centric Systems 261

abstract function ω′. In other words, the abstract and concrete window functions
represent the exact same states and ω(γ(x)) = ω′(x) for any abstract state x.

The abstraction of the view ν is less straightforward, however, as predicates
may use sets of variables that do not coincide with ν, and in the case of shared
predicates may even relate to different instances and agents. This implies that
an agent may be able to determine the value of a predicate only for some states.
To avoid computing ν′ depending on the state, we compute two sets νmay and
νmust that give correct over- and under-approximations of the epistemic relation.

For the over-approximation may∼i , we select only the local predicates for νmay

that exclusively refer to visible variables in ν. This ensures that an agent can
distinguish two states in the abstract system only if it has enough visibility in
the concrete system to determine the value of the predicates. We exclude shared
predicates since one or more of the referenced instances might be outside the
window ω and thus the predicate may be unknown. Note that fewer predicates
in ν result in a larger set ∼i (X), thereby ensuring that an over-approximation
is generated. This set is then restricted to the set Rmay of reachable states
computed with may−→, which represent the states possibly reachable in the abstract
model.

For the must transitions must∼i , we need to ensure under-approximation; we stip-
ulate that s must∼i t if for each of the concrete states in s there is a concrete state
in t such that there is an epistemic relation for agent i between them. Intuitively,
this means that we need to consider every predicate for νmust that encodes at least
one variable visible in the concrete system. Note, however, that this may not be
sufficient as, if the predicates are not independent of each other, they may allow to
infer information about a value even if it is not visible to the agent. Consider the
example in Fig. 3 with p : x = 1 and q : x > y with the visible variable y. In the
concrete system, (x, y) = (1, 1) is distinguishable from (0, 0), but not from (0, 1).
To compute must∼i with visible predicate q and only quantify p would result in a tran-
sition between pq and pq, which is not a proper under-approximation because of
the missing epistemic relation between (0, 0) and (1, 1) in the concrete system. To
ensure a correct under-approximation is generated, we transitively select all pred-
icates that share the variables with predicates already in νmust and also include
shared predicates. Finally, we restrict must∼i by Rmust, computed by must−→, which cor-
responds to the set of states that are known to be reachable in the concrete system.

4 Implementation and Experimental Results

GSMC is an open source model checker that implements the technique described
above [22]. It is operated via a command line application written in C++ that
uses the CUDD library [23] for BDD operations and the SMT solver CVC4 [24] to
help compute the abstractions. GSMC uses binary decision diagrams (BDDs) to
represent the sets of states and the transition relations of the abstract model.

GSMC operates directly on GSM programs developed in the Acsi Hub [4], a
web-based application that supports the design and implementation of artifact
systems. By using the Acsi Hub, users can design business artifacts with GSM

262 P. Gonzalez et al.

lifecycles through a design editor and then immediately deploy these programs
on an execution engine. The description of the agents and specification properties
are supplied in plain text files.

GSMC supports specifications written in a temporal-epistemic logic with
quantification over artifact instances. The language, called Instance Quanti-
fied CTLK [15], or IQ-CTLK, extends the usual epistemic branching time logic
CTLK and has the following syntax:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E(ϕUϕ) | Kiϕ | ∀x : R ϕ | ∃x : R ϕ

where R is the name of an artifact type and p is an atomic proposition over the
agents’ private data and the attributes of active instances that are specified in
terms of instance variables bound by the quantification operators. The quantified
instance variables range over the active instances of a given artifact type R in
the state where the quantification is evaluated and must be bound.

We introduce a bound on the number of instances that can be generated and
use an overflow flag that indicates if the bound was reached during a run. The
bound in the number of instances restricts the possible behaviour of the system
and may lead to loss of soundness or completeness when the limit is reached.
The bound can be revised before any execution. Any IQ-CTLK formula to be
verified is first rewritten into a CTLK formula by replacing the quantification
operators as follows:

∀x : ϕ ⇒
∧

ι∈Γ

created(ι) → ϕ ∃x : ϕ ⇒
∨

ι∈Γ

created(ι) ∧ ϕ

where the expression created(ι) checks if instance ι was created. This is required
since the new formula ranges over the actual instances, which are created dynam-
ically at run-time, and the number of active instances is not a priori known. The
CTLK formula is then translated to an epistemic μ-calculus formula using the
fixed point characterisation of CTL [25]; the resulting specification is checked on
the abstract model.

