
Parallelization of an Advection-Diffusion
Problem Arising in Edge Plasma Physics

Using Hybrid MPI/OpenMP Programming

Matthieu Kuhn1(B), Guillaume Latu2, Nicolas Crouseilles3,
and Stéphane Genaud1

1 ICube, University of Strasbourg, Strasbourg, France
matthieu.kuhn@inria.fr

2 CEA, IRFM, 13108 Saint-Paul-lez-Durance, France
3 INRIA Rennes, IPSO Project and IRMAR, University of Rennes 1, Rennes, France

Abstract. This work presents a hybrid MPI/OpenMP parallelization
strategy for an advection-diffusion problem, arising in a scientific appli-
cation simulating tokamak’s edge plasma physics. This problem is the
hotspot of the system of equations numerically solved by the applica-
tion. As this part of the code is memory-bandwidth limited, we show
the benefit of a parallel approach that increases the aggregated memory
bandwidth in using multiple computing nodes. In addition, we designed
some algorithms to limit the additional cost, induced by the needed extra
inter nodal communications. The proposed solution allows to achieve
good scalings on several nodes and to observe 70 % of relative efficiency
on 512 cores. Also, the hybrid parallelization allows to consider larger
domain sizes, unreachable on a single computing node.

Keywords: Hybrid MPI/OpenMP · Advection-Diffusion · Plasma
physics

1 Introduction

In this work, we present a hybrid MPI/OpenMP parallelization strategy for an
advection-diffusion problem, arising in a scientific application simulating toka-
mak’s edge plasma physics called Emedge3D. In a previous work (see [6]), we pre-
sented parallelization using OpenMP, but also several optimizations for a shared
memory architecture. Enhancing this previous version is needed because of the
memory-bound aspect of the application. Some optimizations were described that
improved data access patterns, leading to better data locality. Even if one part of
the code was successfully optimized with techniques such as loop tiling, the most
consuming part of the code still suffered from a lack of performance on a 64-cores
shared memory node. However, results were satisfying for a smaller node of 12
cores (bi-socket Intel X5675 @ 3.06 GHz).

M. Kuhn—Currently at INRIA Bordeaux Sud Ouest, HiePACS Project.

c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 545–557, 2015.
DOI: 10.1007/978-3-662-48096-0 42



546 M. Kuhn et al.

Hence, we propose here to add a level of parallelism. To do so, we com-
bine the OpenMP paradigm to the MPI standard to target distributed memory
architectures. But, to achieve good efficiency, we show that several invasive mod-
ifications of the code have to be implemented. For example, considering 1D× 1D
FFT versus 2D FFT routines divides the communication volume by a factor 2.
Therefore, we consider in this paper an advection-diffusion equation. Even if it
is a reduced problem compared to the model used in Emedge3D, the Poisson
bracket (advection part) and the diffusion part (which is anisotropic) are the
most challenging and time consuming ones in Emedge3D.

In this paper, we consider the unknown temperature T = T (t, x, y, z), the
operator ∇·(A∇.) (where ∇ = (∂x, ∂y, ∂z)), and A a 3×3 matrix to be explicited.
This operator is coupled with an advection operator {φ, .} = ∂xφ∂y. − ∂yφ∂x.,
also called Poisson bracket. We consider the equation

∂tT + {φ, T} = ∇ · (A∇T ), x, y, z ∈ [−1, 1], t ≥ 0, (1)

with periodic boundary conditions along y, z, Dirichlet boundary condition
along x (classical in tokamak geometry) and φ the electric potential, assumed to
be given here.

In the following, we first describe the advection-diffusion problem addressed
in this work while providing the related work. Then, we present the numerical
methods and our validation test case. After that, we detail the proposed parallel
solutions to solve the advection-diffusion equation. Lastly, we give a performance
analysis of the best known solution.

2 The Advection-Diffusion Problem

Advection-diffusion problems are widely used in physics models (see [2,7]). Their
numerical approximation often requires recent techniques (see [11] for example).
However, most of the time, the diffusion operator is restricted to a 3D Laplacian,
whereas several relevant applications requires an anisotropic diffusion.

