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Abstract. Process discovery algorithms aim to capture process orches-
tration models from event logs. These algorithms have been designed for
logs in which events that belong to the same case are related to each
other - and to that case - by means of a unique case identifier. However,
in service oriented systems these case identifiers are usually not stored
beyond request-response pairs, which makes it hard to relate events that
belong to the same case. This is known as the correlation challenge. This
paper addresses the correlation challenge by introducing a new process
discovery algorithm, called the correlation miner, that facilitates process
discovery when events are not associated with a case identifier. Experi-
ments performed on both synthetic and real-world event logs show the
applicability of the correlation miner.
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1 Introduction

Over the past decade, there has been an increasing interest in the area of process
mining [2,10,16–18,20–22]. The goal of process mining is to extract information
about processes from event logs, i.e., execution histories. One of the prominent
branches of process mining is process discovery [20], which concerns itself with
generating an orchestration model from an event log.

Process discovery techniques assume that an event log contains at least, for
each recorded event: (i) a reference to the executed activity, (ii) a reference to the
case for which the activity was executed, and (iii) the timestamp at which the
activity was completed [21]. Table 1 shows an example of the event log involving
30 events in 10 cases. The main idea behind discovery algorithms is to merge,
cluster and aggregate the different cases in an event log and generate a suitable
orchestration model based on that. For example, considering the event log from
Table 1, it is possible to capture three different traces of execution: <A,B,E >
for Cases 1, 4 and 5; <A, D, E > for Cases 2, 3, 8 and 9; and finally, <A, C, E >
for Cases 6, 7 and 10. Figure 1 presents the corresponding orchestration model,
as it would have been mined by the Disco process mining tool [11].
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Table 1. An example event log

Case Activity Timestamp Case Activity Timestamp Case Activity Timestamp

1 A 00:20 4 B 05:04 7 E 09:17
1 B 02:04 4 E 07:26 8 A 06:20
1 E 02:32 5 A 03:40 8 D 08:36
2 A 02:15 5 B 05:59 8 E 10:03
2 D 03:14 5 E 07:49 9 A 06:41
2 E 05:06 6 A 04:18 9 D 08:56
3 A 02:27 6 C 07:08 9 E 10:20
3 D 04:17 6 E 09:05 10 A 07:13
3 E 06:51 7 A 05:54 10 C 09:10
4 A 03:06 7 C 07:30 10 E 10:26

Fig. 1. Orchestration model generated from the example event log

While process mining techniques require an event to be associated with a
case, making this association can be problematic. This is also referred to as the
correlation challenge [18]. This challenge arises, for example, when information
about the occurrence of activities is stored in separate service oriented systems
and there is no obvious identifier to correlate the occurrences. It is considered
especially problematic in service mining [19], because correlations between mes-
sages that are being exchanged for the same case, may not be stored beyond
request-response pairs. When associations between events that belong to the
same case are not present, process discovery becomes impossible, as illustrated
by Table 2, which shows the event log from Table 1 without case identifiers. In
this event log it is not possible to identify cases and, consequently, it is not
possible to cluster and aggregate them into an orchestration model.

Therefore, the goal and contribution of this paper is to develop a process
discovery technique that can discover orchestrations when events are neither
correlated by case identifiers nor by additional data elements. Although extensive
research has been carried out on both process discovery and event correlation
techniques, to the best of our knowledge, only one [8] such process discovery
technique exists that will be further discussed in this paper.

The remainder of this paper is structured as follows. Section 2 presents some
preliminaries regarding the event logs and orchestration models. Section 3
introduces the actual technique that has been developed to capture orchestration
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Table 2. An example event log without case identifiers

Activity Timestamp Activity Timestamp Activity Timestamp

A 00:20 B 05:04 C 07:30
B 02:04 E 05:06 E 07:49
A 02:15 A 05:54 D 08:36
A 02:27 B 05:59 D 08:56
E 02:32 A 06:20 E 09:05
A 03:06 A 06:41 C 09:10
D 03:14 E 06:51 E 09:17
A 03:40 C 07:08 E 10:03
D 04:17 A 07:13 E 10:20
A 04:18 E 07:26 E 10:26

models from event logs without case identifiers. Section 4 discusses the evalua-
tion setup and summarizes the obtained results. Section 5 compares our tech-
nique with related literatures. Finally, Sect. 6 concludes the paper by giving a
brief overview and its findings.

