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Abstract. The simplicity and widespread use of blockciphers based on
the iterated Even–Mansour (EM) construction has sparked recent inter-
est in the theoretical study of their security. Previous work has estab-
lished their strong pseudorandom permutation and indifferentiability
properties, with some matching lower bounds presented to demonstrate
tightness. In this work we initiate the study of the EM ciphers under
related-key attacks which, despite extensive prior work on EM ciphers,
has received little attention. We show that the simplest one-round EM
cipher is strong enough to achieve non-trivial levels of RKA security even
under chosen-ciphertext attacks. This class, however, does not include
the practically relevant case of offsetting keys by constants. We show that
two rounds suffice to reach this level under chosen-plaintext attacks and
that three rounds can boost security to resist chosen-ciphertext attacks.
We also formalize how indifferentiability relates to RKA security, showing
strong positive results despite counterexamples presented for indifferen-
tiability in multi-stage games.
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1 Introduction

1.1 Background

Formal analyses of cryptographic protocols often assume that cryptosystems
are run on keys that are independently generated and bear no relation to each
other. Implicit in this assumption is the premise that user keys are stored in
protected areas that are hard to tamper with. Security under related-key attacks
(RKAs), first identified by Biham and Knudsen [9,10,38], considers a setting
where an adversary might be able to disturb user keys by injecting faults [2],
and consequently run a cryptosystem on related keys. Resilience against RKAs
has become a desirable security goal, particularly for blockciphers.

The need for RKA security is further highlighted by the fact that through
(improper) design, a higher-level protocol might run a lower-level one on related
keys. Prominent examples are the key derivation procedures in standardized
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protocols such as EMV [25] and the 3GPP integrity and confidentiality algo-
rithms [34], where efficiency considerations have led the designers to use a block-
cipher under related keys. Similar considerations can arise in the construction
of tweakable blockciphers [41], if a blockcipher is called on keys that are offset
by xoring tweak values. An RKA-secure primitive can offer security safeguards
against such protocol misuse.

Bellare and Kohno (BK) [7] initiated the theoretical treatment of security
under related-key attacks and propose definitions for RKA-secure pseudorandom
functions (PRFs) and pseudorandom permutations (PRPs). The BK model were
subsequently extended by Albrecht et al. [1] to idealized models of computation
to account for the possibility that key might be derived in ways that depend on
the ideal primitive. Both works prove that the ideal cipher is RKA secure against
wide sets of related-key deriving (RKD) functions. Bellare and Cash [5] present
an RKA-secure pseudorandom function from standard intractability assump-
tions and Bellare, Cash, and Miller [6] give a comprehensive treatment of RKA
security for various cryptographic primitives, leveraging the RKA resilience of
PRGs to construct RKA-secure instances of various other primitives. In this
work we are interested in the RKA security of blockciphers.

1.2 The Even–Mansour Ciphers

Key-alternating ciphers were introduced by Daemen and Rijmen [23] with
the aim of facilitating a theoretical discussion of the design of AES. The
key-alternating cipher has since become a popular paradigm for blockcipher
design, with notable examples including AES [22,45], Present [14], LED [32],
PRINCE [16], KLEIN [31], and Zorro [30]. Key-alternating ciphers originate in
the work of Even and Mansour [26,27], who considered a single round of the con-
struction show in Fig. 1; their motivation was to design the simplest blockcipher
possible. This design is closely related to Rivest’s DES-X construction, proposed
as a means to protect DES against brute-force attacks [36], which itself builds
on principles dating back to Shannon [49, p. 713]. In this work, we use the terms
‘key-alternating cipher’ and ‘iterated Even–Mansour cipher’ interchangeably.

P1 ⊕

k2

P2 ⊕

k3

. . . ⊕

kt

Pt ⊕

kt+1

y⊕

k1

x

Fig. 1. The t -round iterated Even–Mansour scheme.

Provable security. Even and Mansour’s original analysis [26,27] considers
‘cracking’ and ‘forging’ attacks in the random-permutation model and shows
that no adversary can predict x given E(k, x) or E(k, x) given x with reason-
able probability, without making q1 queries to the permutation and qem to the
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encryption/decryption oracle, where q1qem ≈ 2n. The indistinguishability of the
Even–Mansour scheme from a random permutation is shown by Kilian and Rog-
away [36,37, Theorem 3.1 with κ = 0] and Lampe, Patarin and Seurin [39,
App. Bofthefullversion]. Both works show that an adversary making q1 and
qem queries to the permutation oracle and the encryption/decryption oracles
respectively, has a success probability of approximately q1qem/2n−1. Gentry and
Ramzan [29] show that the permutation oracle can be instantiated by a Feistel
network with a random oracle without loss of security.

At Eurocrypt 2012, Dunkelman, Keller, and Shamir [24] showed that the
Even–Mansour scheme retains the same level of security using only a single key,
that is E(k, x) = P(x⊕ k)⊕ k. Bogdanov et al. [15] show that the t-round Even–
Mansour cipher with independent keys and permutations and at least two rounds
(t ≥ 2) provides security up to approximately 22n/3 queries but can be broken
in t · 2tn/(t+1) queries. Following this work, several papers have moved towards
proving a bound that meets this attack [39,50], with Chen and Steinberger [18]
able to prove optimal bounds using Patarin’s H-coefficient technique [47]. Chen
et al. [17] consider two variants of the two-round Even–Mansour scheme: one with
independent permutations and identical round keys, the other with identical
permutations but a more complex key schedule. In both cases (under certain
assumptions about the key schedule), security is maintained up to roughly 22n/3

queries.
Maurer, Renner, and Holenstein (MRH) [43] introduce a framework which

formalizes what it means for a non-monolithic object to be able to replace
another in arbitrary cryptosystems. This framework, know as indifferentiability,
has been used to validate the design principle behind many cryptographic con-
structions, and in particular that of the iterated Even–Mansour constructions.
Lampe and Seurin [40] show that the 12-round Even–Mansour cipher using a
single key is indifferentiable from the ideal cipher. Andreeva et al. [3] show that
a modification of the single-key, 5-round Even–Mansour cipher, where the key is
first processed through a random oracle, is indifferentiable from the ideal cipher.

Cryptanalysis. Daemen [21] describes a chosen-plaintext attack that recovers
the key of Even–Mansour in approximately q1 ≈ qem ≈ 2n/2 queries. Biryukov
and Wagner [13] are able to give a known-plaintext attack against the Even–
Mansour scheme with the same complexity as Daemen’s chosen-plaintext attack.
Dunkelman, Keller, and Shamir [24] introduce the slidex attack that uses only
known plaintexts and can be carried out with any number of queries as long as
q1 · qem ≈ 2n.