The problem considered here is 3D in space and time-dependant. The advec-
tion part is 2D, in the plane (x, y), and consists in a Poisson bracket. The same
operator can be found in Emedge3D’s model (see [2]). For the diffusion part, the
diffusion matrix A depends only on the spatial dimension x, corresponding to
the radial direction in the SLAB geometry of Emedge3D.

As in Emedge3D, two kinds of discretization are considered to approximate
spatial operators. First, a semi-spectral representation of 3D unknown is used
to compute the diffusion part, in which y and z directions are expressed in the
Fourier basis, and x in the real basis. Second, a representation in the full real
space for the 3 directions is employed to compute the Poisson bracket. This kind
of discretization is often encountered in nuclear fusion codes. As an illustration,
we can cite GKV and GENE (see [8] and [4]), and also XTOR and JOREK
(see [7] and [5]). These codes also try to take benefits of parallelization on both
shared and distributed memory systems.



Parallelization of an Advection-Diffusion Problem 547

In Emedge3D, the execution time of a simulation is mostly driven by the
pressure equation (see [2,3,9]), which is similar to Eq. (1). The next section aims
to describe the numerical methods employed to solve the advection-diffusion
problem given by the following equation:

∂tT + {φ, T} = ∇ · (Ax∇T )with Ax =

⎛
⎝

a(x) 0 0
0 b(x) d(x)
0 d(x) c(x)

⎞
⎠ . (2)

3 Numerical Methods and Test Case

3.1 Spatial Discretization

This part deals with the spatial discretization used in the code. It presents first
the numerical method to compute the advection and then the spatial scheme to
solve the diffusion. These methods are extracted from Emedge3D.

The advection term is computed in the physical space (and not in semi-
spectral representation) with a finite difference method. Indeed, when the Pois-
son bracket operator is explicited in semi-spectral representation, it leads to a
convolution which has a quadratic computational complexity Θ(n2) (assuming
n=Ny Nz). This is why the discretization has to change by using FFT. Hence, it
results in a more desirable linearithmic computational complexity Θ(n log(n)).
This method is commonly used on nonlinear terms in case of a semi-spectral
discretization (see [10]). An Arakawa scheme of order 2 (see [1]) is employed to
compute this Poisson Bracket. This numerical method is often considered in the
plasma physics community because of its robustness and conservation proper-
ties. This discretization induces the computation of a 2D stencil in the plane
(x, y), the dimension z acts as a parameter. This spatial scheme has already
been studied in one of our former work (see [6]).

The diffusion operator is characterized by the diffusion matrix Ax given
by (2). As it only depends on the radial dimension x, it can be easily writ-
ten in the semi-spectral form. Hence, the unknown T is expressed in the Fourier
basis in the y and z directions. This implies manipulation of quantities of the
form:

T̂i,m,n := T̂ (xi,m, n) =
∫

R

∫

R

T (xi, y, z)exp(−i(my + nz))dy dz,

where xi stands for the grid points in the radial direction and (m,n) the Fourier
mode. The diffusion operator is solved with a classical finite volume method of
order 2 in the x direction, and spectral method in y and z directions:

∇ · (Ax∇T̂ )|i,m,n = a(xi+1/2)
T̂i+1,m,n − T̂i,m,n

Δx2
− a(xi−1/2)

T̂i,m,n − T̂i−1,m,n

Δx2

− (b(xi)m2 + c(xi)n2 + 2d(xi)mn)T̂i,m,n,

where Δx denotes the spatial step in the direction x and xi±1/2 = xi ± Δx/2.



