
Low-Overhead Detection of Memory Access
Patterns and Their Time Evolution

Harald Servat1,2(B), Germán Llort1,2, Juan González1, Judit Giménez1,2,
and Jesús Labarta1,2

1 Computer Sciences Department - Barcelona Supercomputing Center,
c/Jordi Girona 1-3, 08034 Barcelona, Catalunya, Spain

harald.servat@bsc.es
2 Computer Architecture Department - Universitat Politècnica de Catalunya,

c/Jordi Girona 31, 08034 Barcelona, Catalunya, Spain

Abstract. We present a performance analysis tool that reports the tem-
poral evolution of the memory access patterns of in-production applica-
tions in order to help analysts understand the accesses to the application
data structures. This information is captured using the Precise Event
Based Sampling (PEBS) mechanism from the recent Intel processors, and
it is correlated with the source code and the nature of the performance
bottlenecks if any. Consequently, this tool gives a complete approach to
allow analysts to unveil the application behavior better, and to lead them
to improvements while taking the most benefit from the system’s char-
acteristics. We apply the tool to two optimized parallel applications and
provide detailed insight of their memory access behavior, thus demon-
strating the usefulness of the tool.

Keywords: Performance analysis · Address sampling · Data-object
analysis · Sampling · Instrumentation

1 Introduction

The memory hierarchy is becoming more and more sophisticated as the proces-
sors evolve generation after generation. Its advances respond not only to address
the speed divergence between the processor and the memory outside the chip,
but also to reduce the energy dissipated by the data movement. Processor man-
ufacturers have typically organized the memory hierarchy in different strata to
exploit the temporal and spatial localities of reference. The memory hierarchy
ranges from the extremely fast but tiny and power-hungry registers to the slow
but huge and less energy-consuming DRAM, including multiple cache levels.
Still, some processor researchers and manufacturers are looking for opportuni-
ties to extend the memory hierarchy to improve the application execution in
terms of performance and energy. Their research consider additional integration
directions so that the memory hierarchy adds layers as scratchpad memories,
stacked 3D DRAM [12], and even non-volatile RAM [24].

c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 57–69, 2015.
DOI: 10.1007/978-3-662-48096-0 5

58 H. Servat et al.

When it comes to performance analysis, traditional performance analysis
tools (e.g. gprof [9], Scalasca [25], TAU [20], HPCToolkit [23] and Periscope [7])
have naturally associated performance metrics to syntactical application com-
ponents such as routines, loops, and even statements. Despite this association
has proven valuable and has helped understanding and improving applications,
the impact of the memory hierarchy makes necessary to explore the performance
from the data perspective, also. A study from this point of view includes, but it
is not limited to, unveil which application variables are referenced the most and
their access cost, detect memory streams to help prefetch mechanisms, calcu-
late reuse distances, and even identify the cache organization that may improve
the execution behavior. To this end, two mechanisms have emerged to address
this type of studies. On the one hand, there exists instruction-based instrumen-
tation that monitors load/store instructions and decodes them to capture the
referenced addresses. While this approach accurately correlates code statements
with data references, it imposes a severe expense, daunting the analysis with
large data collections and/or time-consuming analysis; thus not being practi-
cal for long in-production executions. On the other hand, several processors
have enhanced their Performance Monitoring Unit (PMU) to sample instruc-
tions based on a user specified period and associate them with data such as the
referenced address. These mechanisms help on delimiting the amount of data
captured and the overhead imposed. However, the results obtained are statis-
tical approximations that may require sufficiently long runs so that the results
approximate the actual distribution, yet highly volatile metrics may be missed.

The framework described in [18,19] addresses the latter issue and provides
accurate and instantaneous performance metrics even using coarse grain sam-
pling and minimal instrumentation. This framework smartly combines sampled
and instrumented data by taking benefit of the repetitiveness from the applica-
tions. In this paper, we extend this framework by incorporating the application
address space perspective to unveil the access patterns and the locality of refer-
ence to the application data structures. Such an extension relies on the address
sampling mechanisms offered by the PMU extension known as PEBS [4] and to
minimize the overhead we use large sampling periods. The result of this enhance-
ment is a framework that provides complete support to gain insight of the appli-
cation behavior, including the application syntactical level, its data structure
organization, and its memory hierarchy usage and achieved performance.