Mendel et al. [44] describe how to extend Daemen’s attack [21] to a related-
key version, and are able to recover the keys when all round keys are independent.
Bogdanov et al. [15] remark that related-key distinguishing attacks against the
iterated Even–Mansour scheme with independent round keys “exist trivially,”
and describe a key-recovery attack, requiring roughly 2n/2 queries against the
two-round Even–Mansour scheme with identical round keys, assuming that an
adversary can xor constants into the round key.
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Many key-alternating ciphers such as AES [11,12], Present [46], LED [44],
and Prince [35] have been analyzed in the related-key model. One of the security
claims of the LED blockcipher [32] is a high resistance to related-key attacks,
which is justified by giving a lower bound on the number of active S-boxes.

1.3 Contributions

Despite extensive literature on the provable security of iterated Even–Mansour
ciphers and (RKA) cryptanalysis of schemes using this design strategy, their
formal related-key analysis has received little attention. In this work we initiate
the provable RKA security analysis of such key-alternating ciphers. Our results
build on the work of Barbosa and Farshim [4] who study the RKA of security
of Feistel constructions. They show that by appropriate reuse of keys across the
rounds, the 3-round Feistel construction achieves RKA security under chosen-
plaintext attacks. With four rounds the authors are able to prove RKA security
for chosen-ciphertext attacks. The authors also formalize a random-oracle model
transform by Lucks [42] which processes the key via the random oracle before
application. Our results are similar and we show that key reuse is also a viable
strategy to protect against related-key attacks in key-alternating ciphers. In
contrast to the Feistel constructions, key-alternating ciphers operate intrinsically
in an idealized model of computation, and our analyses draw on techniques used
in the formalization of Lucks’s heuristic in [4].

We start with the simplest of the key-alternating ciphers, namely the (one-
round) EM cipher. We recall that for xor related-key attacks, where an adversary
can offset keys by values of its choice, this construction does not provide RKA
security [3,15,16,40]. Indeed, it is easy to check that E((k1, k2), x) = E((k1 ⊕
Δ, k2), x ⊕ Δ), which only holds with negligible probability for the ideal cipher.
We term this pattern of adversarial behaviour offset switching. One idea to
thwart the above attack here would be to enforce key reuse in the construction;
although the above equality no longer holds, a close variant still applies:

E(k, x) = E(k ⊕ Δ, x ⊕ Δ) ⊕ Δ .

Despite this negative result, we show that the minimal EM cipher with key-
reuse enjoys a non-trivial level of RKA security (even in the chosen-ciphertext
setting). For a set of allowed relate-key queries Φ, we identify a set of sufficient
conditions that allow us to argue that E(φ(k), x) and E(φ′(k), x′) for φ, φ′ ∈ Φ
look random and independent from an adversary’s point of view. As usual, our
conditions impose that the RKD functions have unpredictable outputs, as other-
wise RKA security is trivially unachievable. (For φ(k) = c, a predictable value,
consider an adversary which computes E(c, 0) and compares it E(φ(k), 0).) Our
second condition looks at the generalization of the offset-switching attack above
and requires it to be infeasible to find offset claws, i.e., for any pair of functions
(φ1, φ2) and any value Δ of adversary’s choice, over a random choice of k

φ1(k) ⊕ φ2(k) �= Δ .
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This strengthens the standard claw-freeness condition [1,4,7], which corresponds
to the Δ = 0 case. In our work, we also consider RKD functions that depend on
the underlying permutations by placing queries to them. As mentioned above,
this is particularly relevant for the Even–Mansour ciphers as they inherently
operate in the random-permutation model. We build on previous work in the
analysis of such functions [1,4] and formulate adequate restrictions on oracle
queries that allow a security proof to be established. Informally, our condition
requires that the queries made by φ’s have empty intersection with the outputs
of φ’s, even with offsets.

The search for xor-RKA security leads us to consider the two-round EM
constructions. The first attack discussed above, where the key is offset by a con-
stant, still applies in this setting and once again we consider key reuse. (The two
permutations are still independent.) For this cipher, the offset-switching attack
no longer applies, which raises the possibility that the two-round Even–Mansour
might provide xor-RKA security. We start with chosen-plaintext attacks, formu-
late three new conditions (analogous to those given for the basic scheme), and
prove security under them. These conditions, as before, decouple the queries
made to the permutation oracle and allow us to simulate the outer P2 ora-
cle forgetfully in a reduction. We then show that this new set of restrictions
are weak enough to follow from the standard output-unpredictability and claw-
freeness properties. Since xoring with constants is output unpredictable and
claw-free [7], the xor-RKA security of the single-key, two-round EM construc-
tion follows. Under chosen-ciphertext attacks, however, this construction falls
prey to an attack of Andreeva et al. [3] on the indifferentiability of two-round
EM (adapted to the RKA setting). For CCA security, we turn to three-round
constructions, where we show of the 14 possible way to reuse keys, all but one
fall prey to either offset switching attacks or Andreeva et al.’s attack [3]. On
the other hand, the three-round construction which uses a single key meets the
desired xor-RKA security in the CCA setting.

Dunkelman, Keller, and Shamir [24] consider several variants of the Even–
Mansour scheme, such as addition Even–Mansour where the xors are replaced
with modular additions, and involution Even–Mansour, where random permu-
tations are replaced with random involutions. It is reasonable to expect that our
results can be modified to also apply to these schemes. Another possible variant
of the Even–Mansour scheme is one where the same permutation is used across
the rounds [17]; we briefly argue that our proof techniques carry over to this
permutation reuse setting.

As mentioned above, Lampe and Seurin [40] show that the 12-round EM
construction is indifferentiable from the ideal cipher when a single key is used
throughout the rounds. Ristenpart, Shacham and Shrimpton [48], on the other
hand, point out that indifferentiability does not necessarily guarantee composi-
tion in multi-stage settings and go on to note that the RKA game is multi-staged.
This leaves open the question of whether indifferentiability provides any form of
RKA security. We show that if RKD functions query the underlying primitive
indirectly via the construction only, then composition holds. This level of RKA
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security is fairly strong as, in our opinion, it is unclear what it menas to syntac-
tically changing the RKD functions from those in the ideal setting which have
access to the ideal cipher to those which (suddenly) get access to permutations.
Our result, in particular, implies that Lampe and Seurin’s constructions [40] and
Holenstein, Künzler, and Tessaro’s 14-round Feistel construction [33] are RKA
secure against key offsets in the CCA setting.