2 Preliminaries

In the literature, an event log has been defined as a multiset of cases [18]. However
in this paper, we cannot reuse this definition since we have no explicit case.
Therefore, we define an event log as follows.

Let A be a set of activities and T be a set of timestamps. L ⊆ A × T is an
event log. We use Ea to denote a set of events referring to the activity a ∈ A, such
that Ea = {(a, t)|(a, t) ∈ L}. In addition, we represent the timestamp at which
event e ∈ Ea has happened by te. Note that, strictly speaking, multiple events
for the same activity can happen at the same time. However, for simplicity,
this is not covered by our definition. While the occurrence of identical events is
sufficiently rare to not create problems with the algorithm, it does require some
pre-processing of the log to make sure that identical events are distinguished
from each other (e.g. by adding a suffix to the timestamp).

There exist various notations in which the orchestration model that is the
result of applying a process discovery algorithm can be represented (e.g. Petri-
Nets and BPEL) [18]. In this paper, we adopt a rather abstract definition of an
orchestration model, which is in line with the notation that is used by the Disco
tool for process discovery [11].

The orchestration model is a directed weighted graph G = (V, E , ω) such that:

– V = {(a, n)|a ∈ A ∧ n = |Ea|}, where A is the set of activities and n indicates
for each node the number of occurrences of that activity in the event log;

– E ⊆ V × V is the set of edges;
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– ω : E → N maps edges to natural numbers, where ω(a, b) = n if and only if
there are n observations of activity a being directly followed by activity b in
some case in the log. We require that e ∈ E if and only if ω(e) > 0.

For a node v ∈ V, the in-degree, denoted degin(v), is
∑

(w,v)∈E ω(w, v). The
out-degree, denoted degout(v), is

∑
(v,w)∈E ω(v, w). When degin(v) = 0, we call

the node a source node. When degout(v) = 0, we call the node a sink node.
It is important to note that, for any node (a, n) ∈ V that is not a sink node, it

must hold that degout(a) = n, because the number of cases that pass through the
node must also continue to another node. Similarly, for any node (a, n) ∈ V that
is not a source node, it must hold that degin(a) = n. We call these constraints
the orchestration graph rule.

3 Correlation Mining Technique

The basic idea of the correlation miner is based on the orchestration graph rule,
defined in the previous paragraph, which states that the number of cases that pass
through an activity must be equal to the number of incoming and outgoing cases
for that activity. We can count the number of cases that pass through an activity
a by counting the number of occurrences |Ea| of that activity in the log. Subse-
quently, we can draw the edges between the activities, in such a way that orches-
tration graph rule is met. This is a constraint programming problem that can be
solved using integer linear programming. At this point we assume that the source
and sink nodes are set manually.

As an example, Fig. 2a shows an orchestration model that can be constructed
from the log in Table 2. In this log A occurs 10 times, while D occurs 4 times.
We manually select A as a source node. Consequently, it has an in-degree of 0.
The number of occurrences of A corresponds to the out-degree of A, which is
4 (to D) plus 6 (to E) equals 10. Similarly, the number of occurrences of D
corresponds to the in-degree and the out-degree of D. In this way, creating an
orchestration model that meets the orchestration graph rule for all activities,
produces Fig. 2a. However, Fig. 2b, c, and d are also models that meet this rule.
While Fig. 2c is the model that matches the original log from Table 1 best, the
orchestration graph rule alone is not enough to determine that.