548 M. Kuhn et al.

3.2 Temporal Discretization

The implemented time integration scheme uses an operator splitting between
advection and diffusion terms. It is due to the different spatial discretizations
employed to solve these operators. We denote by T k = T (tk, x, y, z) the solu-
tion at time tk = kΔt in the direct representation, with Δt the time step; and
T̂ k = T̂ (tk, x,m, n) in the semi-spectral representation, where m (respectively
n) stands for the mode number in the poloidal (respectively toroidal) direction.
Hence, we first consider the advection ∂tT + {φ, T} = 0, that we decide to solve
with a classical (explicit) Euler method T ∗ = T k + Δt

{
φ, T k

}
.

The second step consists in solving the diffusion part ∂tT̂ = ∇ · (Ax∇T̂ ).
Recall the diffusion is solved in the semi-spectral space. Hence, the temporal
scheme associated with the diffusion part is also applied in this representation.
The Euler method to solve this part writes: T̂ k+1 = T̂ ∗ + Δt∇ · (Ax∇T̂ ∗).

Notice this scheme is referred as the Lie splitting, which is of first order.
It can be upgraded to higher orders by using Strang splitting method. Also, as
it is an explicit method, a stability condition is imposed on the value of Δt. The
more restrictive stability condition comes from the diffusion operator. To bypass
this limitation, it is possible to implement implicit or (well chosen) semi-implicit
method (see [11] for example).

3.3 Analytical Test Case

This part gives a three dimensional analytical test case used to validate the
numerical methods presented earlier and the parallelization implementations.
The technique employed to construct our test case is called the Method of Man-
ufactured Solution (MMS). The equation to solve is:

∂tT + {φ, T} = ∇ · (Ax∇T ) + f, (3)

where φ=φ(x, y)=cos(πx) cos(πy) and f =f(t, x, y, z) is a given source function
added to perform the MMS. The solution we choose to reach for this test case
writes:

T (t, x, y) = 1 + sin(πx) sin(πy) sin(πz)e−t, (4)

where x, y, z ∈ [−1, 1], t ≥ 0. For the matrix Ax, we consider the functions:

a(x) = (2 + sin(πx)), b(x) = (2 + sin(πx))2,

c(x) = (2 + cos(πx))2, d(x) = (2 + sin(πx))(2 + cos(πx)).

Then, (4) is an analytical solution of (3) with the computed source term:

f(t, x, y, z) = −(T − 1) + ∂xφ∂xT − ∂yφ∂yT + b(x)π2(T − 1) + c(x)π2(T − 1)
− a′(x)∂xT − a(x)∂2

xT − 2d(x)∂2
y,zT.



Parallelization of an Advection-Diffusion Problem 549

4 Parallelization MPI/OpenMP

In this section, we first introduce the sequential algorithm description. Then,
we explore the parallelization potential in the case of a distributed memory
architecture. To finish, we present the OpenMP and the hybrid MPI/OpenMP
parallelization of the code.

4.1 Sequential Algorithm

This part details the organization of the time loop in our simulation code, given
by Algorithm 1. The algorithm for the advection-diffusion can be decomposed
into 4 parts: the advection, the diffusion, the Fourier transforms and the trans-
positions of data in memory. In order to perform one temporal iteration, two
arrays are used: T1[Nz, Ny, Nx] to store the value of the time evolutive temper-
ature and T2[Nz, Ny, Nx] to store temporary results. In both arrays, data are
in semi-spectral data representation. Here, the notation T1[z, y, x] refers to the
value stored at position z ∗ (Ny ∗ Nx) + y ∗ (Nx) + x, with Nd the number of
points in direction d. As the advection source term fadv and the diffusion one
fdiff are known analytically, they are computed on the fly.

Discretization changes (real to semi-spectral and inverse) are encapsulated
into the diffusion step. Hence, the diffusion step divides into three parts, detailed
in Algorithms 2 and 3. Algorithm 2 consists in Fourier transforms in forward
direction (from R to C) in dimension y. In this Algorithm, buffery[∗] and
buffer2y[∗] are buffers of size Ny, used to store (z, y = ∗, x) slices contiguously
into the memory. This improves the temporal locality. The ∗ notation denotes
an operation along all the points of the given dimension. Endly, notation T̂
means that data are in semi-spectral representation (T̂ ∈ C). Notice that stor-
age dimensions order changes between input and output, going from [z, y, x] to
[y, z, x]. We compute this on the fly because the diffusion step and the FFT in
z direction are in a same external loop on y.