Independently and concurrently to this work, Cogliati and Seurin [19,20] also
study the related-key security of iterated EM ciphers. Their Theorem 2 is very
similar to our Corollary 3; they analyze more general key schedules and obtain
tighter bounds, while our approach deals with a wider range of RKD functions.

2 Preliminaries

Notation. We write x ← y for assigning value y to variable x. We write x ←$ X
for the action of sampling x from a finite set X uniformly at random. If A is a
probabilistic algorithm we write y ←$ A(x1, . . . , xn) for the action of running A
on inputs x1, . . . , xn with randomly chosen coins, and assigning the results to y.
We let [n] := {1, . . . , n}, and we denote the bitwise complement of a bit string
x by x.

Blockciphers. A (block)cipher is a function E : K × M −→ M such that
for every k ∈ K the map E(k, ·) is a permutation on M. Such an E uniquely
defines its inverse map D(k, ·) for each key k. We write BC := (E,D) to denote a
blockcipher, which also implicitly defines the cipher’s key space K and message
space or domain M. We denote the set of all blockciphers with key space K and
domain M by Block(K,M). The ideal cipher with key space K and message
space M corresponds to a model of computation where all parties have oracle
access to a uniformly chosen random element of Block(K,M) in both the forward
and backward directions. For a blockcipher BC := (E,D), notation ABC denotes
oracle access to both E and D for A.

Permutations. An ideal permutation can be viewed as a blockcipher whose key
space contains a single key. In this work, we are interested in building blockci-
phers with large key spaces from a small number of ideal permutations P1, . . . ,Pt

and their inverses. This is equivalent to access to a blockcipher with key space
[t], where Pi(x) := P(i, x). In order to ease notation, we define a single oracle π,
which provides access to all t ideal permutations in both directions. This ora-
cle takes as input (i, x, σ), where i ∈ [t], x ∈ M, and σ ∈ {+,−} and returns
Pi(x) if σ = + and P−1

i (x) if σ = −. Slightly abusing notation, we define
Pσ

i (x) := Pσ(i, x) := π(i, x, σ), and assume σ = + whenever it is omitted from
the superscript. A blockcipher constructed from t ideal permutations π is written
BCπ := (Eπ,Dπ).

RKD functions. A related-key deriving (RKD) function maps keys to keys
in some key space K. In this paper, we view RKD functions as circuits that
may contain special oracles gates π. An RKD set Φ is a set of RKD functions
φπ : K −→ K, where π is an oracle. (The oracle will be instantiated with π as
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defined above.) Throughout the paper we assume that membership in RKD sets
can be efficiently decided.

RKA security. Following [1,7], we formalize the RKA security of a blockcipher
BCπ := (Eπ,Dπ) in the (multiple) ideal-permutation model via the game shown
in Fig. 2. The RKA game is parametrized by an RKD set Φ which specifies the
RKD functions that an adversary is permitted to query during its attack. This
game also includes a procedure for oracle π defined above. We define the RKCCA
advantage of an adversary A via

Advrkcca
BCπ,Φ,t(A) := 2 · Pr [RKCCABCπ,A,Φ,t] − 1 .

The RKCPA game and advantage are defined similarly by considering adversaries
that do not make any RKDec queries (backwards queries to the permutations
are still permitted).

RKCCABCπ,A,Φ,t:

b ←$ {0, 1}; k ←$ K
(P,P−1) ←$ Block([t], M)
(iE, iD) ←$ Block(K, M)
b′ ←$ ARKENC,RKDEC,π

Return (b′ = b)

π(i, x, σ):

Return Pσ(i, x)

RKENC(φπ, x):

k′ ← φπ(k)
If b = 0 Return iE(k′, x)
Return Eπ(k′, x)

RKDEC(φπ, x):

k′ ← φπ(k)
If b = 0 Return iD(k′, x)
Return Dπ(k′, x)

Fig. 2. Game defining the Φ-RKCCA security of a blockcipher BCπ := (Eπ,Dπ) with
access to t ideal permutations. An adversary can query the RKEnc and RKDec oracles
with a φπ ∈ Φ only. In the RKCPA game the adversary cannot query the RKDec oracle.

RKA security of the ideal cipher. Following [7] we define the RKA security
of the ideal cipher IC′ := (iE′, iD′) by augmenting the procedures of the above
game with those for computing the ideal cipher in both directions, i.e., (iE′, iD′).
When working with the ideal cipher, t is often 0, but we consider RKD functions
which have oracle access to the ideal procedures iE′ and iD′ as in [1].

Even–Mansour ciphers. The t-round Even–Mansour (EM) cipher EMπ :=
(Eπ,Dπ) with respect to t permutations P1,. . . ,Pt on domain {0, 1}n has key
space K = {0, 1}n(t+1), domain M = {0, 1}n, and is defined via

Eπ((k1, . . . , kt+1), x) := Pt(· · ·P2(P1(x ⊕ k1) ⊕ k2) · · · ) ⊕ kt+1 ,

Dπ((k1, . . . , kt+1), x) := P−1
1 (· · ·P−1

t−1(P
−1
t (x ⊕ kt+1) ⊕ kt) · · · ) ⊕ k1 .

In this work we are interested in EM ciphers where keys are reused in vari-
ous rounds. Following notation adopted in [4], we denote the EM construction
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where key kij
is used before round j by EMπ[i1, i2, . . . , it+1]. We call such key

schedules simple. Note that K = {0, 1}n·|{i1,i2,...,it+1}| in these constructions. Of
particular interest to us are the EMπ[1, 1], EMπ[1, 1, 1] and EMπ[1, 1, 1, 1] con-
structions, where a single key is used in all rounds. We emphasize that the round
permutations in all these constructions are independently chosen, unless stated
otherwise.

3 Indifferentiability and RKA Security

Given the indifferentiability results for the EM and Feistel constructions dis-
cussed in the introduction, in this section we study to what extent (if any) an
indifferentiable construction can provide resilience against related-key attacks.
We start by recalling what it means for a blockcipher construction to be indif-
ferentiable from the ideal cipher [43].

Indifferentiability. Let BCπ := (Eπ,Dπ) be a blockcipher and let S IC be
a simulator with oracle access to the ideal cipher having the same key and
message spaces as those of BCπ. We define the indifferentiability advantage of a
distinguished D with respect to S against BCπ via

Advindiff
BCπ,t(S,D) := Pr

[
DBCπ,π

]
− Pr

[
DIC,S IC

]
,

where the first probability is taken over a random choice of π (as defined in
Fig. 2), and the second probability is taken over a random choice of a blockcipher
IC := (iE, iD). Note that in this definition we require a universal simulator that
does not depend on the indifferentiability distinguisher. We prove the following
theorem in the full version of the paper [28].