As the example shows, it is often possible to create more than one model
that meets the criteria. Therefore, additional measurements from the event log
are required in order to select the best model. To this end, the correlation miner
creates two matrices, the Precede/Succeed matrix and the Duration matrix. Each
score in Precede/Succeed matrix, P/Si,j , indicates the fraction of events referring
to activity i that have occurred before events referring to activity j. If this
score is high, it is more likely that there is an edge from i to j. Each score
in Duration matrix, Di,j , indicates the average time or standard deviation (we
will experiment with both alternatives) of the time difference between events
referring to activity i and events referring to activity j. If this score is low, it is
more likely that there is an edge from i to j. In the remainder of this section,
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Fig. 2. Feasible graphs of example log

we explain how these matrices are computed, how they are used to construct
the linear programming problem, and ultimately how the orchestration model is
constructed.

3.1 Precede/Succeed Matrix

The first step in the correlation miner is to calculate the Precede/Succeed matrix.
This matrix is a square matrix of order n, with n = |A|. Let i represent a
row in the matrix as well as an activity from A and let j represent a col-
umn and an activity. A value P/Si,j in the matrix represent the fraction of
events from i that occurred before events from j and is computed as follows.
Ωi,j = {(e, f)|e ∈ Ei ∧ f ∈ Ej} is the set of all pairs of occurrences of i and j.
Furthermore, given events e and f , let b(e, f) be a function that is 1 if te < tf
and 0 otherwise.

P/Si,j =

∑

(e,f)∈Ωi,j

b(e, f)

|Ωi,j |

P/S =

A B C D E

A 0.00 0.47 0.97 0.73 0.88
B 0.53 0.00 1.00 0.67 0.90
C 0.03 0.00 0.00 0.33 0.57
D 0.26 0.33 0.67 0.00 0.70
E 0.12 0.10 0.43 0.30 0.00

Fig. 3. P/S matrix for example log

Returning to our exam-
ple (Table 2), P/SC,E can
be computed as follows.
ΩC,E contains 30 ele-
ments since |EC | = 3 and
|EE | = 10.

∑
(e,f)∈ΩC,E

b

(e, f) = 17, because in 17
cases C occurred before E.
Therefore, P/SC,E ≈ 0.57.
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Similarly, we can calculate the value for each pair of activities in a given event
log. Figure 3 illustrates the matrix that is calculated based on the example log.

For the performance reasons, we can remove some pairs to not include them
for consideration during the next two steps of the algorithm. This can be done via
a threshold filter. The goal of the threshold filter is to remove pairs of activities
that have a very low probability of forming an edge. For example, in Fig. 3, we
have P/SA,C = 0.97 and P/SC,A = 0.03. These values indicate that it is likely
that there is an edge from A to C, but no edge from C to A. The challenge is
to select a threshold that removes as many pairs as possible in order to increase
performance, but to prevent false positives, because pairs that are removed at
this stage will never become edges in the orchestration model.

3.2 Duration Matrix

The second step in the correlation miner is to generate the Duration matrix.
This matrix is a square matrix of order n, with n = |A|. Let i represent a row
in the matrix as well as an activity from A and let j represent a column and
an activity. A value Di,j indicates the average time difference or the standard
deviation of the time difference between events referring to activity i and events
referring to activity j.

In order to calculate the value of Di,j we need to have a mapping between
elements of Ei and elements of Ej . The idea behind this mapping is that it maps
events that belong to the same case. We compute the mapping, by relating the
events in such a way that the variance in the time difference is as low as possible,
because we argue that the time difference between events from the same case
have a more constant probability distribution than the time difference between
events from different cases. This principle is not likely to yield a perfect mapping,
in the sense that events are mapped if and only if they belong to the same case.
However, a perfect mapping is not necessary. We just need a mapping that has
a time distribution that is close enough to the perfect mapping.

Formally, let Ωi,j be defined as in Sect. 3.1. Then we compute the mapping
Mi,j ⊆ Ωi, j that satisfies the following constraints.