In the rest of the section we evaluate the tool. Both use cases are complete
Acsi Hub applications. We verify the temporal-epistemic properties of the sys-
tems and discuss performance of the implemented techniques. All tests were
conducted on a 64-bit Fedora 17 Linux machine with a 2.10 GHz Intel Core i7
processor and 4 GB RAM.

Evaluation: The Order-to-Cash Scenario. This is an application in which a
seller schedules the assembly of a product based on a confirmed purchase order
from a buyer that requires several components, that are sourced from different
suppliers. When the product is assembled, a carrier ships the order to the buyer.
The buyer can cancel a purchase order at any time before the delivery. We refer
to [17] for more details. The GSM program consists of a single-artifact Acsi Hub
application with 10 data attributes, 9 stages, 11 milestones, and 12 events. We
model a collection of components by introducing an integer counter. The process
is considered complete when 3 components have arrived. The following three

Verification of GSM-Based Artifact-Centric Systems 263

agent roles interact with the artifact system: (1) a Buyer who creates an artifact
instance that represents the order; (2) a Seller who fulfils the order; and (3) a
Carrier who ships the finished product to the Buyer.

We constructed several GSM-MAS with different numbers of agents and
bounds on artifact instances. We report on the verification of these systems
against four temporal-epistemic specifications. In the following Diogenes is an
agent of role Buyer. The first specification, Property 1, states that Diogenes
knows that the product might be be received via any of his orders as long as
these are not cancelled, i.e., that there is no deadlock in processing the order:

AG ∀x : CustomerOrder((x.BuyerId �= Diogenes ∧ ¬Diogenes.Cancelled)
→ KDiogenes EF x.Received) (1)

Property 2 states that Diogenes may come to know that a product is received
for an order with a different owner. This can be used to ascertain whether the
orders are private to the buyers:

EF ∃x : CustomerOrder(x.BuyerId �= Diogenes ∧ KDiogenes x.Received) (2)

Property 3 encodes the ability of an agent to deduce information it can not
directly observe by checking whether Diogenes always knows there are 3 Pur-
chaseOrders collected in all of his orders when the milestone Ready is achieved:

AG ∀x : CustomerOrder((x.Ready ∧ x.BuyerId = Diogenes)
→ KDiogenes (x.PurchaseOrders = 3)) (3)

The last specification, Property 4, encodes the ownership of the order. It
implies that an agent other than Diogenes can cancel an order that belongs to
Diogenes. This is done by using a private variable, which is true only if Diogenes
executed the Cancelled event. We thus require that an order that belongs to
Diogenes cannot be cancelled if this variable is false:

EF ∃x : CustomerOrder(x.BuyerId = Diogenes ∧ x.Cancelled
∧ Diogenes.cancelled �= 1) (4)

We first verified the properties in the abstract system and measured the
number of may and must reachable states, memory used, and CPU time required.
GSMC evaluated Property 1 to be unknown, Properties 2 and 4 to be false, and
Property 3 to be true in the abstract model. Table 1 reports the performance for
a system with 1 agent per role and a system of 15 agents (6 Buyers, 5 Sellers,
and 4 Carriers). We observe that there is an order of magnitude of difference
in the number of may and must reachable states; this implies that there are
specifications, such as Property 1, that cannot be determined. However, the tool
is still able to find answers to the other three properties. The results are in line
with our expectations, confirming the correctness of the GSM program against
said specifications.

264 P. Gonzalez et al.

Table 1. Performance for different numbers of artifact instances ι and agents.

#ι 3 agents 15 agents

#may #must MB s #may #must MB s

1 0.91 e2 0.45 e2 55 0.2 1.65 e3 5.89 e2 69 2.1

2 2.23 e3 5.27 e2 78 0.9 1.32 e6 1.55 e5 106 4.6

3 5.34 e4 5.45 e3 93 4.8 1.03 e9 3.83 e7 124 31.9

4 1.28 e6 5.46 e4 112 25.5 7.99 e11 9.02 e9 233 168.8

5 3.10 e7 5.42 e5 172 90.4 6.05 e14 2.05 e12 463 596.2

6 7.57 e8 5.36 e6 273 257.2 4.53 e17 4.57 e14 898 2014.2

For a comparison we disabled the predicate abstraction feature and verified
the same Order-to-Cash system under the same conditions. In this case GSMC
evaluated Properties 1 and 3 to be true and Properties 2 and 4 to be false in the
model, which is consistent with the abstraction results. Note that the previously
unknown Property 1 is returned as true when predicate abstraction is disabled.