The organization of this paper is as follows: Sect. 2 contextualizes our mecha-
nism with respect to previous existing tools. Section 3 introduces the framework
used as the basis for our mechanism and the hardware support for the address
sampling. Then Sect. 4 describes the extension applied to the framework and
exemplifies its results. Section 5 explores the behavior of two applications to
demonstrate the usefulness of the resulting framework. Finally, Sect. 6 draws
some conclusions and discusses possible future research trends.

2 Related Work

This section describes earlier approaches related to performance analysis tools
that have focused to some extent on the analysis of data structures and the

Low-Overhead Detection of Memory Access Patterns 59

efficiency achieved while accessing to them. We divide this research into two
groups depending on the mechanism used to capture the addresses referenced
by the load/store instructions.

The first group includes tools that instrument the application instructions
to obtain the referenced addresses. MemSpy [13] is a prototype tool to profile
applications on a system simulator that introduces the notion of data-oriented, in
addition to code oriented, performance tuning. This tool instruments every mem-
ory reference from an application run and leverage the references to a memory
simulator that calculates statistics such as cache hits, cache misses, etc accord-
ing to a given cache organization. SLO [1] suggests for locality optimizations
by analyzing the application reuse paths to find the root causes of poor data
locality. This tool extends the GCC compiler to capture the application’s mem-
ory accesses, function calls, and loops in order to track data reuses, and then it
analyzes the reused paths to suggest code loop transformations. MACPO [17]
captures memory traces and computes metrics for the memory access behavior
of source-level data structures. The tool uses PerfExpert [3] to identify code
regions with memory-related inefficiencies, then employs the LLVM compiler to
instrument the memory references, and, finally, it calculates several reuse fac-
tors and the number of data streams in a loop nest. Tareador [22] is a tool
that estimates how much parallelism can be achieved in a task-based data-flow
programming model. The tool employs dynamic instrumentation to monitor the
memory accesses of delimited regions of code in order to determine whether they
can simultaneously run without data race conditions, and then it simulates the
application execution based on this outcome. Peña et al. have designed an emula-
tor based data-oriented profiling tool to analyze actual program executions in an
emulated system equipped with a DRAM-based memory system only [16]. They
also use dynamic instrumentation to monitor the memory references in order to
detect which memory structures are the most referenced. With this setup, they
estimate the CPU stall cycles incurred by the different memory objects to decide
their optimal object placement in heterogeneous memory system.

The second group consists of tools that take benefit of hardware mecha-
nisms to sample addresses referenced when processor counter overflows occur
and estimate the accesses weight from the sample count. The Sun ONE Stu-
dio analysis tool has been extended in [10] by incorporating memory system
behavior in the context of the application’s data space. This extension brings
the analyst independent and uncorrelated views that rank program counters and
data objects according to hardware counter metrics, as well as, shows metrics for
each element in data object structures. HPCToolkit has been recently extended
to support data-centric profiling of parallel programs [11]. In contrast to the pre-
vious tool, HPCToolkit provides a graphical user interface that presents data-
and code-centric metrics in a single panel, easing the correlation between the
two. Giménez et al. use PEBS to monitor load instructions that access addresses
within memory regions delimited by user-specified data objects and focusing on
those that surpass a given latency [8]. Then, they associate the memory behav-
ior with several semantic attributes, including the application context which is
shown through the MemAxes visualization tool.

60 H. Servat et al.

Our proposal belongs to the second group and its main difference from exist-
ing tools relies on the ability to report time-based memory access patterns, in
addition to source code profiles and performance bottlenecks. The inclusion of
the temporal analysis allows time-based studies such as detection of simultane-
ous memory streams, ordering accesses to the memory hierarchy, and even, code
reordering. This data is captured using two independent monitoring tools that
are configured to collect data sparsely. While one of the tools capture informa-
tion regarding the performance bottlenecks, their nature and their association
with the code; the other tool samples the references to the process address space.