∀(e, f) ∈ Mi,j : ∃(e, f ′) ∈ Mi,j ⇒ f = f ′

∀(e, f) ∈ Mi,j : ∃(e′, f) ∈ Mi,j ⇒ e = e′

∀(e, f) ∈ Mi,j : te < tf

These constraints state that each event can be mapped at most once and that
each event from Ei must be mapped to an event from Ej that occurs at a later
point in time. In addition, the mapping must maximize its size (i.e. as many
events must be mapped as possible), while minimizing the standard deviation of
the time difference between mapped events. With this mapping, we can compute
Di,j as either the mean ΔMi,j or the standard deviation σΔMi,j .

|Mi, j| must be maximized
σΔMi,j must be minimized, where ΔMi,j = {tf − te|(e, f) ∈ Mi,j}
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Fig. 4. Mapping of events ED to events EC

D =

A B C D E

A 0 74 109 108 220
B 54 0 214 164 69
C 6 0 0 87 42
D 0 106 150 0 124
E 0 102 62 96 0

Fig. 5. Duration matrix for example log

Returning to our example (Table 2), DD,C can be computed as follows.
Figure 4 shows the mapping from events ED to events EC that satisfies the
constraints above. The average time difference between mapped events is approx-
imately 153 s. Similarly, we can calculate the value for each pair of activities in
a given event log. Figure 5 illustrates the matrix that is calculated based on the
example log. Note that the time difference in the matrix is slightly different from
the time difference that we computed above. This is because we implemented an
efficient (greedy) algorithm to compute the mapping, which does not always pro-
duce the mapping that satisfies all constraints. In particular, it does not always
return the mapping with the lowest standard deviation, but rather the mapping
with a local minimum. Although a lower score of Di,j indicates that it is more
likely that there is an edge from i to j, a score of 0 means it is not possible to
have such an edge, since we assume that events cannot happen at the same time
in the event log.

3.3 Orchestration Model Construction

The final step in the correlation miner is to generate the orchestration model.
We first explain how all possible orchestration models can be generated, taking
the orchestration graph rule into account. Then we explain how the best orches-
tration model can be selected from all possible orchestration models, using the
Precede/Succeed matrix (Sect. 3.1) and Duration matrix (Sect. 3.2).

In order to construct feasible models, we formulate our problem as an Integer
Linear Programming (ILP) problem. Each possible edge (i, j) between activities
becomes a variable xij of our ILP problem. The value that is assigned to each
variable, xij , indicates the frequency with which an event for activity i is directly
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followed by an event from activity j in a case. Therefore this value can be seen
as an edge weight for the edge that connects the node that refers to activity
i to the node that refers to activity j. Let X denote the set that contains the
introduced variables. Also, let As be the set of activities that we consider start
activities and Ae be the set of activities that we consider end activities. We can
reduce the problem space, by removing all variables:

– xij that represent unlikely edges, because of a P/Si,j or Di,j thresholds;
– xis, s ∈ As, which represent incoming edges to start activities; and
– xei, e ∈ Ae, which represent outgoing edges from end activities.

Subsequently, for the resulting set of variables X , we can formulate the constraints
of our ILP problem as follows. The lower bound for each variable is 0, while the
upper bound for each variable is min(|Ei|, |Ej |), because these are the minimum
and the maximum number of cases that can flow on the edges. The sum of the
number of cases on the incoming edges of an activity a, must be equal to the num-
ber of times an event Ea occurs for that activity. Similarly, the sum of the number
of cases on the outgoing edges of an activity a, must be equal to the number of
times an event Ea occurs for that activity. Consequently, the constraints become:

xij ≥ 0 for each a /∈ As :
∑

xia∈X
xia = |Ea|

xij ≤ min(|Ei|, |Ej |) for each a /∈ Ae :
∑

xai∈X
xai = |Ea|

Returning to the example of the log from Table 2, we can formulate the follow-
ing constraints. xAE ≥ 0 and xAE ≤ 10. Similarly, xAB ≥ 0 and xAB ≤ 3. Also,
xAE + xBE + xCE + xDE = 10 and xAB + xAC + xAD + xAE = 10. In addition,
xCB + xCD + xCE = 3, and xAC + xBC + xDC = 3. Note that, since xCA repre-
sents an incoming edge to a start node A and xEC represents an outgoing edge
from an end node E, these two variables have been removed and consequently
are ignored in these constraints.

By applying these constraints, we can construct all feasible orchestration
models. Now in the second part of this section, our goal is to select the model,
from all feasible ones, that best represents the event log behavior. For this pur-
pose, we employ matrices that we computed in the first two steps of the corre-
lation miner algorithm in order to formulate an objective function to select the
optimal model out of all feasible ones, using ILP principles.