Theorem 1. Let Φ be an RKD set consisting of function φOC having access to a
blockcipher oracle OC. Let π be as before, BCπ be a blockcipher construction, and
S be an indifferentiability simulator. Then for any adversary A against the Φ-
RKCCA security of BCπ, where the oracles in the RKD functions are instantiated
with BCπ, there are adversaries D1 and D2 against the indifferentiability of BCπ,
and an adversary B against the Φ-RKCCA of the ideal cipher, where the oracles
in the RKD functions are instantiated with the ideal cipher, such that

Advrkcca
BCπ,Φ,t(A) ≤ Advindiff

BCπ,t(S,D1) + Advindiff
BCπ,t(S,D2) + Advrkcca

IC,Φ,t(B) .

Care with composition. Ristenpart, Shacham, and Shrimpton [48] show that
indifferentiability does not always guarantee secure composition in multi-stage
settings where multiple adversaries can only communicate in restricted ways. The
authors then remark that RKA security is multi-staged. To see this, note that the
RKA game can be viewed as consisting of two adversaries Aπ

1 and Aπ
2 where Aπ

1

corresponds to the standard RKA adversary Aπ and Aπ
2 is an adversary which

has access to the key k, receives an input from Aπ
1 containing the description of

an RKD function φπ and a value x, computes φπ(k) using its access to π to get
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k′, and returns Eπ(k′, x) or Dπ(k′, x) to Aπ
1 as needed. With this formalization

adversary Aπ
2 cannot freely communicate with Aπ

1 as it is restricted to send only
encryption and decryption outputs. Our theorem above essentially states that in
settings where Aπ

2 takes the restricted form ABCπ

2 indifferentiability suffices. In
our opinion, this restricted access to π suits the RKA security model particularly
well. Indeed, when starting in the ideal setting where the RKD functions have
access to the ideal cipher, one needs to address how the oracles are instantiated
when moved to a construction. A natural way to do this is to simply instantiate
the oracles with those of the construction as well (and in this setting, as we
show, indifferentiability suffices). Giving the RKD functions direct access to π
would constitute a syntactic change in the two RKD sets for the ideal cipher and
the construction, and it is unclear one should compare RKA security in these
settings.

Lampe and Seurin [40, Theorem 2] show that the 12-round EMπ[1, · · · , 1]
construction is indifferentiable from the ideal cipher (with a universal simulator).
Bellare and Kohno [7], on the other hand, show that the ideal cipher is Φ⊕-
RKCCA secure, where

Φ⊕ := {k 
→ k ⊕ Δ : Δ ∈ K} .

We therefore obtain as a corollary of the above theorem that the 12-round con-
struction EMπ[1, · · · , 1] is Φ⊕-RKCCA secure. The same conclusion applies to the
14-round Feistel construction of Holenstein, Künzler, and Tessaro [33]. These
construction, however, are suboptimal in terms rounds with respect to RKA
security. Barbosa and Farshim [4] show that 4 rounds with key reuse suffices for
Feistel networks. In the following sections, we study the Even–Mansour ciphers
with smaller number of rounds while maintaining RKA security.

4 The RKA Security of EMπ[1, 1]

In this section we study RKD sets Φ for which the single-key Even–Mansour
construction provides Φ-RKCCA security. Our results are similar to those of Bel-
lare and Kohno [7], Albrecht et al. [1], and Barbosa and Farshim [4] in that
we identify a set of restrictions on the RKD set Φ that allow us to establish a
security proof. For the one-round construction there are two simple key sched-
ules up to relabeling: EMπ[1, 1] and EMπ[1, 2]. Neither of these constructions can
provide Φ⊕-RKCPA security due to the offset-switching attacks discussed in the
introduction. Despite this, we show that the most simple of the EM construc-
tions, EMπ[1, 1], provides a non-trivial level of RKA security. The results of this
section will also serve as a warm up to the end goal of achieving strong forms of
RKA security, which will encompass key offsets as a special case.

4.1 Restricting RKD Sets

Bellare and Kohno [7] observe that if an adversary is able to choose a φ ∈ Φ
that has predictable outputs on a randomly chosen key, then Φ-RKCCA security
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is not achievable. To see this, let φ be the constant zero (or any predictable)
function. An adversary can simply test if it is interacting with the real or the
ideal cipher by enciphering x under the zero key and comparing it to the value it
receives from its RKEnc oracle on (φ, x). This motivates the following definition
of unpredictability, adapted to the ideal-permutation model.

Output unpredictability (OUP). The advantage of an adversary A against
the output unpredictability of an RKD set Φ with access to t ideal permutations
is defined via

Advoup
Φ,t(A) := Pr [∃ (φπ, c) ∈ List : φπ(k) = c; List ←$ Aπ] .

Here List contains pairs of the form (φπ, c) for φπ ∈ Φ and c ∈ K, and π is the
oracle containing t ideal permutations. The probability is taken over a random
choice of k ←$ K, the t random permutations implicit in π, and the coins of
the adversary. Note that via a simple guessing argument, this definition can be
shown to be equivalent to one where the adversary is required to output a single
pair, with a loss of 1/|List| in the reduction.

A second condition that Bellare and Kohno [7] introduce is claw-freeness.
Roughly speaking, a set Φ has claws if there are two distinct φ1, φ2 ∈ Φ such
that φ1(k) = φ2(k). Although this condition is not in general necessary—given
an arbitrary claw there isn’t necessarily an attack—it turns out that existence
of claws prevent natural approaches to proofs of security. We lift claw-freeness
to the ideal-permutation model below.

Claw-freeness (CF). The advantage of an adversary A against the claw-
freeness of an RKD set Φ with access to t ideal permutations is defined via

Advcf
Φ,t(A) := Pr [∃ (φπ

1 , φπ
2 ) ∈ List : φπ

1 (k) = φπ
2 (k) ∧ φπ

1 �= φπ
2 : List ←$ Aπ] .

Here List contains pairs of RKD functions, π is as before, and the probability
space is defined similarly to that for output unpredictability. Once again this
definition is equivalent to one where List is restricted to be of size one.

Claw-freeness is not a strong enough condition for the one-round EM con-
struction to be RKA secure. Indeed, consider an adversary that queries its
encryption oracle with two pairs (φ1, x1) and (φ2, x2), possibly with x1 �= x2,
such that

x1 ⊕ φ1(k) = x2 ⊕ φ2(k) .