Algorithm 3 details Fourier transforms in z direction and the diffusion com-
putations. Here, the storage location bufferz[∗] is an array of size Nz, used to

Algorithm 1. One time loop iteration
Input: T1 = T (tn)

Algorithm:

T2 ← ∇ · (Ax∇T1) : Diffusion
T1 ← T1 + ΔtT2 : Euler scheme
T1 ← T1 + Δtfn

diff : Diffusion source
T2 ← {φ, T1} : Advection operator
T1 ← T1 − ΔtT2 : Euler scheme
T1 ← T1 + Δtfn

adv : Advection source

Output : T1 = T (tn+1)

Algorithm 2. FFT forward y

Input: T1[z, y, x] = Tn

Algorithm:

for all z do
for all x do

buffery[∗] ← T1[z, ∗, x]
buffer2y[∗] ← FFT(buffery[∗])
T̂1[∗, z, x] ← buffer2y[∗]

end for
end for

Output : T̂1[y, z, x] = T̂n



550 M. Kuhn et al.

temporarily store Fourier representation along z direction. Notice that these
FFT are also applied in-place, in order to maximize temporal locality on the
buffer. Buffers inxz[x, ∗] and outxz[x, ∗] aim to store 2D (x, z) slices, inxz[x, ∗]
for the input of the diffusion computation and outxz[x, ∗] for the output.

The backward Fourier transform on y dimension (from C to R) is very similar
to Algorithm 2 and is not presented here.

4.2 Parallelization Potential

For simplicity (implementation, readability and maintenance of the code done
by the physicists), we choose to consider algorithms which do not need ghost
cells between MPI processes.

The advection is solved in the direct representation (real space) of the
unknown. It consists in a 2D stencil on variables x, y. The third direction z
acts as a parameter here, and so it is a good candidate as parallelization axis.
The diffusion part is solved in the semi-spectral representation of the unknown.
It consists of a stencil in the x direction. Hence, it allows easier parallelization
along y or z axes.

Between the two last operators, it seems natural to change the domain decom-
position: arrays are parallelized with MPI along z for the advection and along y
for the diffusion part. Moreover, another distribution change occurs at the same
time to switch from semi-spectral to full real representation. It is computed via
Discrete Fourier Transforms (DFT), with the FFTW3 library. These FFT act on
the plane (y, z), corresponding to toroidal and poloidal directions of the tokamak
geometry.

Table 1. Parallelization potential on distributed memory architectures. Dependencies
include read statements (ghost cells not considered).

Step Axe Dependencies at (i, j, k) Parallelization considered

Advection x i − 1, i, i + 1 no

y j − 1, j, j + 1 no

z k yes

Diffusion x i − 1, i, i + 1 no

y j yes

z k yes

FFT 1D y x i yes

y j = ∗ no

z k yes

FFT 1D z x i yes

y j yes

z k = ∗ no



Parallelization of an Advection-Diffusion Problem 551

Instead of computing the FFT with the 2D functions proposed by the FFTW3
library (as in the Emedge3D code), we decide to compute FFT dimension by
dimension (using 1D functions). It presents 3 major advantages:

– it operates on smaller data volumes, allowing more benefit from cache effects,
– it permits a larger set of possibilities for the parallelization on distributed

memory architecture, as we will see afterwards,
– it does not imply a loss of performance in the sequential case (even if an

additionnal transposition is needed). In particular, it allows to reuse data
loads between FFT 1D and other parts of the algorithm.

Finally, as parallelization axes change between the different parts of the code,
it remains to perform transpositions and redistributions of data, in order to have
needed data locally on the computation node. These transpositions will depend
on the chosen algorithm, and in particular on the way FFT are computed. Table 1
gives a summary of the last exposed parallelization possibilities.