3 Background

3.1 The Basic Framework

The framework described in [18,19] generates reports of the performance along
time for computing regions from trace-files containing instrumented and sampled
data. The computing regions can be manually delimited using instrumentation
or automatically detected by the framework after the execution based on their
performance characteristics. In the latter case, a computing region is defined as
the user code in between successive parallel programming calls (such as MPI or
OpenMP). These regions are automatically grouped according to their perfor-
mance metrics (typically number of instructions and instruction rate) through
a density-based clustering algorithm. Then, the framework applies a mechanism
named folding that combines coarse grain sampled and instrumented informa-
tion to provide detailed performance metrics within a computing region. In the
context of the folding process, the samples are gathered from the computing
into a synthetic region by preserving their relative time within their original
region so that the sampled information determines how the performance evolves
within the region. Consequently, the folded samples represent the progression in
shorter periods of time no matter the monitoring sampling frequency, and also,
the longer the runs the more samples get mapped into the synthetic instance.
The framework has shown mean differences up to 5 % when comparing results
obtained sampling frequencies that are two orders of magnitude more frequent
(50 × 103 cycles vs 106 cycles).

3.2 Capturing the Referenced Addresses

The Precision Event Based Sampling (PEBS), and similarly the Instruction
Based Sampling (IBS [5]), are respective extensions to the Intel’s and AMD’s
PMU component that allow monitoring instructions at a user-configurable sam-
pling period. These mechanisms periodically choose an instruction from those
that enter into the processor pipeline. Then, the selected instruction is tagged,
and it is monitored as it progresses through the pipeline while annotating any
event caused by the instruction. When the instruction completes, the processor
generates a record containing the instruction address, its associated events and

Low-Overhead Detection of Memory Access Patterns 61

the machine state (without time-stamp), and then the record is written into a
previously allocated buffer. Every time the buffer gets full, the processor invokes
an interrupt service routine provided by a profiler that collects the generated
records. Since instructions are reported at the retirement stage, these mecha-
nisms exclude contributions from speculative execution. For the particular case
of load instructions, PEBS collects data such as, but are not limited to: the
linear address1 referenced, the layer of the memory hierarchy that served the
reference, and how many cycles did it take to reach the processor. These mon-
itoring mechanisms report linear addresses from the process address space but
do not provide information with respect to the physical addresses, thus they do
not help understanding memory migrations.

4 Enhancement of the Framework

This section describes the integration of the sampled memory references into the
aforementioned framework to display the time evolution of the memory access
patterns in addition to other performance metrics. We also provide an example
on how to use the output of this framework by applying it to a slightly modified
version of a well-known benchmark.

4.1 Capturing Referenced Addresses

The first enhancement involves collecting the referenced addresses during the
application execution so that the framework can later display them in the report.
We use the Extrae2 instrumentation package to generate the input for the origi-
nal framework. Extrae uses PAPI [2] to capture hardware performance metrics,
but PAPI does not capture the PEBS generated information3. perf [15], on the
other hand, is a tool that uses the performance counters subsystem in Linux, and
since Linux kernel version 3.11 it benefits from PEBS or IBS to collect memory
references from either load or store instructions, but not both at the same time.
This tool allocates a 1-entry buffer to store the memory references and then
samples the application at a user defined period. Thus, each time the processor
reaches the period, it generates a memory reference record, and then perf cap-
tures this record and associates a time-stamp to it. This way, perf is capable of
generating timestamped trace-files containing sampled memory references even
though neither PEBS nor IBS capture a timestamp.