Then the permutation underlying the construction will be queried at the same
point and the resulting ciphertexts will differ by φ1(k) ⊕ φ2(k) = x1 ⊕ x2, a pre-
dictable value. This observation motivates a strengthening of the claw-freeness
property.

Xor claw-freeness (XCF). The advantage of an adversary A against the xor
claw-freeness of an RKD set Φ with access to t ideal permutations is defined via

Advxcf
Φ,t(A) := Pr [∃ (φπ

1 , φπ
2 , c) ∈ List : φπ

1 (k) ⊕ φπ
2 (k) = c ∧ φπ

1 �= φπ
2 :List ←$Aπ] .
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The variables and probability space are defined similarly to those for claw-
freeness.

Xor claw-freeness implies claw-freeness as the latter is a special case with
c = 0. That claw-freeness is weaker than xor claw-freeness can be seen by con-
sidering the set Φ⊕ corresponding to xoring with constants. This set can be easily
shown to be output unpredictable and claw-free [7], but is not xor claw-free as

φΔ1(k) ⊕ φΔ2(k) = Δ1 ⊕ Δ2 where φΔ(k) := k ⊕ Δ .

We also observe that xor claw-freeness of Φ implies that there is at most one
φ ∈ Φ which is predictable as any two predictable RKD functions can be used
to break xor claw-freeness.

Let us now consider oracle access in the RKD functions. Following the attacks
identified in [1,4], we consider the oracle-dependent RKD set

Φ :=
{
id : k 
→ k, φP : k 
→ P(k)

}
.

Consider the following Φ-RKCPA adversary against EMπ[1, 1]. Query (id, 0) and
get y = P(k) ⊕ k. Query (φP, y) and get z. Return (z = 0). When interacting
with EMπ[1, 1] we have that

z = EP(P(k),P(k) ⊕ k) = P(P(k) ⊕ k ⊕ P(k)) ⊕ P(k) = P(k) ⊕ P(k) = 0 .

On the other hand, this identity is true with probability at most 1/(2n −1) with
respect to the ideal cipher. This attack stems from the fact that when answering
an RKEnc query, π is evaluated at a point already queried by an RKD function.
Our final restriction below formalizes what it means for the oracle queries of the
RKD function to be disjoint from those of the adversary, including those made
implicitly through the encryption or decryption procedures, even up to xoring
constants.

Xor query independence (XQI). The advantage of an adversary A against
the xor query independence of an RKD set Φ with access to t ideal permutations
is defined via

Advxqi
Φ,t(A) :=Pr

[∃(i, σ, φπ
1 , φπ

2 , c) ∈ List : (i, φπ
1 (k) ⊕ c, σ) ∈ Qry[φπ

2 (k)];List ←$Aπ]

where

Qry[φπ(k)] := {(i, x, σ) : (i, x, σ) queried to π by φπ(k)} ,

Qry[kπ(k)] := Qry[φπ(k)] ∪ {(i, π(i, x, σ),−σ) : (i, x, σ) ∈ Qry[φπ(k)]} .

Note that for the EM cipher, restricting the above definition to i = 1 suffices.
We also define query independence [1] as above but demand that c = 0.

Examples. The OUP, XCF, and XQI conditions introduced above do not lead
to vacuous RKD sets. As an example of an RKD set which is independent of the
permutations consider

Φxu := {k 
→ H(k, x) : x ∈ K′} ,
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where H is an xor-universal hash function from K to K with key space K′. As
a simple instantiation, let K′ = {0, 1}k \ 0k and for k ∈ K′ define H(k, x) :=
k · x, where {0, 1}k is interpreted as GF(2k) with respect to a fixed irreducible
polynomial, and multiplication is defined over GF(2k).

As an example of an oracle-dependent RKD set, one can take

Φ := {k 
→ P(k ⊕ Δ) : Δ ∈ K} .

4.2 Sufficiency of the Conditions

We now show that if an RKD set Φ meets the output unpredictability, xor claw-
freeness and xor query independence properties defined above, then EMπ[1, 1]
provides Φ-RKCCA security. Throughput the paper we denote the number of
queries to various oracles in an attack as follows:

qi: the number of direct, distinct queries to π with index i made by the adversary
A.
qem: the number of distinct queries to the RKEnc and (if present) RKDec
oracles by A.
qφ
i : the number of distinct queries to π with index i made by the RKD

function φπ.

We call an RKA adversary repeat-free if it does not query its RKEnc or RKDec
oracle on a pair (φ, x) twice. We call an RKA adversary redundancy-free if it
does not query RKEnc on (φ, x) to get y and then RKDec on (φ, y) to get x,
or vice versa. Without loss of generality, we assume that all adversaries in this
paper are repeat-free and redundancy-free.

Theorem 2 (Φ-RKCCA security of EMπ [1,1]). Let Φ be an RKD set. Then
for any adversary A against the Φ-RKCCA security of EMπ[1, 1] with parameters
as defined above, there are adversaries B1, B2, B3 and B4 such that

Advrkcca
EMπ[1,1],Φ,1(A) ≤Advoup

Φ,1(B1) + Advxqi
Φ,1(B2) + Advxcf

Φ,1(B3) + Advcf
Φ(B4)

+
qem(q1 +

∑
φ qφ

1 )

2n − (q1 +
∑

φ qφ
1 )

+
2q2

em

2n
,

where B1, B2, B3 and B4 output lists of sizes 2q1qem, 2q2
em, q2

em, and q2
em respec-

tively and they all make q1 queries to π.

We give the intuition behind the proof here and leave the details to the full
version [28]. The adversary A in the Φ-RKCCA game is run with respect to the
oracles

P(x), P−1(x), P(x ⊕ φπ(k)) ⊕ φπ(k), P−1(x ⊕ φπ(k)) ⊕ φπ(k) .

Our goal is to make a transition to an environment with the oracles

P(x), P−1(x), iE(φπ(k), x), iD(φπ(k), x) ,
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where (iE, iD) denotes the ideal cipher. To this end, we consider two intermediate
environments where the last two oracles corresponding to RKEnc and RKDec
are handled via a forgetful oracle $ that returns uniform strings on each invoca-
tion, irrespectively of its inputs. Applying this change to the first environment
above gives

P(x), P−1(x), $(x ⊕ φπ(k)) ⊕ φπ(k), $(x ⊕ φπ(k)) ⊕ φπ(k) ,

while the second gives

P(x), P−1(x), $(φπ(k), x), $(φπ(k), x) ,

both of which are identical to the environment (P(x),P−1(x), $(), $()). We will
now argue that the above changes alter A’s winning probabilities negligibly,
down to the conditions on Φ that we introduced in the previous section.