4.3 OpenMP Parallel Version

Hereafter, an OpenMP parallel solution is introduced. Typically, the code con-
sists in applying spatial operators compounded of loop nests of depth 3 (one

Algorithm 3. FFT±1 z direction and
diffusion
Input: T̂ [y, z, x] = T̂n

Algorithm:

for all y do
for all x do

bufferz[∗] ← T̂ [y, ∗, x]
bufferz[∗] ← FFT(bufferz[∗])
inxz[x, ∗] ← bufferz[∗]

end for
for all x do

outxz[x, ∗] ← inxz[x, ∗] + Δt∇ ·
(Ax∇inxz[x, ∗])

end for
for all x do

bufferz[∗] ← outxz[x, ∗]
bufferz[∗] ← FFT−1(bufferz[∗])
T̂ [y, ∗, x] ← bufferz[∗]

end for
end for

Output : T̂ [y, z, x] = T̂n +Δt∇· (Ax∇T̂n)

Algorithm 4. Comms, FFT±1 z direc-
tion and diffusion
Input: Z dist[y, z, x] = T̂ (tn)
Algorithm:

pid ← current process rank
for all y local to process pid do

commzy: Y dist[y,*,*] ← Z dist[y,*,*]
for all x do

bufferz[∗] ← Y dist[y, ∗, x]
bufferz[∗] ← FFT(bufferz[∗])
inxz[x, ∗] ← bufferz[∗]

end for
for all x do

outxz[x, ∗] ← inxz[x, ∗] + Δt∇ ·
(Ax∇inxz[x, ∗])

end for
for all x do

bufferz[∗] ← outxz[x, ∗]
bufferz[∗] ← FFT−1(bufferz[∗])
Y dist[y, ∗, x] ← bufferz[∗]

end for
commyz: Z dist[y,*,*] ← Y dist[y,*,*]

end for

Output : Z dist[y, z, x] = T̂ (tn) + Δt∇ ·
(Ax∇T̂ (tn))



552 M. Kuhn et al.

for each spatial dimension). The parallelization strategy resides in distributing
the outermost loops. The clause collapse(2) is used in order to combine itera-
tions of two successive loops. All steps are parallelized with OpenMP. Regarding
the advection and the computations of the source terms, arrays are stored in
order z, y and x (C-like notation). Parallelization occurs on z and y dimensions.
Concerning the diffusion part, the FFT in y direction are parallelized along z
axis too (see Algorithm 2). For the FFT part in z and the diffusion operator (see
Algorithm 3), the parallelization directive is on the intermediate loops on dimen-
sion x. Notice the loops on dimension x can not be trivially merged, because of
a Write/Read dependency between the FFT and the diffusion parts. However,
as computations are coupled in a same y loop, the 2D slice computed for each y
index is small enough to fit in cache (L3 or L2).

4.4 Hybrid MPI/OpenMP Parallel Version

This part proposes a hybrid MPI/OpenMP parallel version of the code that
lowers the volume of communications.

The algorithm remains close to the OpenMP version, but with data and
outermost spatial loops distributed on the MPI processes. Hence, there are two
dimensions along which data are distributed. The first one is z direction. Data
are stored in [z, y, x] order, and 2D [y, x] slices are uniformly distributed on the
different processes. This distribution addresses the Arakawa method, the source
terms computations and FFT on y dimension. The second one is y direction.
This is the case for Algorithm 3, (FFT on z and diffusion). Indeed, to compute
1D FFT for direction z, each process must have all the points in that direction.

The two domain decompositions lead to two transposition steps implying
communications. These communications are added to Algorithm 3, using non-
blocking subroutines, in order to minimize communication overhead. Several
versions have been tested, but only the fastest one is presented. The communi-
cations are performed within the y loop of Algorithm 3 as we will see afterwards.