Our approach relies on combining the results of these two monitoring tools
when applied on an optimized application binary with debugging information
in the same run, as depicted in Fig. 1. In this context, perf collects a time-
stamped sequence of references while Extrae collects performance counters and
1 Linear addresses also refer to logical addresses in x86-64 architectures as segmenta-

tion is generally disabled thus creating a flat 64-bit space, according to Sects. 3.3.4
and 3.4.2.1 from Intel R©64 and IA-32 Architectures Software Developers Manual.

2 http://www.bsc.es/paraver - Last accessed June, 2015.
3 As of PAPI 5.4.0.

http://www.bsc.es/paraver

62 H. Servat et al.

Fig. 1. Combination of two monitoring tools to generate a single trace-file that includes
hardware counter performance metrics, call-stack references and data references.

call-stack references, and then a post-process combines them into a single trace-
file. Both tools must use the same timing source in order to correlate the data
captured. The perf tool uses low-level kernel timing routines and Extrae uses the
Posix compliant high precision clock routines by default. Thus, we have adopted
a kernel module that exposes the low-level timing routines4 to the user-space
applications, yet there are other possibilities to achieve this goal. After generating
the trace-file, we extend the folding mechanism to apply to the memory reference
samples and to collocate all the metrics (source code, memory references and
node-level performance [such as MIPS rate and L1D miss ratio per instruction])
in one report per region.

4.2 Associating Addresses with Data Structures

When exploring the address space, it is convenient to map the address space
to the application data structures in order to let the analyst match the gener-
ated results with the application code and also to explore their pattern access
type. For that reason, Extrae has been extended to capture the base address
and the size of the static variables, as well as, of the dynamically allocated vari-
ables. With respect to the static variables, the instrumentation package explores
the symbols within application binary image using the binutils library5 in order
to acquire their name, starting address and size. Regarding the dynamic vari-
ables, we instrument the malloc family related routines and capture their input
parameters and output results to determine the starting address and size. As
dynamically allocated variables do not have a name, the tool collects their allo-
cation call-stack reference to identify them. Since applications may contain lots of
variables, Extrae ignores those smaller than a specified threshold (that defaults
to 1 MiB). Finally, it is worth to mention that some languages (such as C and
C++) allow declaring local (stack) variables within code blocks that can only be
referenced by the inner block statements. While these references are captured by
the perf tool, Extrae cannot track their creation; so, their references may appear
on the resulting plot but do not have an associated variable name.

4 https://lkml.org/lkml/2013/3/14/523.
5 http://www.gnu.org/software/binutils. Last accessed June, 2015.

https://lkml.org/lkml/2013/3/14/523
http://www.gnu.org/software/binutils

Low-Overhead Detection of Memory Access Patterns 63

4.3 Practical Example

We have applied this framework to a modified version of the Stream bench-
mark [14] in order to show the usability of the described framework when explor-
ing the load references. Since Stream accesses to statically allocated variables
through ordered linear accesses, we have modified the code so that: (1) the c
array is no longer a static variable but allocated by malloc and (2) the scale
kernel loads data from pseudo-random indices from the c array. Due to mod-
ification (2), scale executes additional instructions and exposes lesser locality
of reference, thus we have reduced the loop trip count in this kernel to N/8 to
compensate its duration. The resulting code looks like:

for i := 1 to NITERS do ! main loop
for j := 1 to N do c[j] := a[j]; od ! Copy
for j := 1 to N/8 do b[j] := s ∗ c[random(j)]; od ! Scale
for j := 1 to N do c[j] := a[j] + b[j]; od ! Add
for j := 1 to N do a[j] := b[j] + s ∗ c[j]; od ! Triad

od

We have instrumented the loop body, compiled it using the GNU suite v4.8.1,
and then, we have monitored the execution of the resulting binary on an Intel
Core i7 2760QM running at 2.40 GHz and executing Linux 3.11. With respect
to the monitoring, the Extrae package has sampled the application at 20 Hz and
the perf tool has sampled the application every 250k load instructions, resulting
in an overhead below 5 %.

Fig. 2. Analysis of the modified Stream benchmark. Triple correlation time-lines for
the main iteration: source code, addresses referenced and performance.

