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Abstract. Image-based human pose recovery is usually conducted by
retrieving relevant poses with image features. However, semantic gap
exists for current feature extractors, which limits recovery performance.
In this paper, we propose a novel feature extractor with deep learning.
It is based on denoising autoencoder and improves traditional methods
by adopting locality preserved restriction. To impose this restriction, we
introduce manifold regularization with hypergraph Laplacian. Hyper-
graph Laplacian matrix is constructed with patch alignment framework.
In this way, an automatic feature extractor for silhouettes is achieved.
Experimental results on two datasets show that the recovery error has
been reduced by 10% to 20%, which demonstrates the effectiveness of
the proposed method.

Keywords: Human pose recovery · Deep learning · Manifold regular-
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1 Introduction

3D human pose recovery tries to generate a visually pleasing and semantically
correct human skeleton with sensor data. Traditionally, it is usually achieved
by motion capture system. These systems are expensive and require attached
markers. Markerless solutions currently draw plenty of attention. The most suc-
cessful of them is Microsoft Kinect. It makes use of RGBD data. However, RGBD
cameras are still not commonly used. In this way, researchers devote themselves
into image-based 3D human pose recovery over recent years as the demand for
high-quality and accurate poses in vision systems has increased [9][7].

Typical routine of image-based pose recovery rely on the same three-step pro-
cedure: 1) extracting the visual features from the 2D images (usually silhouettes);
2) mapping the 2D visual features to the 3D poses using a specified learning algo-
rithm; 3) reconstructing the 3D poses based on the mapping function obtained.
Well-designed feature should be discriminative with respect to 2D images and
3D poses. Until now, quite a lot of features have been proposed for human pose
analysis, such as shape context[2], histograms of oriented gradients[4], Hierarchi-
cal centroid[12] and so on. However, feature descriptors are still ambiguous due
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to the so-called semantic gap between images and features, since they cannot
completely represent the semantic content and information of images.

Deep learning architectures [11] have been useful for exploring hidden repre-
sentations in natural images and have proven success in a variety of vision tasks.
In the current big data era, the extensive availability of training images enables
deep models to be generic and flexible. Inspired by the learning capability and
capacity of the deep learning model, we hypothesized that deep architectures
would be perfectly suited to seeking the proper representations for 2D images
and 3D poses and modelling their relationship. Current solutions generally learn
multilevel representations by deep learning [5]. For instance, autoencoder [13]
is an unsupervised feature-learning scheme in which the internal layer acts as a
generic extractor of inner image representations. A double-layer structure, which
can efficiently map the input data onto appropriate outputs, is obtained by using
a multilayer perceptron. However, in these methods, the locality of features is
lost. This makes similar pose silhouettes being described by totally different hid-
den vectors, and unstable performance in pose reconstruction. In order to solve
this problem, one possible solution is to add an additional locality-preserving
term to the formulation of deep learning [14].

In this paper, a novel approach is proposed to recover 3D human poses
from silhouettes with hypergraph regularized autoencoder (HRA). It is based on
marginalized denoising autoencoders (MDA) [3]. Different from previous works,
it makes use of locality information of samples. The main contribution of this
work is two-fold:

– The state-of-the-art work in pose recovery with autoencoders is improved by
imposing locality preserved restriction. To impose this restriction, an Lapla-
cian matrix is constructed to describe the internal relationship of samples.

– The construction of Laplacian matrix is further improved by using hyper-
graph. This process is based on a real-valued form of combinatorial opti-
mization problem. The weights of hyperedges for the whole alignment are
computed by statistics of distances between neighboring pairs.

The remainder of this paper is organized as follows. The proposed hypergraph
regularized autoencoder is presented in Section 2. Then, experimental results on
human pose recovery and comparisons with other state-of-the-art methods are
presented in Section 3. Finally, we conclude the paper in Section 4.

2 Hypergraph Regularized Autoencoder

2.1 Marginalized Denoising Autoencoders

In denoising autoencoders, inputs x1, ..., xn are corrupted by random feature
removal. x̂i is denoted as the corrupted version of xi and W : R

d → R
d is

denoted as the mapping of reconstructing the corrupted inputs. In this way, we
can defined the squared reconstruction loss as:

1
2n

n∑

i=1

‖ xi − Wx̂i ‖2 . (1)
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The solution to (1) depends on which features of each input are randomly
corrupted. To lower the variance, MDA [3] perform multiple passes over the
training set, each time with different corruption. In this way, the overall squared
loss is defined as:

1
2mn

m∑

j=1

n∑

i=1

‖ xi − Wx̂i,j ‖2, (2)

where x̂i,j represents the jth corrupted version of the original input xi and m is
the number of layers.