The matrices from step 1 and step 2 provide some evidence to suggest that
if activity pair (i, j) contains a high value for P/Si,j and a low value for Di,j ,
these two activities may have a higher chance to form an edge. Based on this
statement, our objective is to select the model that has a higher cumulative
value of P/Ss and a lower cumulative value of Ds for the edges. To achieve this
objective, we define a coefficient for each variable xij , in our ILP in order to
consider these values. Since we are interested in a high value of P/Si,j and a low
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value of Di,j , we define an edge ratio as Di,j

P/Si,j
for each variable xij that must

be minimized. Note that, we need to keep the sum of edge ratios for each edge
independent of the assigned value of the referring variables and count the edge
ratio if there is an edge, irrespective of the weight of that edge. Thus, ideally,
each xij is divided by its value and set to 0 if xij = 0 in order to eliminate
their influence. However, this is not possible in an ILP. Therefore, in order to
reduce this influence we divide each variable by its upper bound. In conclusion,
we formulate the objective function for our ILP as follow:

Cij =
Di,j

P/Si,j
· 1
min(|Ei|, |Ej |) minimize

∑

xij∈X
Cij · xij

Returning to the example log (Table 2), by considering the constraints, mul-
tiple models can be constructed as shown on Fig. 2. Now, we can calculate the
objective function for each of these orchestration models and select the one that
has a lowest value as an output of our algorithm. The value for the orchestration
model from Fig. 2c is the lowest. Therefore, we select the orchestration model of
Fig. 2c as the final result of our correlation miner.

The algorithm that we described above may return a model that contains
cycles. However, since the correlation miner only deals with acyclic orchestra-
tions, these cycles should be removed. Therefore, it employs Johnson’s algorithm
[12] to capture all edges that are involved in cycles in the model. It then calcu-
lates the edge ratio for these edges and removes the edge with highest edge ratio.
The correlation miner then reruns the third step of the algorithm and repeats
this until a model without cycles is returned. As the main loop of the algorithm
is ILP solving, the time complexity is polynomial.

4 Evaluation

This section presents the evaluation of the correlation miner. It first presents the
setup of the evaluation in Sect. 4.1. Then it presents two evaluations, one using
synthetic event logs (Sect. 4.2) and one using a modified version of a real-world
event log (Sect. 4.3).

4.1 Evaluation Setup

In order to conduct our evaluation, we have implemented the correlation miner
as a Java application. Since the algorithm uses the Gurobi ILP Solver [15],
which is commercial software, one needs to install this software on his machine
with a proper license. For the interested reader we provide on-line access to the
algorithm1, which can only be used for the academic purposes. Moreover, we are
currently investigating the licensing issue in order to implement the algorithm
as a ProM [6] plug-in.

1 http://is.ieis.tue.nl/research/correlation.

http://is.ieis.tue.nl/research/correlation
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Original Orchestration Model Mined Orchestration Model

Log with Case IDs Log without Case IDs

1a.generate log 1b. generate model

2. remove case IDs

3. apply correlation miner

4. evaluate result

Fig. 6. Evaluation procedure

Figure 6 depicts the procedure for evaluating our algorithm. For the eval-
uation with synthetic logs, we first create synthetic orchestration models with
particular properties, to investigate the effect that these properties have on our
algorithm. This will be explained in detail in Sect. 4.2. Subsequently (step 1a),
we generate synthetic logs for these models, using the BIMP simulator2. For
the evaluation with real-world logs, we take a log from practice. Subsequently
(step 1b), we generate a orchestration model for that log. This will be explained
in detail in Sect. 4.3. Now that we have both a log and a model, we remove
the case identifiers from the log (step 2) to generate a log that can be used for
correlation mining and (step 3) we apply the correlation miner. Finally (step 4),
we assess the quality of the mined model.

