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Abstract. This paper presents a novel approach that is able to resize
stereoscopic video to fit various display environments with different
aspect-ratios, while preserving the prominent content, keeping tempo-
rally consistent, adapting depth, as well as increasing the resolution. Our
proposed approach can address retargeting and super-resolution prob-
lems simultaneously via replacing the down-sampling matrix appearing
in super-resolution algorithm with a novel one, named as content-aware-
sampling matrix, derived from retargeting method. The new matrix can
sample the image into any resolution while preserving its important infor-
mation as much as possible. Our approach can be roughly subdivided into
three steps. In the first step, we calculate the overall saliency map for a
shot, while considering the conspicuous information from still image and
the motion information from video. In the second step, given the target
resolution, we compute the retargeting parameters by a global optimiza-
tion and formulate them into a matrix. Finally, we substitute the matrix
into the objective function used for super-resolution, and optimize it iter-
atively to achieve high visual quality outcome. The experimental results
based on user studies verify the effectiveness of our approach.
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1 Introduction

Stereoscopic contents, such as still images and videos, extend visual communi-
cation to the third dimension by presenting two parallel views of the observed
scenery. The fascinating 3D view experience has received much attention and the
popularity of 3D entertainment has been significantly increased. In recent years,
many researchers have made remarkable progress in 3D capture and display
technology. More and more commercial products like 3D cinemas, televisions,
smart phones and PDAs have come into our lives. Unfortunately, most of them
have different resolutions and aspect-ratios. Fig. 1 presents a typical case when
we expect stereoscopic contents to be viewed on a variety of display devices
other than originally intended. As can be seen, the butterfly is stretched and the
quality is degraded due to interpolation method. It is imperative to take some
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measures to ameliorate visual experience. One is retargeting the image’s aspect-
ratio while protecting the important regions from being severely distorted, and
the other is predicting unknown pixels from current observations to enhance
details. Obviously, our work contains two classical problems, retargeting and
super-resolution.

Fig. 1. A typical case when we put the low-resolution image that is suitable to phone’s
screen on a television. The result displayed on the television is generated by uniformly
scaling along vertical dimension. Note the butterfly is stretched and the quality is
degraded due to interpolation method. In this case, the phone’s resolution is 1028×720
and the television’s is 1028 × 1024.

In the past decades, a lot of retargeting algorithms with good performance
have been devised. They can be classified into three categories, cropping, seam
carving and warping. Very recently, Niu et al. [14] propose an aesthetics-based
method which firstly automatically crops the periphery pixels of the input stereo-
scopic photo and uniformly scale it to fit various display devices while preserv-
ing its aesthetic value. Avidan et al. [1] develop a seam carving method which
can greedily remove or insert horizontal or vertical seams, the paths of pixels,
passing through the less important regions in the image. Subsequently, they
also extend seam carving to retarget 2D video [15] while taking the temporal
coherency into account via duplicating or deleting 2D seam manifolds from 3D
space-time volumes instead of 1D seams. Afterward, Utsugi et al. [17] present
a seam carving-based method to retarget stereoscopic image by fusing stereo
matching results into the framework of seam carving and selecting appropriate
type of seams to virtually manipulate the depths of objects in the scene. Lately,
Guthier et al. [6] apply seam carving to stereoscopic video retargeting. However,
seam carving can not avoid bringing serious discontinuity artifacts, what’s worse,
the artifacts are magnified for videos. On the contrary, Wang et al. [19] propose
a kind of continuous method based on warping, which places a rectangular grid
mesh onto the image then computes a new geometry for the mesh, such that
the regions with high importance are scaled uniformly at the expense of spread-
ing larger distortion to the other regions. This warping-based method has been
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extended to stereoscopic image retargeting [3] and stereoscopic video retarget-
ing [9]. Chang et al. utilize rectangular grid mesh to simultaneously retarget a
binocular image and adjusts depth by a sparse set of correspondences embedded
in mesh without estimating depth map or dense correspondences. In addition,
they pay more attention on how to adapt the depth to make comfortable visual
experience. Recently, Kopf et al. propose warping-based method for stereoscopic
video, which utilizes deformed pathlines to preserve the temporal coherence.

Super-resolution, a classical and challenging problem, aims at recovering the
visually pleasing high-resolution image from one or more low-resolution input
images. The existing methods can be roughly divided into three classes, interpo-
lation methods [10], multi-frame methods [4], and example-based methods [8,16,
20,21,25]. It is note that example-based methods have become the mainstream,
as they have achieved outstanding results. In terms of video super-resolution, Liu
et al. [12] use Bayesian theory to devise the state of the art approach to video
super-resolution by estimating the underlying motion, blur kernel and noise level
simultaneously. Recent years, many researchers have shifted their focus to mix-
resolution image or video super-resolution, they utilize high-frequency informa-
tion of the full-resolution view to up-sample the corresponding low-resolution
view according to the correspondences indicated by the associated disparity map
[5,22–24].