Table 2 presents the performance of the tool executed on the same machine,
under the same conditions. By comparing this table to Table 1, we see that veri-
fication of the concrete model initially outperforms abstraction. This is because
there is a constant overhead from building the may and must temporal transi-
tions by calls to the SMT solver. However, as the model grows we clearly see the
benefits of the abstraction methodology as it reduces the number of states to be
considered. For example, for 15 agents and 5 instances we have over two orders
of magnitude reduction in the number of states to be considered and an order
of magnitude reduction in the verification time.

Although the tool does not support automatic refinement for the abstrac-
tion methodology, by manually adding the predicates x.PurchaseOrders = 0,
x.PurchaseOrders = 1, and x.PurchaseOrders = 2 we could refine the abstract
model in such a way that may and must reachable state spaces become equal
to those of the concrete model. In doing so Property 1 is no longer returned
as unknown but true; this is in line with the results obtained by verifying the
concrete system.

The Second Evaluation Scenario focuses on the management of research
programs. The scenario consists of three conceptual entities modelled as busi-
ness artifacts: CallForProposals represents the annual call of a funding pro-
gram; Project encodes one project which starts as a proposal and, if successful,
becomes a funded research project; ReviewBoard governs the assembling of a
review board for a specified research topic and the reviews of all competing pro-
posals. We focus on three roles: the Program Manager initiates the process and
confirms the board; the Program Staff Member supervises projects on behalf of
the funding agency, the Project Leader is responsible for a particular proposal.
The scenario was implemented in the Acsi Hub. We refer to [26] for detail.

Verification of GSM-Based Artifact-Centric Systems 265

Table 2. Performance for different settings of the concrete system.

#ι 3 agents 15 agents

#states MB s #states MB s

1 1.17 e2 27 0.1 2.92 e3 31 0.2

2 3.71 e3 52 0.7 4.16 e6 70 4.9

3 1.16 e5 64 5.9 5.82 e9 84 65.5

4 3.67 e6 96 42.1 8.01 e12 222 360.2

5 1.18 e8 195 176.7 1.09 e16 539 1419.6

6 3.83 e9 375 500.5 N/A N/A N/A

The GSM program for this scenario is a significantly larger application than
the Order-to-Cash, as it consists of 45 stages, 56 milestones, and 19 events.
For this reason we here report only the interactions between the agents and
the ReviewBoard artifact type only, i.e., the types CallForProposals and Project
are not analysed here. We also restrict the number of agents to one per role.
Nevertheless, GSMC builds the transition relations for the whole GSM program.

An artifact instance is created when the agent Manager decides to set up a
review board. When the Manager confirms the assembled board, the lifecycle
of the ReviewBoard instance terminates. The agent Staff carries out several
administration task, including assembling and updating the review board. Both
Manager and Staff can access all artifact instances. In contrast, the agent Leader
cannot observe any of them. Agents do not set specific payloads; this implies we
can examine all the possible non-deterministic behaviours.

The first two specifications we analyse concern the simple reachability of
stages and milestones. Property 5 states that there is an instance of the Review-
Board artifact type in which eventually the stage SendProposalsToReviewers is
open:

EF ∃x : ReviewBoard(x.SendProposalsToReviewers) (5)

Property 6 encodes that there is an instance of ReviewBoard in which eventually
the milestone ReviewsTerminated is achieved. This means that an instance will
terminate:

EF ∃x : ReviewBoard(x.ReviewsTerminated) (6)

The next two specifications demonstrate the use of 3-valued abstraction on sets
of data. These formulas cannot be verified on concrete systems as sets of data
cannot be represented on concrete models. Property 7 states that there is an
instance of ReviewBoard in which eventually the the active reviewers is equal to
the specified number of reviewers required:

EF ∃x : ReviewBoard(x.Reviewers.size() = x.ReviewBoardSize) (7)

Property 8 states that there is an instance of ReviewBoard in which eventually
the set of active reviewers contains a reviewer called Diogenes:

EF ∃x : ReviewBoard(x.Reviewers.exists(FirstName = Diogenes)) (8)

266 P. Gonzalez et al.

Table 3. Performance results for 1 instance of the ReviewBoard artifact type.