In order to measure the quality of the mined models, we use precision and
recall. Precision measures the fraction of edges in the mined model that are
correct, i.e. are also in the original orchestration model. Recall measures the
fraction of correct edges that have been found. These measures are defined as
follows. Let TP be the set of edges that exist in the mined model and also in
the original; FN be the set of edges that do not exist in the mined model but
do exist in the original model; and FP be the set of edges that exist in the
mined model but do not exist in the original model. Then precision and recall
are defined as:

precision =
TP

TP + FP
recall =

TP

TP + FN

Returning to Fig. 2 and assuming that Fig. 2b is the mined model and Fig. 2c
the original model, we can calculate precision and recall as follows. TP for these
two models is 4, including AB, AD, CE and DE; FN is 2, including AC and
BE; and finally FP is again 2, including BC and AE. Consequently, precision
and recall for Fig. 2b are approximately 0.67.

In related work fitness and appropriateness have been introduced [16] as
measures to evaluate the quality of a mined orchestration model. However, these
measures evaluate the quality of an orchestration model as it is compared to
a log. We evaluate the quality of the orchestration model as it is compared
to another orchestration model; the orchestration model that should have been
returned. By doing so, we can get more meaningful results. However, clearly
2 http://bimp.cs.ut.ee/.

http://bimp.cs.ut.ee/
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this is only possible when such an orchestration model indeed exists. In other
situations fitness and appropriateness should be used.

4.2 Synthetic Event Logs

We evaluated the correlation miner using over 250 synthetic event logs with
different properties. We varied properties that we assumed would have an effect
on the quality of the mined orchestration model. Specifically, we generated logs:

– using both structured and unstructured orchestration models [13] and using
orchestration models with different numbers of branches, because these factors
influence model complexity and we assume that more complex models are
more difficult to mine;

– that contained different numbers of cases, because a higher number of cases
provides more data to mine from and should therefore produce more accurate
models;

– with different inter-arrival times and activity durations, because time prop-
erties play an important role in our algorithm and should therefore have an
impact on the quality of the result.

In total we used 6 orchestration models to generate our logs. For reasons of space,
we do not present all results, but rather the results for the model that produced
the best results (Fig. 7a) and the model that produced the worst results (Fig. 7b).
These models primarily vary with respect to whether they are structured or
unstructured. The maximum number of branches does not vary much, because
our evaluation showed that the number of branches did not play a substantial
role in the quality of the results.

Table 3 presents the results for mining logs that were generated from the
model from Fig. 7a. We generated different logs from this model, in such a way
that the duration of activities and the inter-arrival times, were either:

– distributed uniformly with a median that was selected randomly from the
interval (1, 100];

– distributed normally with a mean that was selected randomly from the interval
(1, 100] and a standard deviation that was selected randomly from the interval
of 1

5 to 1
7 of the selected mean;

– distributed exponentially with a mean that was selected randomly from the
interval (1, 100].

For each of these three distributions, we produced an event log with 200, 2,000,
and 10,000 cases, which is the maximum number of cases that can be produced
by the BIMP Simulator. In two experiments, the correlation miner was not able
to generate an orchestration model, because after removing some variables (e.g.
by removing cycles, or P/S threshold filter), it was unable to solve the model with
ILP, as the model became infeasible with regard to its constraints. The results in
this table show that the correlation miner can mine a simple structured model
perfectly, provided that there are sufficiently many cases in the log.



248 S. Pourmirza et al.

(a) Structured Model with 3 Branches (b) Unstructured Model with 4 Branches

Fig. 7. Evaluation orchestration models

Table 3. Results of using the correlation miner for Fig. 7a

Distribution Uniform Exponential Normal

# of cases 200 2000 10000 200 2000 10000 200 2000 10000

Recall 1.00 1.00 1.00 n/a 1.00 1.00 n/a 1.00 1.00

Precision 1.00 1.00 1.00 n/a 1.00 1.00 n/a 1.00 1.00

Table 4 presents an overview of the results for mining logs that were generated
from the model from Fig. 7b. Experiments on these logs have been conducted
with activity duration distributions that were selected in the same manner as
for the model from Fig. 7a, but with inter-arrival times that were either selected
in the same manner or from an interval with a longer duration ((200, 300]). We
also experimented with the ranges (1, 10] and [10, 10]. However, these did not
lead to substantially different results. Therefore, due to space restrictions, we
do not publish those results here. For each of these combinations of probability
distributions, we produced an event log with 100, 1,000, and 10,000 cases.