For the matrix form, X = [x1, ..., xn] ∈ R
d×n is denoted as the data matrix,

X = [X, .., ,X] is denoted as the m-times repeated version and X̂ is defined as
the corrupted version of X. Then, the loss in (2) is reduced to:

1
2mn

tr[(X − WX̂)T (X − WX̂)]. (3)

The minimization to (3) can be expressed as the well-known closed-form
solution for ordinary least squares:

W = PQ−1 with Q = X̂X̂T and P = XX̂. (4)

In our implementation, we further reduce the stacked form of MDA to a
overlapped form. Instead of concatenating the output of each layer, we simply
use the output of each layer as the input of the next layer. In this way, (2) can
be rewritten as:

1
2n

n∑

i=1

‖ xi − Wx̂i,m ‖2 . (5)

(3) can be also rewritten as:

1
2n

tr[(Xm − WX̂)T (Xm − WX̂)]. (6)

2.2 Manifold Regularization

As mentioned before, due to the loss of locality information, similar features can
be encoded as totally different hidden representation, which may bring about
the loss of the locality information of the features to be encoded. To preserve
such locality information, we introduce manifold regularization to (5). Then, the
reconstruction loss can be defined by:

1
2n

(
n∑

i=1

‖ xi − Wx̂i,m ‖2 +α

n∑

i,k

‖ xi − xk ‖2 ωi,k), (7)

where α indicates the weights of locality reservation term and ωi,k represents
the similarity between sample i and sample k. With the introduction of locality
reservation term, the matrix form can be defined as:
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1
2n

tr[(Xm − WX̂)T (Xm − WX̂) + αX
T

mLXm], (8)

where L is known as Laplacian matrix.

2.3 Hypergraph Optimization

The key to solve (8) is to construct Laplacian matrix L. Traditional meth-
ods assumed that the relationships among images are pairwise. However, this
assumption is over-simplified and a lot of information is lost. To avoid this
problem, hypergraph representation is proposed [15]. Different from traditional
graph-based representation, one edge is able to connect more than two vertices
in hypergraph representation. In other words, vertices connected by an edge
are thought as a subset of vertices in the graph. Therefore, hypergraph repre-
sentation is much more descriptive and powerful. The definitions are shown in
Table 1.

Table 1. Definition of symbols in the hypergraph.

Symbol Definition

u, v Vertices in the hypergraph

e Edges in the hypergraph

ω(e) The weight of an edge e

δ(e) The degree of an edge, e. It illustrates how many vertices are connected by e. In
traditional graph representation, δ(e) = 2.

d(v) The degree of a vertex, v. It is calculated by summing the weighting values of edges
connected to this vertex.

Dv The diagonal matrix containing the vertex degrees

De The diagonal matrix containing the edge degrees

H In this matrix, H(v, e) = 1 if v ∈ e

Ω The diagonal matrix containing the weights of hyperedges

V The set of vertices

E The set of edges

In our method, we construct hypergraph Laplacian matrix inspired by patch
alignment framework [6], which consists of two steps.

1. Part Optimization: We define one patch to be the vertices connected by one
hyperedge. Thus, the patch in the proposed learning process is defined by:

arg min
f∈R|V |

∑

m,n⊂e

w(e)
δ(e)

(
ym√
dm

− yn√
dn

)2 (9)

For one patch, we should compute:
∑

m,n⊂e

w(e)
δ(e)

(
ym√
dm

− yn√
dn

)2, (10)
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which means that we randomly choose two vertices in the subset of vertices
contained by a hyperedge, e, and sum the value of

w(e)
δ(e)

(
ym√
dm

− yn√
dn

)2. (11)

Expanding (9) and combining items, we can get the patch optimization for
each hyperedge:

1
2

∑

v⊂e

F

DV
1
2
v

EH ′
e

Ω

DE
HeE

′ F

DV
1
2
v

. (12)

Matrix E is
[−eT

I

]
(13)

where e = [1, ..., 1]T , I is an n × n identity matrix.
2. Whole alignment: In the hypergraph, the weight of a hyperedge is computed

by summing the similarity scores of all the pairs of vertices contained in
this hyperedge. The similarity score of any pair of vertices is defined as the
distance of image features:

S(u, v) = exp(− 1
σ

dist(feat(u), feat(v))), (14)

where feat(u) represents the image feature vector of vertex u, dist(x, y)
is usually set to be the L2 distance and σ is the standard deviation of all
distances. With the hyper edge weighting matrix, the multi-view hypergraph
Laplacian can be computed by summing the patch optimization defined in
(11) of all the hyperedges:

1
2

∑

e∈E

∑

v∈e

F

DV
1
2
v

EH ′
e

Ω

DE
HeE

′ F

DV
1
2
v

. (15)

One hyperedge is defined to contain one sample and its k nearest neighbors.
In this way, the computational complexity of hypergraph-based manifold regular-
ization can be divided into two parts. The first part is finding nearest neighbors
with Euclidean distances, which is O(k × n × d2). The second part is computing
Laplacian matrix, which is n2. The introduction of manifold regularization may
reduce the speed of extracting features.