Let us first look at the change where we replace iE(φπ(k), x) and iD(φπ(k), x)
with $(φπ(k), x). We introduce another game and replace the random keyed
permutations iE and iD by random keyed functions iF and iC:

P(x), P−1(x), iF(φπ(k), x), iC(φπ(k), x) .

Via (a keyed extension of) the random permutation/random function (RP/RF)
switching lemma [8], the environments containing (iF, iC) and (iE, iD) can be
shown to be indistinguishable up to the birthday bound q2

em/2n. The environ-
ments containing iF(φπ(k), x) and iC(φπ(k), x) and two copies of $(φπ(k), x) and
can be shown to be identical down to the CF property. Indeed, an inconsistency
could arise whenever (φπ

1 , x1) �= (φπ
2 , x2) but (φπ

1 (k), x1) = (φπ
2 (k), x2). This

means x1 = x2 and hence we must have that φπ
1 �= φπ

2 . But φπ
1 (k) = φπ

2 (k) and
this leads to a break of the claw-freeness.

Let us now look at the changes made when we replace P±(x⊕φπ(k))⊕φπ(k)
with $(x ⊕ φπ(k)) ⊕ φπ(k). We need to consider the points where a forgetful
simulation of P or P−1 via $ in the last two oracles leads to inconsistencies. Let
us define the following six lists.

List+P := [(a,P(a)) : A queries a to P], List−P := [(P−1(b), b) : A queries b to P−1] ,

List+φ :=[(a,P(a)) :φπ(k) queries P(a)], List−φ :=[(P−1(b), b) :φπ(k) queries P−1(b)]

List+$ := [(x ⊕ φπ(k), $(x ⊕ φπ(k))) : A queries (φπ, x) to RKEnc] ,

List−$ := [($(φπ(k) ⊕ y), φπ(k) ⊕ y) : A queries (φπ, y) to RKDec] .

Let List� be the union of the above lists over all φ queried to RKEnc or
RKDec. This list encodes the trace of the attack, as in the forgetful environment
no queries to P or P−1 are made while handling RKEnc and RKDec queries.
This trace is consistent with one coming from a permutation unless List� does not
respect the permutivity properties, i.e., there are two entries (a, b), (a′, b′) ∈ List�
such that it is not the case that (a = a′ ⇐⇒ b = b′). Note that one of these pairs
must be in List$ := List+$ ∪ List−$ as the other oracles are faithfully implemented.
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There is an inconsistency on List� if and only if there is an inconsistency among
two lists (one of which is either List+$ or List−$ ). There are 20 possibilities to
consider, including the order that queries are made. We consider first query of
a pair being on List+$ ; the other cases are dealt with symmetrically.

List+$ and List+P : (1) The first component of a pair on List+$ —we call this a first
entry on List+$ —matches a first entry a on List+P . This means that for some
query (φπ, x) to RKEnc we have that a = φπ(k) ⊕ x. This leads to a break
of output unpredictability. (2) The second entry on these lists match. More
explicitly, we are looking at the probability that P(a) = R, for R the output
of $ on a forward query. Here we can assume that R is known and this
addresses the adaptivity of choice of a. But even in this case the probability
of this event is small as P is a random permutation.

List+$ and List−P : (1) A second entry on List+$ matches a second entry b′ on List−P .
This means that for some query (φπ, x) to RKEnc with output y we have
that b′ = φπ(k)⊕y. This leads to a break of output unpredictability. (2) The
first entries match on these lists. The argument is similar to case (2) above,
but now is for P−1.

List+$ and List+φ : (1) A first entry on List+$ matches a first entry List+φ . This means
that for some query (φπ

1 , x) to RKEnc we have that a = φπ
1 (k) ⊕ x for a

query a of some other φπ
2 . This leads to a break of xor query independence.

(2) The second entries match on these lists. The argument is as in case (2)
of first pair of lists.

List+$ and List−φ : (1) A second entry on List+$ matches a second entry b′ on List−φ .
This means that for some query (φπ

1 , x) to RKEnc with output y we have
that b′ = φπ

1 (k) ⊕ y for a query b′ of some other φπ
2 . This leads to a break

of xor query independence. (2) The first entries match on these lists. The
argument is as in case (2) of the second pair of lists.

List+$ and List+$ : Two first entries on List+$ match. This means that for two
queries (φπ

1 , x1) and (φπ
2 , x2) to RKEnc we have that φπ

1 (k)⊕x1 = φπ
2 (k)⊕x2.

Repeat-freeness ensures that φ1 �= φ2 as otherwise x1 = x2 as well. This leads
to a break of xor claw-freeness. (2) The second entries match on these lists.
Since the oracle returns independent random values, this probability can be
bounded by the birthday bound.

List+$ and List−$ : A second entry on List+$ matches a second entry on List−$ . This
means that for a queries (φπ

1 , x1) to RKEnc with outputs y1 and (φπ
2 , x2) to

RKDec, we have that φπ
1 (k)⊕y1 = φπ

2 (k)⊕x2. Redundancy-freeness ensures
that φ1 �= φ2 as otherwise x2 would be an encryption of x1. This leads to
a break of xor claw-freeness. (2) The first entries match on these lists. The
probability of this event can be also bounded by the birthday bound.

Hence inconsistencies among any two pairs of lists happen with small prob-
ability, and this shows that List� is also inconsistent with small probability.
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5 The Φ-RKCPA Security of EMπ[1, 1, 1]

The theorem established in the previous section does not encompass Φ⊕-RKA
security as this set is not xor claw-free. In this section, we investigate whether
an extra round of iteration can extend RKA security to the Φ⊕ set. For the
two-round EM constructions, up to relabelling, there are 5 simple key schedules:
[1, 1, 1], [1, 1, 2], [1, 2, 1], [1, 2, 2], and [1, 2, 3]. It is easy to see that offset-switching
attacks can be used to attack the Φ⊕-RKCPA security of all but the first of these.
In the following subsections we study the RKA security of the only remaining
construction, EMπ[1, 1, 1].

5.1 Weakening the Conditions

We start by following a similar proof strategy to that given for EMπ[1, 1] and
identify a set of restrictions which are strong enough to enable a security proof,
yet weak enough to encompass the Φ⊕ set. Starting from the CPA environment

π(i, x, σ), P2(P1(x ⊕ φπ(k)) ⊕ φπ(k)) ⊕ φπ(k) ,

we simulate the P2 oracle forgetfully and move to a setting with oracles

π(i, x, σ), $(P1(x ⊕ φπ(k)) ⊕ φπ(k)) ⊕ φπ(k) ≡ π(i, x, σ), $() .