Figure 2 shows the result of the extended framework. The Figure consists of
three plots: (1) source code references (top), (2) address space load references
(middle), and (3) performance metrics (bottom). In the source code profile each
color indicates the active routine (identified by a label of the form X >Y [n],
where Y and X refer to the active routine and its ancestor, and n indicates the
most observed line). Additionally, the purple dots represent a time-based pro-
file of the sampled code lines where the top (bottom) of the plot represents the
begin (end) of the container source file. This plot indicates that the applica-
tion progresses through four routines and that most of the activity observed of

64 H. Servat et al.

each of these routines occurs in a tiny amount of lines. The second plot shows
the address space. On this plot, the background color alternates showing the
space used by the variables (either static or dynamically allocated), and the left
and right Y-axes show the name of the variables referenced and the address
space, respectively. The dots show a time-based profile of the addresses refer-
enced through load instructions and their color indicate the time to solve the
reference based on a gradient that ranges from green to blue referring to low
and high values, respectively. We want to outline several phenomena observed
in this plot. First, as expected, the access pattern in the Scale routine to the
variable allocated in line 181 of the file stream.c (formerly c) shows a random-
ized access pattern with most of the references in blue (meaning high latency).
The straight lines formed by the references in the rest of the routines denote
that they progressively advance and thus expose spatial locality, and also the
greenish color indicates that these references take less time to be served. Second,
the Copy routine accesses to the array a downwards despite the loop is written
so that the loop index goes upwards. This effect occurs because the compiler
has replaced the loop by a call to memcpy (from glibc 2.14) that reverses the
loop traversal, unrolls the loop body and uses SSSE3 vector instructions. A lin-
ear regression analysis indicates that approximately each instruction references
five addresses in Copy and since SSSE3 vector instructions may load up to 16
bytes, this translates into a 31.25 % vector efficiency. Finally, the instructions
within routines Add and Triad reference two addresses per variable in average,
the loaded data comes from two independent variables (or streams) simultane-
ously, and their accesses go from low to high addresses honoring the code. The
third plot shows the achieved instruction rate (referenced on the right Y-axis)
within the instrumented region, as well as, the L1D, L2D and LLC cache misses
per instruction (on the left Y-axis). While we would expect a large cache miss
ratio per instruction in Scale, we observe that they behave similarly to the rest
of the kernel routines. This occurs because random() executes instructions to
compute its results without accessing to the memory, thus reducing the cache
miss ratio per instruction.

5 Usage Examples

We have applied the extended framework to two parallel applications to demon-
strate its usefulness. Table 1 provides details of the application, execution and
monitoring characteristics. With respect to the systems, we have used a Core i7
system that includes the kernel module that allows the two monitoring mecha-
nisms use the same clock source. Since the system only has four cores and we
do not want to overload the system, we have used an additional Xeon system
to execute the remaining processes that do not fit on the former machine. The
Core i7 system has three levels of cache with a line size of 64 bytes: level 1 are
two 8-way 32 KiB caches for instructions and data, level 2 consists of a 8-way
unified 256 KiB cache, and level 3 is a 12-way unified 6,144 KiB cache.

Regarding the applications, each has been executed twice: the first execution
captures information regarding the load references, while the second run collects

Low-Overhead Detection of Memory Access Patterns 65

Table 1. Applications analyzed.

CGPOP BigDFT 1.7.5.13

Processes 24 21

Processor type
Intel Core i7-2760QM @ 2.40 GHz

Processor type
Intel Xeon E5-2620v2 @ 2.10 GHz (max: 2.60 GHz)

Application size
6 Klines 496 Klines

Application size
20 files 769 files

Compiler GNU compiler suite 4.8.1
Compiler flags -O3 -g -O2 -g
MPI implementation OpenMPI v1.6.5
Sampling period 20 ms
Data sampling period 106 load, store instructions

store references. The resulting plots are shown side-by-side for comparison pur-
poses. Regarding the collecting, Extrae has been used to monitor MPI activity
and it has sampled using a period coarser than the gprof sampling frequency (10
vs 20 ms). perf has been instructed to sample memory references every 106 load
(or store) instructions. These coarse grain sampling frequencies ensured that the
applications suffered a time dilation below 5 %.