To our knowledge, no work has been reported on simultaneously solving retar-
geting and super-resolution problems. In fact, most of retargeting methods adopt
simple interpolation methods, which are based on piecewise smooth assumption,
to estimate the unknown pixels. As a consequence, the interpolation process
deteriorates the quality of results. Particularly, when the resolutions before and
after retargeting have a large size difference, the deteriorated effects become
more and more noticeable. In this paper, we incorporate super-resolution algo-
rithm into retargeting method by proposing a novel sampling matrix to achieve
the good visual quality. The retargeting results of uniformly scaling, bilinear
interpolation based method [3] and our method are shown in Fig. 2. To evaluate
the performance of our approach, we have done subjective experiment on four
stereoscopic videos1. And our experimental results demonstrate the effectiveness
of the method.

This paper is organized as follows. Section 2 demonstrates how we simulta-
neously deal with retargeting and super-resolution problems. The experimental
results are presented in Section 3. In the end, Section 4 present the conclusion
of this paper.

2 Algorithm

In this section, we first explain how we implement the retargeting method for
stereoscopic video. Next, we illustrate the modified model for stereoscopic video

1 http://sp.cs.tut.fi/mobile3dtv/stereo-video/

http://sp.cs.tut.fi/mobile3dtv/stereo-video/
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432 240×Original Frame with

216 120×Degradation Frame with
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648 240×Retargeting Frame with
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Uniformly scaling

Fig. 2. The retargeting results of uniformly scaling, bilinear interpolation based method
and our method. The presented results is based on the 70-th left view frame of video
‘bullinger’. The original frame resolution is 432 × 240. We blur and down-sample it to
generate the degradation version with 216 × 120. We test our method by retargeting
the degradation version to high-resolution with 648 × 240. We can easily observe that
the speaker’s face has been stretched in uniformly scaling result, and the Chang et al.’s
results is blurring. On the contrary, our method can produce high-quality results with
sharp edges while does not distort the speaker area.

super-resolution. Finally, we demonstrate how to generate the content-aware-
sampling matrix and fuse retargeting and super-resolution into a unified problem.

2.1 Stereoscopic Video Retargeting

For stereoscopic vide retargeting, we also utilize warping-based method, similar
to [9]’s work. We extend [3]’s method to stereoscopic video retargeting. Different
from Kopf et al.’s work, we calculate a uniform retargeting parameter for a shot,
as we assume that there is no artificial camera motion and no severe movements
of foreground objects in a shot. We have observed that no matter how much we
weight the temporal consistency constraint there are still many noticeable flick-
ering artifacts in the results. Considering the temporal consistency is the crucial
fact for enjoyable viewing experiences, we prefer to retarget a shot uniformly at
the expense of algorithm’s flexibility.

Before introducing stereoscopic video retargeting, we illustrate how we obtain
the uniform saliency map for a shot. Specifically, we exploit the graph-based
method, a bottom-up spatial attention model, proposed by Harel et al. [7] to get
i-th frame’s 2D saliency map Si

2D. Next, we adopt Liu’s code [11] to estimate
the optical flow fields. We treat velocity’s magnitude as motion saliency value,
then the i-th frame’s motion saliency map Si

m can be defined as:

Si
m (p) = norm (‖o (p)‖2) , (1)
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where o (p) represents the velocity at pixel p. And norm (•) is designed to nor-
malize the saliency value between 0 to 1, besides, Si

2D has been normalized. Next
we smooth Si

2D and Si
m by

Si
smth =

1
|Neibor (i)|

∑

j∈Neibor(i)

Sj , (2)

where Neibor (i) means the neighbor frames’ indexes for the i-th frame, and
|Neibor (i)| is the number of neighbor frames. Then, we obtain each uniform
saliency map by

Su = max
i

(
Si
smth

)
. (3)

The overall uniform saliency map Scomb
u is obtained in a linear combination way

Scomb
u = αSm

u + (1 − α) S2D
u , (4)

where Sm
u and S2D

u denote the uniform saliency maps of motion and 2D saliency.
And α controls the trade-offs between motion and 2D saliency value. In our
implement, we set α to 0.5.