Algorithm 4 gives the communication steps, coupled with the FFT in direc-
tion z and the diffusion operator. In this Algorithm, notation commzy corre-
sponds to z to y transpose step (and inverse for commyz). Finally, Algorithm 5
describes how to transpose from a distribution in z to a distribution in y for
one given index iy. The inverse transformation is not detailed as it is completely
symmetric.

5 Performance Analysis

This section presents the numerical results and performances obtained for the
algorithms detailed in Sect. 4. For each run, 10 temporal iterations were per-
formed, with a (Nx, Ny, Nz) = (256, 256, 128) grid for mono-node tests and both
(256, 256, 128) and (1024, 1024, 512) for the multi-node case.



Parallelization of an Advection-Diffusion Problem 553

Algorithm 5 . Transpose z → y:
commzy

Input: Z dist[NY,NZloc,NX],iy
Algorithm:

pid ← current process rank
for all process p �= pid do

Irecv(Y dist[iy,NZloc × p,NX]) from p
end for
for all process p �= pid do

Isend(Z dist[iy × p,NZloc,NX]) to p
end for
Wait for all communication to finish

Output: Y dist[iy,NZ,NX]

Tests were performed on two par-
allel computers: the Rheticus clus-
ter based at Aix-Marseille Univer-
sity, France, compounded of 1152
cores organized in 96 nodes of 2 bi-
socket X5675; and the Helios clus-
ter based in Rokkasho, Japan at the
International Fusion Energy Research
Center, compounded of 2 bi-socket
Xeon E5-2600 nodes. In terms of
configuration, we used Intel compiler
together with Open MPI version 1.6.3
and the FFTW3 library in version
3.3. Source codes were compiled with
-O2 -axSSE4.2 flags.

In the following, programs perfor-
mances are presented using notations: NCU the number of computing units (with
NCU= NTH× NP), NTH the number of OpenMP threads, NP the number of MPI
processes, t the execution time, SU the speedup relative to NCU, Eff% the relative
efficiency, and Tot% the percentage of time relative to the total execution time.

Notice that the performance analysis does not take into account initializa-
tion and diagnostics execution times. When not specified, results are obtained
with the Rheticus cluster. In a first part, results are presented for the OpenMP
version, then the hybrid MPI/OpenMP version on only one node, and finally
the hybrid MPI/OpenMP version on several nodes.

5.1 OpenMP Parallel Version

This part aims to evaluate the OpenMP parallelization of the code. Results are
presented for the unique grid size (Nx, Ny, Nz) = (256, 256, 128) as bigger tested
sizes do not change speedup and efficiency results.

Table 2. OpenMP: time loop.

Table 2 shows results for 10 tempo-
ral iterations. With this parallel ver-
sion, it is possible to reach a speedup
of 7.7 using the 12 cores of the comput-
ing node, giving an efficiency of 64 %.
It can obviously be observed that the
efficiency decreases when the number of
used threads increases. The reason is that
the needs of memory bandwidth resource
increases together with the added cores, as we will see afterwards.

Tables 3 and 4 show performances for the main parts of the time loop (the
diffusion and the advection). When increasing the number of threads for the
advection part, one can see execution times, speedups and hence efficiency scale
very well. On the contrary, the diffusion part still suffers from an efficiency
degradation, lowering to 55.3 % on the 12 cores of the node.



554 M. Kuhn et al.

The diffusion part contains the one dimensional FFT computations in y and z
directions. Let us have a look to the detail of computations inside the diffusion
step. The times of Table 3 include times of Tables 5 and 6. They also contain
the source term performance that is not explicited (although it shows nearly
ideal scalings). Notice that Table 6 contains the diffusion operator computations
together with the FFT in the z direction. The efficiency loss appears to be in the
parts containing the FFT computations: for example, efficiency drops to 41.4 %
for FFT on y on 12 threads. The FFT computations involve a high number of
memory operations (e.g. data reorganizations between FFT), and hence increase
the memory bandwidth requirements when adding computational cores.

Table 3. OpenMP: diffusion, source and fft
1D y and z.