Under most conditions, the results for this more complex unstructured model
are worse than for the structured model. If a structured model contains a task with
n outgoing flows, there is for sure another task with n incoming flows; however, if
an unstructured model contains a task with n outgoing flows, it may not have any
task with n incoming flows. Therefore, solving the structured model is easier for
our ILP. The other interesting finding to emerge from Table 4 is that if the inter-
arrival time between cases is higher than the service time of activities, this leads to
substantially better results. Comparing the first 6 column of results in this table
with the second 6, shows that in the experiments with higher inter-arrival time
the results for recall and precision noticeably increased on average by 27 % and
42 % respectively. This result can be explained, because if the inter-arrival time is
the same as the service time, cases are more ‘intertwined’ in the log, such that the
correlation miner has more difficulties telling them apart based on their timing
properties (which other mining algorithms can do based on case identifiers).

Also, as expected, and in line with the findings from Table 3, a higher number
of cases in the log leads to better models in most cases. However, in experiments
in which activities were distributed exponentially, our algorithm did not find a
significant difference between the event logs that originally contained 100 and
1000 cases.
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Table 4. Results of using the correlation miner for Fig. 7b

Inter-arrival time [1–100] [200–300]

Distribution Uniform Exponential Uniform Exponential

# of cases 100 1000 10000 100 1000 10000 100 1000 10000 100 1000 10000

Recall 0.57 0.79 0.64 0.57 0.57 0.71 0.75 0.93 1.00 0.93 0.71 1.00

Precision 0.42 0.65 0.47 0.42 0.42 0.56 0.86 0.87 1.00 0.81 0.59 1.00

Hence, based on these results, we can conclude that the correlation miner is
applicable to mine logs without case identifiers, especially for structured models
and when the inter-arrival time between cases is higher than the service time of
activities and the number of cases in the log is high enough.

4.3 Real-World Event Log

We also evaluated the algorithm based on a real-world event log. To this end, we
used a modified version of the log from the BPI Challenge of 2012 [5]. First,
we mined an orchestration model from this event log using Disco [11]. We then
removed all loops in order to make it acyclic, because that our algorithm only
deals with acyclic models at this stage. For the same reason, we then removed
the cases from the log in which loops appeared. The resulting version of this
real-world event log contained 13 activities, 70,425 events, and 11,647 cases.

In accordance with the evaluation procedure described in Sect. 4.1, we then
removed all case identifiers from the log, mined the log using the correlation
miner and evaluated the quality of the mined model. The results obtained from
this experiment show a precision of 85 % and a recall of 63 %. The lower result
for recall can be explained by the fact that our algorithm seeks to find edges with
higher frequencies, while we used the Disco model that included all possible edges
that could be mined from the log, not just the ones with the higher frequency.
Normally speaking, one would not be interested in the Disco model that con-
tains all edges, because this model also includes edges that represent exceptional
situations. Indeed if we remove edges with lower frequency (i.e., <50) from the
original model our recall indeed increases to 68 % as precision decreases to 79 %.

Based on these results, we claim that the correlation miner is also applicable
to mine real-world event logs

5 Related Work

To the best of our knowledge, the closest work to the correlation miner has
been published in [8], where the authors tackled the same problem, but based
their analysis on event logs neither with case id nor with timestamps. Since the
correlation miner also uses timestamps, it is expected to produce more reliable
results. Specifically, for the real-world event log (Sect. 4.3), [8] yields a model
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with precision 61 % and recall 41 %, which are 24 % and 22 % lower than the cor-
relation miner’s results respectively. However, [8] can process cyclic orchestration
models.

As suggested in [1], correlating events in an event log is a continuing challenge
in the field of process mining, and more specifically, in service mining. Therefore,
we discuss the rest of related works in three categories: (i) process discovery,
(ii) service mining, and (iii) event correlation.