Given the saliency map, we place grid mesh represented by M = (V,E,Q)
on each view of image respectively. Let V = {v0,v1, ...,vend} and V ′ denote
vertices’ positions before and after retargeting. Note the left view vertex vL

i

corresponds to the right view vertex vR
i with the same index i. Then we measure

the importance of each quad q ∈ Q by averaging its inside pixels’ saliency value.
E (q) represents the edges set of quad q ∈ Q, and each edge can be denoted as
(vi,vj) where both vi and vj belong to quad q ∈ Q. The new mesh determined
by output vertices’s positions is obtained by minimizing the following energy
function

Ψ = λq

(
ΨL
q + ΨR

q

)
+ λl

(
ΨL
l + ΨR

l

)
+ λaΨa + λcΨc, (5)

where the upper right scripts indicate which view the energy belongs to. Similar
to [19], Ψq and Ψl are quad deformation and grid line bending respectively.
Like [3], we also exploit alignment energy Ψa and disparity consistency
energy Ψc. Different from [3], we treat spare optical flow fields [11] between
two views as the matched features instead of SIFT [13]. Although the SIFT is
more accurate, optical flow is more stable than SIFT and can provide dense cor-
respondence which can be flexibly sampled into sparse matched features. Please
refer to [3,19] for more details.

2.2 Stereoscopic Video Super-Resolution

Our stereoscopic video super-resolution algorithm is based on multi-frame meth-
ods which take advantage of the sub-pixel displacements among the observations.
Given a unknown high resolution (HR) frame I and a set of low resolution (LR)
observations Y = {Y1, Y2, ..., YN}, the acquisition process of observations can be
formulated as:

Yk = DFkHI + V, k = 1, 2, ..., N. (6)
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Note the unknown HR frame I, LR observation Yk, as well as noise V are rear-
ranged in column lexicographic order in the pixel domain. Suppose the HR
frame’s resolution is rP × rQ and each of the LR frame’s is P × Q, where
r is the down-sampling factor, the sizes of I and Yk are (rP × rQ) × 1 and
(P × Q) × 1 respectively. The blurring matrix H, (rP × rQ) × (rP × rQ), is
used to describe atmospheric, camera lens’, or sensors’ effects. The motion matrix
Fk, (rP × rQ)× (rP × rQ), maps reference frame to the k-th frame. The down-
sampling matrix D, (P × Q) × (rP × rQ), follows the sensor array sampling
process. We assume that the blurring effect is approximated by point spread
function and independent white Gaussian noise is added to the degraded frame.

As super-resolution is a kind of inverse problem, It is difficult to estimate
the real solution. The reason is that when the number of observations is fewer
than r2, the problem becomes under-determined. In this case, there are an infi-
nite number of solutions. When more than or equal to r2 frames are available,
the problem becomes square or over-determined. Although this kind of problem
seems to have meaningful solution, the solution is still not stable. It is because
that a little bit of noise will lead to large perturbations in the final solution. Most
of super-resolution algorithm add image prior to this inverse problem to make the
inverse problem more stable. In this paper, we adopt l1-norm image prior [18],
an approximation of total variation (TV) prior, due to its edge-preserving and
piecewise-smoothing property. Then, the unknown frame I can be obtained by

Î = arg min
I

[
N∑

k=1

‖Yk − DFkHI‖22
]

+ λl1

∑

i

(|Δx
i I| + |Δy

i I|), (7)

where Δx
i and Δy

i denote the horizontal and vertical first order differences at
pixel i respectively, and λl1 is the regularization parameter, which is used to
weight the first term (data term) against the second term (regularization term).
Since both data and regularization terms are convex, we utilize the steepest
descend method to gradually approach to the global optimization.

To our knowledge, it is a challenge to estimate high-quality HR motion from
low-quality observations, and the quality of estimated motion concerns the per-
formance of super-resolution algorithm. Since it is easy to gain the high-quality
LR motion by estimating optical flow, we decide to put Fk in front of D in
Eq.(7). Then, the size of Fk is (P × Q)× (P × Q). To make the estimation more
robust, we exploit the accuracy of optical flow to weight data term in Eq.(7)

Î = arg min
I

[
N∑

k=1

Ak ‖Yk − FkDHI‖22
]

+ λl1

∑

i

(|Δx
i I| + |Δy

i I|), (8)

where Ak denotes the accuracy weight matrix which contains the accuracy of
the estimate motion from reference LR frame to k-th LR frame. It is a diagonal
matrix whose diagonal elements have negative exponential relationship with the
accuracy of optical flow.