Fig. 3. Analysis of CGPOP mini-application.

5.1 CGPOP

CGPOP [21] is a proxy application of the Parallel Ocean Program application.
POP is a three-dimensional ocean circulation model designed primarily for study-
ing the ocean climate system and it is a component within the Community Earth
System Model. Figure 3 shows the obtained plots depicting the load and store
references for the most time-consuming region of this execution. Note that both
plots have its own address space depending on the accessed variables and that

66 H. Servat et al.

the store memory references are shown in green because in this architecture the
store instructions are inserted into a store buffer and these instructions are no
longer under control of PEBS thus not having latency information for them. The
Figure indicates that the region faces two routines: pcg chrongear linear (in
red) and matvec (from the matrix module, in green), but we have also manu-
ally added labels (A-D) in the plot to ease the referencing. The latter routine
takes most of the execution time within the region and also achieves the highest
MIPS rate (above 5,000 MIPS). With respect to the load instructions within the
data structures, we observe that phase C accesses to variables z and a (from
the matrix module). The plot shows that the load references to variable a are
partitioned into three disjoint portions that are accessed linear and simultane-
ously by the processor. The analysis of the source code shows that this variable
represents a sparse row matrix that includes three arrays (one for double pre-
cision values and two for integer indices). When analyzing phase A, we observe
that references require more time to be served (blue colored) and this is also
related to the highest ratio of cache misses (1 out of every 14 instructions miss
at L1D). The code in this phase loads data from six arrays (x linear, s, r,
z, q and az) and stores data to four arrays (x linear, s, r and q). We have
tested whether the code using an array of structures (AoS) improves the perfor-
mance; however, our results indicate that using AoS does not offer performance
improvements because the LLC miss ratio, as well as, the number of instructions
doubles. With respect to the stores, we observe several effects: phase B gener-
ates the data for the array z and it is used immediately after in phase C, the a
variable keeps unchanged during this region, and phase D does not expose stores
because it reduces a vector into a scalar (sumN2).

5.2 BigDFT

BigDFT [6] is a massively parallel code based on density functional theories. Our
analysis focuses on a computing region that corresponds to approximately 16 %

Fig. 4. Analysis of BigDFT.

Low-Overhead Detection of Memory Access Patterns 67

of the total execution time, and Fig. 4 shows the outcome of the extended frame-
work for this region. The results indicate that the region consists of two iterations
at all levels (source code, references, and performance). We have added labels to
identify the iterations, as well as, the phases (routines) within the iterations (A-
F). The first thing we notice is that load references expose better spatial locality
than the store references, and that phase E shows a random access behavior in
the load references and these references take more time to be served. We also
outline that phase A traverses completely the array allocated in plotting.f90
(line 1,008) to store values on it, and that happens immediately after executing
the razero routine (depicted in green) which may be redundant because there
aren’t loads in between.

This report also shows some insights on the chances of making this region
parallel using a task-based programming model. For instance, phases B and D
store data in the data allocated in daubis.f90 (line 1,118) and this data is used
in phases C and E, begetting true (RAW) dependencies between these pair of
phases. Also, phases B and D load and store data from the region allocated in
daubis.f90 (line 1,119) causing true (RAW) and output (WAW) dependencies
between these phases. Finally, phase F mainly depends on the data located by
plotting.f90 (line 1,008) which is written by phases C and E. Due to the
described dependencies, only phases A and B might safely run in parallel.