3 Experimental Evaluation

3.1 Datasets and Settings

In our experiments, we use two datasets to evaluate the performance and empha-
size the advantage of the proposed HRA.
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The first dataset is that used in [1]. In this dataset, a person is walking in a
spiral pattern, and we name this dataset Walking. The training data consists of
all the pose vectors taken from sequences 01-07. All sequences are concatenated
to give 1691 training pose vectors. Sequence 08 is used for testing, and contains
418 testing poses. Mocap data are retrieved for a 54 degrees of freedom body
model, with three angles for each of 18 joints, including body orientation with
respect to the camera. For evaluation, the mean RMS absolute difference errors
between the true and estimated joint angle vectors are reported in degrees:

ddegree(y, yr) =
1
M

M∑

i=1

|(y − yr
i ) mod ± 180◦)|, (16)

where y is the ground truth, yr is the recovered degree, M = 54 is the number
of degrees and (•) mod ±180◦)(•+180◦) mod 360◦ −180◦ reduces angles to the
interval [−180◦,+180◦]. The training silhouettes are created by using POSER
to render the Mocap poses.

The second dataset is the HumanEva-I dataset, which is widely used in eval-
uating the performance of pose recovery [10]. This dataset contains five motion
types performed by four subjects. A 3D pose is encoded as a collection of joint
coordinates in 3D space and there are 14 joints in the HumanEva data set, there-
fore each 3D action data is represented by a 14 × 3 = 42-dimensional feature
vector. For evaluation, Trial 1 of Subjects 1 and 2 is used. Since there are many
invalid motions in Mocap data, we collect all the valid frames. The frames in
Trial 1 of Subject 1 are used as the training set. The number of frames is 701.
The frames in Trial 1 of Subject 1 are used as the testing set. The number
of frames is 604. For evaluation, the retrieval error is computed. The distance
between two poses is then calculated as the average Euclidean distance between
corresponding joint markers:

dpose(y, yr) =
1
M

M∑

i=1

‖ mi(y) − mi(yr) ‖, (17)

where ‖ • ‖ computes the 3D distance between two markers which are repre-
sented by 3D coordinates:

‖ mi(y) − mi(yr) ‖=
3∑

j=1

‖ mi(yj) − mi(yr
j ) ‖ . (18)

All the images are resized to be 128×128 = 16384 for fairness of comparison.
With silhouettes features, we get recovered poses by relevance vector machine [1].

3.2 Optimization of Autoencoders

When we adopt manifold regularization in (7), parameter α is introduced to
balance reconstruction loss and locality loss. We show the performance with
different settings of α to look into its influence. The curve is shown in Fig. 1.
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We can figure out that the proposed method performs the best when α = 0.4
for Walking dataset while it performs the best when α = 0.2 for HumanEva-I
dataset.
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Fig. 1. The influence of α

3.3 Comparison with State-of-the-Arts

In this subsection, we compare the proposed HRA with the following existing
features.

– Hierarchical centroid (HC) [12]: The number of dimensions is n × ∑n
i=1(2 ×

22×(i−1)) in which n is the level of the computed centroids. In the experi-
ments, n = 3.

– Histograms of oriented gradients (HOG) [4]. The number of HOG windows
per bound box is 3 × 3 and the number of histogram bins is 9. Each image
is thus represented by a feature vector with 81 dimensions.

– Shape context (SC) [2]: 200 points are sampled for each silhouette image. In
each image, the histogram of shape contexts is constructed from 12 angular
bins and 5 radial bins. To match the shape context features efficiently, the
shape signature histograms known as shapemes, proposed by Mori et al. [8]
are applied. Theoretically speaking, a shapeme is the bag-of-feature form
of shape contexts. A codebook containing 200 codes is trained, giving the
shapeme a dimensionality of 200.

– Marginalized Denoising Autoencoder (MDA) [3]: MDA approximates the
expected loss function of traditional denoising autoencoders with its Taylor
expansion. The dimensionality of hidden representation is the same as the
size of original images.