It is worth to mention that stereoscopic video provides more reliable obser-
vations compared with monocular video. And experiments have confirmed that
the more reliable observations have improved quality of outcomes.
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2.3 Simultaneously Retargeting and Super-Resolution for
Stereoscopic Video

This section illustrates how we realize retargeting and super-resolution simul-
taneously. Our work is dedicated to overcoming the blurring effects introduced
by interpolation adopted by conventional retargeting methods, and extending
current super-resolution methods to increase resolution to any size without dis-
torting salient regions. We achieve these goals by replacing the down-sampling
matrix D in Eq.(8) with a novel sampling matrix, named as content-aware-
sampling matrix, denoted as R, which can be used to sample input image to
arbitrary resolution. The Eq.(8) can be rewritten as

Î = arg min
I

[
N∑

k=1

Ak ‖Yk − FkRHI‖22
]

+ λl1

∑

i

(|Δx
i I| + |Δy

i I|). (9)

Suppose we resize the LR observation from P × Q to r1P × r2Q, where r1 and
r2 are horizontal and vertical scaling factors respectively, the size of matrix R
is (P × Q) × (r1P × r2Q). Since the factors r1 and r2 are independent, the out-
put’s aspect-ratio is arbitrary. We apply the method mentioned in section 2.1
to build up the vertices’ warping relations between original domain and retar-
geting domain. As explained in section 2.1, the retargeting domain’s vertices
V ′ = {v′

0,v′
1, ...v′

end} are determined by a global optimization. The warping
mapping Γ (q) for each quad q can be computed by its vertices’ positions. We
assume that each quad undergoes an affine transformation. Then, the warping
mapping can be obtained in a least-squares way. The affine transformation can
be expressed as

ẽ = Γ (q) e. (10)

Since warping mapping is invertible, we can compute mapping from original
domain to retargeting domain or from retargeting domain to original domain. In
this work, we need the latter one. Note the augmented vector e and ẽ in Eq. (10)
represent the pixel positions in retargeting domain and original domain respec-
tively. Generally, the new positions after mapping are generally non-integer,
hence there is no pixel value that can be directly assigned to them. Like many
retargeting methods, we adopt bilinear interpolation method to estimate an
appropriate pixel value. Similar to the formulation of motion matrix Fk, we can
formulate a sparse matrix R that describes a linear relationship between original
domain Ĩ and retargeting domain I

Ĩ = RI. (11)

This linear relationship makes it possible to embed retargeting method in super-
resolution framework, as illustrated in Eq.(9). To make it more clear, Ĩ indicates
the LR observation and I is the blurred version of HR unknown estimation. The
matrix R is used to sample the HR resolution frame to LR observation one,
which performs similar functions to down-sampling matrix D. Since matrix R
stems from retargeting method which takes important information in account,
we call the matrix R as content-aware-sampling matrix.
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3 Experiment

In this section, we validate the potential of the proposed algorithm by processing
four stereoscopic videos [2]. We have implemented our system on a PC with Intel
CPU 2.80GH and RAM 4.00GB in MATLAB environment. In the retargeting
part, we initialize quad with 20 × 20 pixels, and randomly abstract four high-
quality optical flow features for each quad as the matched features. In the super-
resolution part, we utilize first and last two frames as well as the corresponding
frames on the other view to estimate current frame’s high-resolution version.
As we deal with color video in this paper, we estimate each color channel’s
high-resolution version separately.

Table 1. Parameters of the input videos

video book arrival bullinger door flowers leaving laptop

original size 512×384 432×240 512×384 512×384
degradation size 256×192 216×120 256×192 256×192
retargeting size 768×384 648×240 768×384 768×384
number of frame 100 100 150 100

Table 2. The average score of eight viewers’ ratings

video retargeting super-resolution overall

book arrival 2.75 2.75 2.875
bullinger 2.375 2.5 2.5
door flowers 2.375 2.25 2.375
leaving laptop 2.625 2.75 2.625

The testing videos’ parameters are presented in table 1. In the experiment,
we resize the degradation videos obtained by sequentially blurring and down-
sampling original ones to high-resolution version but with different aspect-ratio.
After resizing, the width of all videos has been scaled one-and-a-half times more
than height. Then, original, degradation and retargeting group samples for each
video are available. Besides, we add another group by uniformly scaling the
degradation group. Next, we put them on LCD 3D display with 1360 × 768
resolution successively. Note we add black pixels to the videos to fit the display
resolution. We invite eight viewers who are totally naive to our experiment to
rate the results. The scores among 1 to 3 means worse, fine, well respectively.
We ask the viewers to rate the retargeting score by comparing our results with
the uniformly scaling results, as well as the super-resolution score by comparing
with the original and degradation versions. Finally, we ask them rate the overall
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score in terms of visual experience. Table 2 presents the average score of eight
viewers’ ratings. From table, we find that the overall score is higher than other
rows and the other two score are also relatively higher. This point verifies that
the scores are valid. Since the scores are over 2 meaning more than fine, we can
draw a conclusion that our method is effective.

4 Conclusion

In this paper, we propose a novel sampling matrix, inspired by warping based
retargeting algorithms, to sample image to any resolution while considering its
contents. Since we deal with stereoscopic videos, some modifications have been
made to saliency detection and super-resolution methods. Experimental results
on the four stereoscopic videos show that our method can increase (or decrease)
and resize the resolution simultaneously without distorting prominent features.
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