6 Conclusions and Future Work

We have presented an extension to a framework that displays the memory access
patterns of computing regions and their time evolution along the source code and
the performance behavior. This extension relies on the ability of recent hardware
mechanisms available in current processors to sample instructions based on a
user-defined period and attributes to each sample several performance metrics,
including the addresses referenced. This enhanced framework has proven valuable
to give detailed insight regarding several optimized application binaries, such as
detecting the most dominant data streams and their temporal evolution along
computing regions. For instance, we have seen that the compiler has replaced the
source code by a call in Stream, that CGPOP accesses multiple memory streams
simultaneously, and that there may exist redundant work in BigDFT. All this
information has been captured using minimal instrumentation and coarse grain
sampling periods, thus keeping a low expense during the measurement.

We believe that there are research opportunities using these hardware mem-
ory sampling techniques. For instance, we consider using the outcome of this
extended framework to capture the store access patterns and then search for
those variables that are not used shortly. The access to these variables may ben-
efit from non-temporal instructions because these instructions do not write data
into the cache hierarchy, nor fetches the corresponding line; thus not polluting
the cache hierarchy. Another direction would include studying data dependencies
for porting an application to a task-based data-flow programming model using
partial data. Finally, it would be valuable to extend the memory monitoring
mechanism to multiplex in order to capture load and store references in one run.

68 H. Servat et al.

Acknowledgments. We would like to thank Damien Caliste and Luigi Genovese
for their insightful comments on BigDFT. We thankfully acknowledge the support
of the Comisión Interministerial de Ciencia y Tecnoloǵıa (CICYT) under contract
No. TIN2012-34557 which has partially funded this work.

References

1. Beyls, K., D’Hollander, E.H.: Refactoring for data locality. IEEE Comput. 42(2),
62–71 (2009). http://dx.doi.org/10.1109/MC.2009.57

2. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming
interface for performance evaluation on modern processors. Int. J. High Perform.
Comput. Appl. 14(3), 189–204 (2000). http://icl.cs.utk.edu/papi

3. Burtscher, M., et al.: PerfExpert: an easy-to-use performance diagnosis tool for
HPC applications. In: Conference on High Performance Computing Networking,
Storage and Analysis, pp. 1–11 (2010). http://dx.doi.org/10.1109/SC.2010.41

4. Corporation, I.: Intel 64 and IA-32 architectures software developer’s manual. Vol-
ume 3B: System Programming Guide, Part 2, January 2015

5. Drongowski, P., et al.: Incorporating instruction-based sampling into AMD Code-
Analyst. In: Performance Analysis of Systems Software, pp. 119–120 (2010)

6. Genovese, L., Neelov, A., Goedecker, S., Deutsch, T., Ghasemi, S.A., Willand, A.,
Caliste, D., Zilberberg, O., Rayson, M., Bergman, A., Schneider, R.: Daubechies
wavelets as a basis set for density functional pseudopotential calculations. J. Chem.
Phys. 129(1), 014109 (2008)

7. Gerndt, M., Fürlinger, K., Kereku, E.: Periscope: advanced techniques for perfor-
mance analysis. In: PARCO, pp. 15–26 (2005)

8. Giménez, A., et al.: Dissecting on-node memory access performance: a semantic
approach. In: International Conference for High Performance Computing, Network-
ing, Storage and Analysis, vol. 2014, pp. 166–176 (2014)

9. Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: a call graph execution profiler.
In: SIGPLAN 1982: Proceedings of the 1982 SIGPLAN Symposium on Compiler
Construction, pp. 120–126 (1982). http://doi.acm.org/10.1145/800230.806987

10. Itzkowitz, M., et al.: Memory profiling using hardware counters. In: SC 2003: Pro-
ceedings of the 2003 ACM/IEEE Conference on Supercomputing, p. 17 (2003)

11. Liu, X., Mellor-Crummey, J.M.: A data-centric profiler for parallel programs. In:
International Conference for High Performance Computing, Networking, Stor-
age and Analysis, SC 2013, pp. 28:1–28:12 (2013). http://doi.acm.org/10.1145/
2503210.2503297

12. Loh, G.H.: 3D-stacked memory architectures for multi-core processors. In: 35th
International Symposium on Computer Architecture, pp. 453–464 (2008). http://
dx.doi.org/10.1109/ISCA.2008.15