Operation Result Memory Time

Computation of τm and τM � 395 MB 33.16 s

Computation of Rmay and Rmust � 364 MB 3.06 s

Property 5 � 280 MB 1.21 s

Property 6 � 284 MB 1.02 s

Property 7 � 278 MB 0.80 s

Property 8 � 272 MB 0.92 s

Property 9 � 312 MB 1.54 s

Property 10 ✗ 320 MB 2.22 s

The last two specifications concern reasoning about the knowledge of the agents.
Property 9 says that agent Manager knows there is a path where eventually the
milestone ReviewsTerminated is achieved:

KManager (EF ∃x : ReviewBoard(x.ReviewsTerminated)) (9)

Finally, Property 10 encodes that agent Leader knows there is a path where
eventually the milestone ReviewsTerminated is achieved:

KLeader (EF ∃x : ReviewBoard(x.ReviewsTerminated)) (10)

The data attributes of the concrete model are represented by 10 predicates in
the abstract model. The abstract model is then encoded by GSMC into BDDs
by using 142 Boolean variables. As the construction of the transition relations
requires three distinct sets of Boolean variables, there are 426 Boolean variables
in total. The may reachable state space of the model spans over approximately
7.1 × 109 states, and its construction requires 30 iterations. The must reachable
state space has 8.4 × 107 states and it is built in 12 iterations. The total time
for the verification was 43.88 s and the memory usage peaked at 395 MB.

Table 3 presents the performance of the individual operations undertaken by
GSMC, as well as the verification results. The first row reports the construction
of the transition relations, the second row shows the construction of may and
must reachable state spaces, and the remaining rows give the performance for
the properties verified in this section. Properties 5–9 are true in the model.
Property 10 is false in the model since the agent Leader cannot observe the
ReviewBoard lifecycle.

5 Conclusions

Artifact-centric systems have been put forward as an intuitive paradigm to
model applications for businesses and services. Differently from process mod-
els, artifact-centric systems give equal prominence to both the process model

Verification of GSM-Based Artifact-Centric Systems 267

(i.e., the lifecycles) and that information model (i.e., the data structures). GSM
has been introduced as a programming framework for artifact-centric systems
and recently adopted as part of the OMG Case Management Model and Notation
standard [27]. This suggests its use may increase considerably in the future.

In this paper we introduced a methodology for the verification of GSM sys-
tems. The technique extends state-of-the-art methods in verification by providing
a predicate abstraction methodology to GSM. In addition to catering for GSM
programs directly, we support first-order quantification to refer to the data refer-
enced by artifacts. Differently from any other mainstream predicate abstraction
technique we also support operators expressing the knowledge of the agents in
the system.

We implemented the technique in GSMC, the first model checker for GSM
that supports GSM’s information model. The checker supports GSM’s infinite
models and automatically generates, via SMT calls, finite abstract models that
can be efficiently encoded as BDDs and then verified. To evaluate the efficiency
of the approach we have discussed the experimental results obtained by using the
checkers on sophisticated use-cases generated by third-parties in the EU project
ACSI. The approach as currently implemented does not support recursion in the
GSM programs. In the future we plan to add partial support for basic recursive
data types and automatic refinement.

References

1. Cohn, D., Hull, R.: Business artifacts: a data-centric approach to modeling business
operations and processes. Bull. IEEE Comput. Soc. Tech. Committee Data Eng.
32(3), 3–9 (2009)

2. Marin, M., Hull, R., Vacuĺın, R.: Data centric BPM and the emerging case manage-
ment standard: a short survey. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops
2012. LNBIP, vol. 132, pp. 24–30. Springer, Heidelberg (2013)

3. Heath, F.T., Hull, R., Vaculin, R.: Barcelona: a design and runtime environment
for modeling and execution of artifact-centric business processes. In: Demo Track
in International Conference on Business Process Management 2011 (2011)

4. Boaz, D., Heath, T., Gupta, M., Limonad, L., Sun, Y., Hull, R., Vacuĺın, R.: The
ACSI hub: a data-centric environment for service interoperation. In: Proceedings of
the BPM Demo Sessions 2014 Co-located with the 12th International Conference
on Business Process Management (BPM 2014). Volume 1295 of CEUR Workshop
Proceedings, CEUR-WS.org (2014)

5. Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S., Spoletini, P.: Validation of web
service compositions. IET Softw. 1(6), 219–232 (2007)

6. Alonso, G., Casati, F., Kuno, H.A., Machiraju, V.: Web Services - Concepts
Architectures and Applications. Data-Centric Systems and Applications. Springer,
Heidelberg (2004)

7. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

8. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of deployed artifact systems
via data abstraction. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.)
Service Oriented Computing. LNCS, vol. 7084, pp. 142–156. Springer, Heidelberg
(2011)

268 P. Gonzalez et al.

9. Belardinelli, F., Lomuscio, A., Patrizi, F.: An abstraction technique for the ver-
ification of artifact-centric systems. In: Proceedings of Principles of Knowledge
Representation and Reasoning (KR 2012), pp. 319–328 (2012)

10. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of GSM-based artifact-
centric systems through finite abstraction. In: Liu, C., Ludwig, H., Toumani, F.,
Yu, Q. (eds.) Service Oriented Computing. LNCS, vol. 7636, pp. 17–31. Springer,
Heidelberg (2012)

11. Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J.: Towards formal analysis
of artifact-centric business process models. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

12. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric
business processes. In: Proceedings of the 12th International Conference on Data-
base Theory (ICDT 2009), Volume 361 of ACM International Conference Proceed-
ing Series, pp. 252–267. ACM (2009)

13. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of agent-based artifact sys-
tems. J. Artif. Intel. Res. 51, 333–376 (2014)

14. Gonzalez, P., Griesmayer, A., Lomuscio, A.: Verifying GSM-based business arti-
facts. In: Proceedings of the IEEE International Conference on Web Services
(ICWS 2012), pp. 25–32 (2012)

15. Gonzalez, P., Griesmayer, A., Lomuscio, A.: Model checking GSM-based multi-
agent systems. In: Lomuscio, A.R., Nepal, S., Patrizi, F., Benatallah, B., Brandić,
I. (eds.) ICSOC 2013. LNCS, vol. 8377, pp. 54–68. Springer, Heidelberg (2014)

16. Shoham, S., Grumberg, O.: 3-valued abstraction: more precision at less cost. Inf.
Computat. 206(11), 1313–1333 (2008)

17. Hull, R., et al.: Business artifacts with guard-stage-milestone lifecycles: managing
artifact interactions with conditions and events. In: Proceedings of the 5th ACM
International Conference on Distributed Event-Based Systems (DEBS 2011) (2011)

18. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
The MIT Press, Cambridge (1995)

19. Chechik, M., Devereux, B., Easterbrook, S., Gurfinkel, A.: Multi-valued symbolic
model-checking. ACM Trans. Softw. Eng. Methodol. 12(4), 371–408 (2003)

20. Bozianu, R., Dima, C., Enea, C.: Model-checking an epistemic μ-calculus with
synchronous and perfect recall semantics (2013). CoRR abs/1310.6434

21. Kozen, D.: Results on the propositional μ-calculus. Theor. Comput. Sci. 27(3),
333–354 (1983)

22. Gonzalez, P., Griesmayer, A., Lomuscio, A.: GSMC: a model checker for GSM
(2014). http://vas.doc.ic.ac.uk/software/extensions/

23. Somenzi, F.: CUDD: CU decision diagram package release 2.5.0 (2012). http://
vlsi.colorado.edu/∼fabio/CUDD/

24. Barrett, C., Tinelli, C.: CVC4 version 1.2 (2013). http://cvc4.cs.nyu.edu/web/
25. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about

Systems. Cambridge University Press, Cambridge (2004)
26. Toribio Gomez, D., Murphy-O’Connor, C., De Leenheer, P., Malarme, P.: D5.5

deployment and evaluation of pilots using final ACSI hub system results and eval-
uation. Project deliverable, The ACSI Project (EU FP7-ICT-257593) (2013)

27. Group, O.M.: Case management model and notation, version 1.0. Technical report
(2014)

http://arxiv.org/abs/1310.6434
http://vas.doc.ic.ac.uk/software/extensions/
http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
http://cvc4.cs.nyu.edu/web/

	Verification of GSM-Based Artifact-Centric Systems by Predicate Abstraction
	1 Introduction
	2 The Guard-Stage-Milestone Language and Multi-agent Systems
	3 Three-Valued Abstraction for AC-MAS
	4 Implementation and Experimental Results
	5 Conclusions
	References