A large and growing body of literature has been published in the field of
process discovery. Van Dongen et al. reviewed discovery algorithms that generate
orchestration Petri Net notation [21]. Also, other surveys such as [17], shown
that a significant number of studies employ different approaches to discover
orchestration models from event logs, such as fuzzy algorithm [10]. A recent
study by Verbeek and van der Aalst [22] introduced a generic divide-and-conquer
framework to enable process discovery and conformance checking for big event
logs. Their approach is similar to our correlation miner in the sense that both
have been implemented using Integer Linear Programming. However, the precise
optimization problem that they solve is different.

The topic of service mining has been investigated in [2], which illustrated the
potential of applying process mining in the context of web services by employing
the ProM as a process mining tool and IBM’s WebSphere as a reference system.
Furthermore, Dustdar et al. [7] introduced Web Services Interaction Mining,
which concerns itself with performing process mining techniques in order to
analyze service interactions. Finally, [23] presented a web service mining frame-
work aiming at the discovery of unexpected and interesting service compositions.
To the best of our knowledge, other than [8], no process or service mining algo-
rithms currently exist that can mine a log that contains no case identifiers and
no additional data elements to do the correlation on.

Several techniques have been developed to facilitate event correlation in the
context of service-oriented systems. [3] identified a set of 18 correlation patterns
that have been grounded in a formal model. The concept of correlation set, a
query to retrieve identifiers from messages that are unique for a particular cases,
has been included in many correlation techniques such as [9], which proposed an
algorithm that assigns a certain identifier to each case in a multi-party supply
chains. De Pauw et al. carried out a study to discover conversations in web
services by using semantic correlation analysis [4], in which different services
pass dedicated identifiers inside their messages. Moreover, in [14] the authors
developed an interactive semi-automated tool for event correlation from web
service interaction logs. In contrasts, our algorithm enables fully automated event
correlation and is only based on occurrences and timestamps of events rather
than other data elements that are associated with events.

6 Conclusion

In this paper, we have presented an algorithm, the correlation miner, that enables
mining of orchestration models from event logs without case identifiers.
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The basic idea of this algorithm is to construct an orchestration model, in
such a way that the number of cases that flow into and out of an activity should
be equal to the number of events that happen for that activity. However, it is
often possible to generate more than one orchestration model that meets this
rule. Therefore, we defined additional criteria that need to be fulfilled in order
to select the best model. Since logs without case identifiers provide two elements
of information: (i) how many times an event occurred for a particular activity,
and (ii) at which time an event has occurred, we designed our algorithm based
on these two characteristics.

Accordingly, the correlation miner has three steps. In the first two steps,
it creates two matrices, the Precede/Succeed matrix and the Duration matrix.
Given two activities, the corresponding element in the Precede/Succeed matrix
indicates the fraction of events referring to the first activity that have occurred
before events referring to the second activity. If this value is high, it is more
likely that there is an edge from the first to the second activity. Similarly, given
two activities, the corresponding element in the Duration matrix indicates the
average time difference between events referring to the first activity and events
referring to the second activity. If this value is low, it is more likely that there
is an edge from the first to the second activity. Finally, in the third step, the
correlation miner constructs all possible orchestration models based that meet
the rule mentioned above and then it selects the best one based on the values
from the Precede/Succeed matrix and the Duration matrix.

To evaluate the applicability of the correlation miner, we performed experi-
ments with both synthetic event logs and a real-world event log. The results from
the evaluation show that the correlation miner produces good results under most
conditions. In particular, it produced a model with 85 % precision and 63 % recall
for the real-world log. The evaluations with the synthetic logs show that results
are better for structured models than for unstructured models. Also, results
are better when there are more cases in the log to mine from, and when the
inter-arrival time of cases is higher than the duration of activities.

The current correlation miner is only able to mine acyclic orchestrations.
There is, therefore, a definite further need for research to enable mining of cyclic
orchestrations as well. Furthermore, additional work is needed to ensure that our
algorithm can produce an accurate average time difference between activities for
the Duration matrix, given that we do not know which events belong to the same
case and should, therefore, be used to compute the time difference.
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