13. Martonosi, M., Gupta, A., Anderson, T.E.: MemSpy: analyzing memory system
bottlenecks in programs. In: SIGMETRICS, pp. 1–12 (1992). http://doi.acm.org/
10.1145/133057.133079

14. McCalpin, J.D.: Memory bandwidth and machine balance in current high perfor-
mance computers. In: IEEE Computer Society Technical Committee on Computer
Architecture Newsletter, pp. 19–25 (1995)

15. de Melo, A.C.: The new linux “perf” tools. In: Linux Kongress (2010)
16. Peña, A.J., Balaji, P.: Toward the efficient use of multiple explicitly managed mem-

ory subsystems. In: 2014 IEEE International Conference on Cluster Computing,
pp. 123–131 (2014)

http://dx.doi.org/10.1109/MC.2009.57
http://icl.cs.utk.edu/pap
http://dx.doi.org/10.1109/SC.2010.41
http://doi.acm.org/10.1145/800230.806987
http://doi.acm.org/10.1145/2503210.2503297
http://doi.acm.org/10.1145/2503210.2503297
http://dx.doi.org/10.1109/ISCA.2008.15
http://dx.doi.org/10.1109/ISCA.2008.15
http://doi.acm.org/10.1145/133057.133079
http://doi.acm.org/10.1145/133057.133079

Low-Overhead Detection of Memory Access Patterns 69

17. Rane, A., Browne, J.: Enhancing performance optimization of multicore chips and
multichip nodes with data structure metrics. In: International Conference on Par-
allel Architectures and Compilation Techniques, pp. 147–156 (2012). http://doi.
acm.org/10.1145/2370816.2370838

18. Servat, H., et al.: Unveiling internal evolution of parallel application computation
phases. In: ICPP, pp. 155–164 (2011)

19. Servat, H., et al.: Bio-inspired call-stack reconstruction for performance analysis.
Technical report, UPC-DAC-RR-2014-20, Department of Computer Architecture,
Universitat Politècnica de Catalunya (2014)

20. Shende, S.S., Malony, A.D.: The TAU parallel performance system. Int. J. High
Perform. Comput. Appl. 20(2), 287–311 (2006)

21. Stone, A., Dennis, J., Strout, M.M.: The CGPOP miniapp, version 1.0. Technical
report, CS-11-103, Colorado State University (2011)

22. Subotic, V., Ferrer, R., Sancho, J.C., Labarta, J., Valero, M.: Quantifying the
potential task-based dataflow parallelism in MPI applications. In: Jeannot, E.,
Namyst, R., Roman, J. (eds.) Euro-Par 2011, Part I. LNCS, vol. 6852, pp. 39–51.
Springer, Heidelberg (2011)

23. Tallent, N., et al.: HPCToolkit: performance tools for scientific computing. J. Phys.:
Conf. Ser. 125(1), 012088 (2008)

24. Wang, C., et al.: NVMalloc: exposing an aggregate SSD store as a memory partition
in extreme-scale machines. In: 26th IEEE International Parallel and Distributed
Processing Symposium, pp. 957–968 (2012)

25. Wolf, F., et al.: Usage of the SCALASCA for scalable performance analysis of
large-scale parallel applications. In: Tools for High Performance Computing, pp.
157–167 (2008)

http://doi.acm.org/10.1145/2370816.2370838
http://doi.acm.org/10.1145/2370816.2370838

	Low-Overhead Detection of Memory Access Patterns and Their Time Evolution
	1 Introduction
	2 Related Work
	3 Background
	3.1 The Basic Framework
	3.2 Capturing the Referenced Addresses

	4 Enhancement of the Framework
	4.1 Capturing Referenced Addresses
	4.2 Associating Addresses with Data Structures
	4.3 Practical Example

	5 Usage Examples
	5.1 CGPOP
	5.2 BigDFT

	6 Conclusions and Future Work
	References