This game can be also be reached from the ideal game π(i, x, σ), iE(φπ(k), x) via
an application of the RP/RF switching lemma [8] and the claw-freeness property
as in the analysis of EMπ[1, 1].

We now analyze the probability that the second environment simulates the
first one in an inconsistent way. We look at inconsistencies which arise due to
oracles being queried on the same inputs. The first place such an inconsistency
might arise is when A makes an explicit π query (2, a,+) that matches a query
made to $, i.e., P1(x ⊕ φπ(k)) ⊕ φπ(k) = a for some (φπ, x). Our first condition
below addresses this event; we give a slight strengthening of the condition as we
will be using it later on.

First-order output unpredictability. Let t ≥ 1. The advantage of an
adversary A against the first-order output unpredictability of an RKD set Φ
with access to t ideal permutations is defined via

Advoup1
Φ,t (A) := Pr[∃(i, σ, φπ, x, c) ∈ List s.t. Pσ

i (φπ(k) ⊕ x) ⊕ φπ(k) = c :List ←$ Aπ] .

Oracle π, the probability space, and List are defined analogously to the previous
definitions. Note that in the RKCPA setting we do not need to consider incon-
sistencies resulting from inputs to P−1

1 or P−1
2 arising through RKDec queries,

and only need to consider (i, σ) = (1,+) above.

Inconsistencies arising as a result of two RKEnc queries (this oracle places
queries to $) lead to the following modification of claw-freeness.
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First-order claw-freeness. Let t ≥ 1. The advantage of an adversary A
against the first-order claw-freeness of an RKD set Φ with access to t ideal
permutations is defined via

Advcf1
Φ,t(A) := Pr[∃ (i, σ, φπ

1 , x1, φ
π
2 , x2) ∈ List s.t.

Pσ
i (φπ

1 (k) ⊕ x1) ⊕ φπ
1 (k)=Pσ

i (φπ
2 (k) ⊕ x2) ⊕ φπ

2 (k) ∧ φπ
1 �= φπ

2 :List ←$Aπ] .

We now look at inconsistencies in the simulation due to a mismatch in an RKD
query to π and a query to $ made via the RKEnc oracle. Since only the second
function is forgetfully simulated, we require independence of queries for P2 only.
Once again, in the RKCPA setting, restricting the definition to (i, σ) = (1,+)
suffices.

First-order query independence. Let t ≥ 2. The advantage of an adversary
A against the first-order query independence of an RKD set Φ with access to t
ideal permutations is defined via

Advqi1
Φ,t(A) := Pr[∃(i, σ, φπ

1 , x1, φ
π
2 ) ∈ List : (2,Pσ

i (φπ
1 (k) ⊕ x1) ⊕ φπ

1 (k),±) ∈
∈ Qry[φπ

2 (k)]; List ←$ Aπ] ,

where, as before,

Qry[φπ(k)] := {(i, x, σ) : (i, x, σ) queried to π by φπ(k)} ,

Qry[kπ(k)] := Qry[φπ(k)] ∪ {(i, π(i, x, σ),−σ) : (i, x, σ) ∈ Qry[φπ(k)]} .

The new set of conditions identified above allow us to carry out a similar
proof strategy to that of Theorem 2 and establish the following result. (See the
full version [28] for the details of the proof.)

Theorem 3 (Φ-RKCPA security of EMπ[1, 1, 1]). Let Φ be an RKD set. Then
for any adversary A against the Φ-RKCPA security of EMπ[1, 1, 1] with parame-
ters as defined before there are B1a against OUP1, B1b against OUP, B2a against
QI1, B2b against XQI, B3 against CF1, and B4 against CF such that

Advrkcpa
EMπ [1,1,1],Φ,2(A) ≤ Advoup1

Φ,2 (B1a)+Advoup
Φ,2(B1b)+Advqi1

Φ,2(B2a)+Advxqi
Φ,2(B2b)

+ 2Advcf1
Φ,2(B3) + Advcf

Φ,2(B4) +
qem(q2 +

∑
φ qφ

2 )

2n − (q2 +
∑

φ qφ
2 )

+
2q2

em

2n
,

where B1a and B1b output lists of length q2qem, B2a and B2b lists of length q2
em,

B3 a list of length q2
em, and B4 a list of length at most q2

em.

5.2 Φ⊕-RKCPA Security

We show that the restrictions identified above are weak enough so that the offset
RKD set Φ⊕ can be shown to satisfy them. We start by showing that for oracle-
independent sets, Φ is output unpredictable and claw-free if and only if it is
first-order output unpredictable and first-order claw-free.
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Proposition 1 (OUP∧CF ⇐⇒ OUP1∧CF1). Let Φ be an oracle-independent
RKD set and let t ≥ 1. Then for any adversary A against the OUP (resp. CF)
game outputting a list of size � and placing qi permutation queries with index
i, there is an adversary B1 (resp. B2) outputting a list of size � (resp. �) and
placing qi + δ1i� (resp. qi) permutation queries with index i such that

Advoup
Φ,t(A) ≤ Advoup1

Φ,t (B1) and Advcf
Φ,t(A) ≤ Advcf1

Φ,t(B2) .

Moreover, for any adversary A against OUP1 with parameters as before, there
is an adversary B1 against OUP outputting a list of size � · qπ := � · ∑i qi, where
it places qi permutation queries with index i such that

Advoup1
Φ,t (A) ≤ Advoup

Φ,t(B1) +
�(qπ + 1)
2n − �

.

Finally, for any adversary A against CF1 with parameters as before, there are
adversaries B1 and B2, where B1 is as in the previous case, and B2 outputs a
list of size � and makes qi permutation queries with index i such that

Advcf1
Φ,t(A) ≤ Advoup

Φ,t(B1) + 2 · Advcf
Φ,t(B2) +

�

2n − �
+

�

2n − 2�
.

Bellare and Kohno [7] show that the RKD set Φ⊕ is output unpredictable
with advantage �/2n for any adversary outputting a list of size �, and claw-free
with advantage 0. The above proposition allow us to conclude that this set is
also first-order output unpredictable and first-order claw-free.

Corollary 1. Let t ≥ 1 and suppose Φ⊕ is defined with respect to a key space
of size 2n. Then for any A outputting a list of at most � ≤ 2n/4 and making at
most q1 queries to its P1 oracle,

Advoup1
Φ⊕,t(A) ≤ � · (q1 + 1)

2n−1
and Advcf1

Φ⊕,t(A) ≤ � · (q1 + 2)
2n−1

.

This corollary together with Theorem 3 allow us to establish that EMπ[1, 1, 1]
is Φ⊕-RKCPA secure.