To compare the performance of these methods, we show the average recovery
error of each pose component. The Walking poses consist of a body model with
54 degrees of freedom, so the average recovery error for each degree is shown.
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Table 2. The performance on each marker of Walking.

index HC HOG SC MDA HRA index HC HOG SC MDA HRA

1 4.20 3.74 4.05 3.91 3.66 28 4.69 3.57 4.52 4.37 3.93

2 3.78 2.84 2.79 1.89 1.49 29 12.20 12.76 10.29 10.90 10.07

3 31.38 23.37 22.51 11.83 12.02 30 7.87 8.15 7.74 7.24 6.46

4 3.48 2.83 3.19 3.60 3.09 31 9.06 10.10 9.77 8.91 8.26

5 2.72 2.86 2.75 2.90 2.71 32 4.97 4.08 4.71 4.83 4.38

6 3.31 3.69 3.67 3.24 2.84 33 13.18 12.16 11.06 10.94 10.04

7 3.42 3.17 3.53 3.76 3.45 34 4.61 4.23 4.03 4.52 3.83

8 2.24 1.92 2.68 2.67 2.23 35 3.00 3.44 3.01 3.11 2.77

9 4.72 3.81 5.06 5.03 4.58 36 0.84 1.14 1.23 1.12 0.73

10 9.20 8.80 9.44 9.30 8.99 37 13.62 13.56 10.74 11.08 10.68

11 4.46 4.03 4.23 3.92 3.35 38 4.44 4.14 4.10 4.35 3.85

12 4.19 3.38 4.30 4.67 4.40 39 4.69 4.03 3.80 4.11 3.89

13 2.01 1.61 2.06 2.36 1.95 40 16.39 14.95 13.49 13.35 12.80

14 0.03 0.33 0.59 0.45 0.05 41 5.92 5.65 5.28 5.41 4.88

15 0.53 0.68 0.91 0.85 0.44 42 8.07 8.14 8.04 7.71 7.67

16 3.93 4.04 4.37 3.79 3.38 43 10.44 10.53 8.93 9.60 9.54

17 11.45 11.07 10.14 9.53 9.72 44 12.42 12.63 12.40 12.51 11.44

18 9.43 8.23 8.09 6.75 6.64 45 10.06 9.80 9.50 10.10 9.05

19 8.91 8.41 7.85 8.12 7.51 46 11.22 10.88 9.74 8.94 8.34

20 1.76 1.64 1.96 1.85 1.40 47 4.71 4.54 4.19 3.84 3.64

21 11.96 10.57 10.77 12.19 11.34 48 7.29 6.46 6.44 6.88 6.65

22 3.08 2.71 2.92 3.14 2.69 49 16.34 16.68 15.77 15.44 14.80

23 2.06 2.29 2.31 2.29 1.90 50 3.87 3.77 3.92 3.65 3.23

24 0.26 0.54 0.72 0.64 0.25 51 18.83 17.07 17.31 17.40 15.51

25 1.06 1.21 1.44 1.43 0.98 52 10.56 9.94 9.24 10.67 10.05

26 2.32 2.14 2.32 2.08 1.57 53 1.57 1.76 2.03 1.95 1.52

27 0.34 0.58 0.77 0.66 0.24 54 8.81 8.97 8.85 8.04 7.50

AVG 6.78 6.36 6.21 6.00 5.53

The HumanEva-I poses consist of 14 3D joint coordinates, so the average recovery
error for each joint position is shown. The results are shown in Table 2 and Table
3. Average recovery errors for all the items are also shown at the end of tables.
In each row, the smallest error is highlighted. Of the 52 items in Table 2, HRA
performs the best in 37 items (68.52%). Of the 14 items in Table 3, HRA performs
the best in 12 items (85.71%). This illustrates that HRA outperforms the other
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methods in most cases. Its average performance is also the best. Thanks to the
descriptive power of autoencoders, HRA works well for joints that are easily
occluded such as hands. Further more, HRA usually outperforms MDA due to
the introduction of manifold regularization.