Corollary 2. For any adversary A against the Φ⊕-RKCPA security of
EMπ[1, 1, 1] that makes at most qπ queries to its π oracle (of which qi are to
π(i, ·, ·)) and at most qem queries to its RKEnc oracle, with q2qem, q2

em ≤ 2n/4,
we have

Advrkcpa
EMπ[1,1,1],Φ⊕,2(A) ≤ qem(q2 + qem)(2q1 + 5)

2n
+

q2qem

2n − q2
.

We remark that via a direct analysis (but at the expense of modularity) the
cubic bound above can be tightened to a quadratic one.

Remark. The above results raises the question if the security proof can be
extended to the CCA setting. Adapting an attack due to Andreeva et al. [3] on
the indifferentiability of the two-round EM construction to the RKA setting, it
can be seen that EMπ[1, 1, 1] is Φ⊕-RKCCA insecure. Details are given in the full
version [28]. This attack also applies if P2 = P1.
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6 The Φ-RKCCA Security of EMπ[1, 1, 1, 1]

Building on the results of the previous sections, we set out to find a key schedule
for the iterated Even–Mansour construction that provides Φ⊕-RKCCA security.
Our previous results show that at least three rounds are necessary. We start by
showing that of the fourteen possible simple key schedules for three-round EM,
all but one fall prey to Φ⊕-RKCCA attacks. We then show that the remaining
EMπ[1, 1, 1, 1] construction does indeed provide Φ⊕-RKCCA security.

Up to relabeling, then there are 14 possible key schedules for the three-round
Even–Mansour schemes. Of these, 9 are susceptible to offset-switching attacks.
These are key schedules where a key appears only in the first or the last round
and nowhere else, e.g., [1, 2, 2, 2], [1, 2, 2, 3], or [1, 2, 2, 1]. This rules out 9 key
schedules. Another 4 can be attacked using Andreeva et al.’s attack [3]. These
are the [1, 1, 2, 1], [1, 2, 1, 1], [1, 1, 2, 2], and [1, 2, 1, 2] schedules. Details are given
in the full version of the paper [28].

These attacks give a generic 4-query related-key distinguisher for reduced-
round LED [32] (8 out of 32 rounds for LED-64 and 16 out of 48 for LED-128).
Our results lend support to the designers’ claim that LED provides good related-
key attack security in spite of the simple key schedule, even though they do not
apply directly to LED as the round functions are neither random permutations
nor independent.

We now show that EMπ[1, 1, 1, 1] achieves Φ-RKCCA security for sets Φ which
include, amongst others, the Φ⊕ set. As before, we motivate a number of restric-
tions on Φ by considering a simulation strategy and analyzing the inconsistencies
that could arise. The adversary in the Φ-RKCCA game with respect to the con-
struction has access to π and the oracles

P3(P2(P1(x ⊕ φπ(k)) ⊕ φπ(k)) ⊕ φπ(k)) ⊕ φπ(k) ,

P−1
1 (P−1

2 (P−1
3 (x ⊕ φπ(k)) ⊕ φπ(k)) ⊕ φπ(k)) ⊕ φπ(k) .

Once again we aim to simulate the above two oracles by returning uniformly
random values. There are at least two way to perform this:

(a) Simulate the outer permutations in RKEnc and RKDec forgetfully. That
is, the P3 oracle in RKEnc and the P−1

1 oracle in RKDec are forgetfully
implemented.

(b) Simulate the middle oracles P2 and P−1
2 forgetfully. This will ensure that the

inputs to P±
1 and P±

3 are randomized, and hence their outputs will be also
random.

The first approach, although in some sense the more natural one, does not
work. This is due to the fact that P1 (resp. P3) also appear as the first-round
permutation in RKEnc (resp. RKDec). An adversary which performs an offset
switch can trigger collisions in these oracles without being detected. We therefore
adapt the second simulation strategy and for forgetful oracle $ consider

P3($(P1(x ⊕ φπ(k)) ⊕ φπ(k)) ⊕ φπ(k)) ⊕ φπ(k) ,
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P−1
1 ($(P−1

3 (x ⊕ φπ(k)) ⊕ φπ(k)) ⊕ φπ(k)) ⊕ φπ(k) .

We now consider inconsistencies, starting with a query collision between π
(from a query of A) and $ arising from either the forward or backwards direction.
Here we rely on first-order output unpredictability, but note that (i, σ) = (1,+)
and (i, σ) = (3,−) will be critically relied on. Collisions arising between an RKD
query to π and a $ query in either direction can be ruled out down to first-order
query independence; once again (i, σ) ∈ {(1,+), (3,−)} will be used. Finally, the
probability that a collision occurs as a result of two queries to $ (due to forward
or backward queries) can be bounded by the first-order claw freeness property.
As before, inconsistencies also arise due to collisions between the outputs of
oracle queries; the probability of this occurring can be bounded information
theoretically. Note that here we also rely on independence of queries to the
second permutation, but both cases (i, σ) ∈ {(1,+), (3,−)} in the definition will
be used. We formally prove the following theorem in [28].

Theorem 4 (Φ-RKCCA Security of EMπ[1, 1, 1, 1]). Let Φ be an RKD set.
Then for any adversary A against the Φ-RKCPA security of EMπ[1, 1, 1, 1] with
parameters as before, we have adversaries B1, B2, B3, and B4 such that

Advrkcca
EMπ[1,1,1,1],Φ,3(A) ≤Advoup1

Φ,3 (B1) + Advxqi1
Φ,3 (B2) + 2Advcf1

Φ,3(B3)

+ Advcf
Φ,3(B4) +

2q2
em

2n
+

2qem(q2 +
∑

φ qφ
2 )

2n − (q2 +
∑

φ qφ
2 )

,

where B1 outputs a list of length 2q2qem, B2 a list of length 2q2
em, B3 a list of

length q2
em, and B4 a list of length at most q2

em.

Corollary 1 together with Theorem 4 allow us to establish that the three-
round single-key Even–Manour construction with independent round permuta-
tions is Φ⊕-RKCCA secure:

Corollary 3. For any adversary A against the Φ⊕-RKCCA security of
EMπ[1, 1, 1, 1] with parameters defined as before. Then

Advrkcca
EMπ[1,1,1,1],Φ⊕,3(A) ≤ 2qem(q2 + qem)(2q1 + 2q3 + 9)

2n
+

2qemq2

2n − q2
.

Once again, via a direct analysis (but at the expense of modularity) the cubic
bound above can be tightened to a quadratic one.

Acknowledgments. The authors would like to thank Martijn Stam for discussions
on the relation between indifferentiability and RKA security.
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