Table 3. The performance on each marker of HumanEva-I.

index HC HOG SC MDA HRA index HC HOG SC MDA HRA

1 18.68 24.65 19.32 17.76 17.62 8 26.43 24.35 19.08 18.97 17.73

2 14.20 23.75 18.60 22.18 20.93 9 18.22 25.78 20.22 12.40 9.57

3 14.89 25.23 19.79 9.73 9.21 10 25.87 23.03 18.02 18.52 15.99

4 25.33 24.17 18.93 18.09 16.55 11 26.43 24.38 19.11 18.96 18.77

5 26.03 23.33 18.26 22.64 21.05 12 18.18 21.06 16.45 12.36 7.09

6 27.12 17.55 13.64 19.51 5.79 13 18.62 23.03 18.02 16.71 15.99

7 25.71 24.19 18.95 18.39 16.51 14 26.29 24.38 19.11 18.85 18.78

AVG 22.29 23.49 18.39 17.51 15.11

Some recovery results are shown in Fig 2. Due to the limitation of paper
space, we only show the results of Walking. We can see that the proposed HRA
gives recovered poses more close to the original images.

Fig. 2. Recovery results of Walking. For each set of images, the first image is the
original image, the second image is the result of HRA and the third image is the result
of MDA

4 Conclusion

In this paper, a novel approach of 3D pose recovery with 2D silhouettes is pro-
posed. It improves the previous approach of image feature extractors with denois-
ing autoencoders by introducing locality sensitive constriction. Locality reserva-
tion is able to keep the mutual dependency in the encoding procedure and makes
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similar silhouettes from the same pose grouped together. Hypergraph regulariza-
tion with patch alignment framework is adopted to impose locality reservation,
which improves the descriptive power of autoencoders and reduces ambiguity
of extracted features. Experimental results on both Walking and HumanEva-I
datasets show that the proposed method outperforms previous method on recov-
ery performance.

References

1. Agarwal, A., Triggs, B.: Recovering 3D human pose from monocular images. IEEE
Trans. Pattern Anal. Mach. Intell. 28(1), 44–58 (2006)

2. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using
shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

3. Chen, M., Weinberger, K.Q., Sha, F., Bengio, Y.: Marginalized denoising auto-
encoders for nonlinear representations. In: IEEE International Conference on
Machine Learning, pp. 1476–1484. IEEE (2014)

4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
Proceedings of the IEEE International Conference on Computer Vision and Pattern
Recognition, pp. 886–893. IEEE Press (2005)

5. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural Computing 18(7), 1527–1554 (2006)

6. Hong, C., Yu, J., Li, J., Chen, X.: Multi-view hypergraph learning by patch align-
ment framework. Neurocomputing 118(22), 79–86 (2013)

7. Hong, C., Yu, J., Tao, D., Wang, M.: Image-based three-dimensional human pose
recovery by multiview locality-sensitive sparse retrieval. IEEE Transactions on
Industrial Electronics 62(6), 3742–3751 (2015)

8. Mori, G., Belongie, S., Malik, J.: Efficient shape matching using shape contexts.
IEEE Trans. Pattern Anal. Mach. Intell. 27(11), 1832–1837 (2005)

9. Shen, J., Liu, G., Chen, J., Fang, Y., Xie, J., Yu, Y., Yan, S.: Unified structured
learning for simultaneous human pose estimation and garment attribute classifica-
tion. IEEE Transactions on Image Processing 23(11), 4786–4798 (2014)

10. Sigal, L., Balan, A.O., Black, M.J.: Humaneva: Synchronized video and motion
capture dataset and baseline algorithm for evaluation of articulated human motion.
International Journal of Computer Vision 87(1–2), 4–27 (2010)

11. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research 15, 1929–1958 (2014)

12. Yang, M., Qiu, G., Huang, J., Elliman, D.: Near-duplicate image recognition
and content-based image retrieval using adaptive hierarchical geometric centroids.
In: Proceedings of the IEEE International Conference on Pattern Recognition,
pp. 958–961. IEEE Press (2006)

13. Yoshua, B.: Learning deep architectures for AI. Foundations and Trends in Machine
Learning 2(1), 1–127 (2009)

14. Yuan, Y., Mou, L., Lu, X.: Scene recognition by manifold regularized deep learning
architecture. IEEE Transactions on Neural Networks and Learning Systems (2015)

15. Zhou, D., Huang, J., Scholkopf, B.: Learning with hypergraphs: clustering, classi-
fication, and embedding. In: Advances in Neural Information Processing Systems.
vol. 19, pp. 1601–1608. MIT Press (September 2007)


	Hypergraph Regularized Autoencoder for 3D Human Pose Recovery
	1 Introduction
	2 Hypergraph Regularized Autoencoder
	2.1 Marginalized Denoising Autoencoders
	2.2 Manifold Regularization
	2.3 Hypergraph Optimization

	3 Experimental Evaluation
	3.1 Datasets and Settings
	3.2 Optimization of Autoencoders
	3.3 Comparison with State-of-the-Arts

	4 Conclusion
	References