NCU NTH t(sec) SU Eff% Tot%

1 1 5.77 1.00 100.0 65.9
4 4 1.80 3.21 80.4 70.4
8 8 1.12 5.17 64.6 74.6
12 12 0.87 6.63 55.3 76.3

Table 4. OpenMP: advection.

NCU NTH t(sec) SU Eff% Tot%

1 1 1.50 1.00 100.0 17.2
4 4 0.38 3.96 99.1 14.9
8 8 0.19 7.81 97.7 12.9
12 12 0.15 10.36 86.3 12.7

Table 5. OpenMP: fft 1D y. Table 6. OpenMP: diffusion and fft 1D z.

5.2 Hybrid MPI/OpenMP Parallel Version

This part evaluates the multi-node version of the code presented in Sect. 4.4. This
version aims to increase the number of computational nodes and the memory
resource (bandwidth and space). This is particularly critical when attempting
to reach targeted grid sizes. First, the deployment problem is addressed on one
node (NTH and NP per node) in order to get the best mono-node performance.

Table 7 presents results for different couples (NTH, NP)1 on one node. The
best couple is (3, 4), giving a 7.8 speedup on the 12 cores of the node. Also, com-
putation times on the 12 cores are very similar to the OpenMP parallel version
(see Table 2). This is surprising because this MPI version contains additional
memory operations and overheads due to communications between processes.

Table 8 shows how performances scale on several nodes, using the previous
(NTH, NP)=(3,4) per node deployment. The code was run on 12, 48, 96 and
192 computing units. On the 192 computing units, the code reaches a speedup
of 81, leading to 42.4 % efficiency. To understand the loss of efficiency, each part
of the code is also analyzed.
1 Our code imposes NP as a power of 2.



Parallelization of an Advection-Diffusion Problem 555

Table 7. MPI/OpenMP: time loop. Table 8. MPI/OpenMP: time loop.

The advection part (Arakawa scheme and source term) and the diffusion
source term show very good efficiencies when increasing the number of nodes
(close to 100 %). Table 9 shows performances for the FFT on the dimension y.
Recall it does not include MPI communications. Whereas this part suffered from
a limited efficiency in case of the OpenMP only parallelization (see Table 5), it is
now able to reach a much better efficiency on the 192 computing units, reaching
81.8 %. Between 12 and 48 computing units (i.e. 1 and 4 nodes fully occupied), we
observe a surlinear speedup due to positive cache effects: the volume of processed
data per node is small enough to hold in the L3 cache.

Table 9. MPI/OpenMP: fft 1D y.

NCU NTH NP t(sec) SU Eff% Tot%

1 1 1 2.74 1.00 100.0 30.9
12 3 4 0.43 6.32 52.6 38.3
48 3 16 0.07 38.65 80.5 22.6
96 3 32 0.04 70.51 73.5 20.3
192 3 64 0.02 156.97 81.8 16.0

Table 10. MPI/OpenMP: comms, fft 1D z
and diffusion.

NCU NTH NP t(sec) SU Eff% Tot%

1 1 1 1.46 1.00 100.0 16.4
12 3 4 0.30 4.77 39.7 27.0
48 3 16 0.14 10.07 21.0 46.2
96 3 32 0.10 14.34 14.9 53.2
192 3 64 0.07 21.86 11.4 61.1

Hence, it is the last part containing the communications which is responsi-
ble for the loss of efficiency. Indeed, Table 10 shows a drop in efficiencies due
to the additional MPI communications needed to transpose data. Notice that
this drop is particularly important between 1 and 4 processes (from 100 % to
39.7 %) because of the apparition of intranode communications and saturation
of memory bandwidth, and again between 4 and 16 processes (from 39.7 % to
21 %) because of apparition of internode communications (involving the net-
work). After 4 nodes, the drop of efficiency starts to become less stringent.
Moreover, considering several nodes allows the user to handle bigger computa-
tional domains. This is the topic of the next Paragraph. The same study has
been performed on the former presented machine Helios. Results are globally
very close to those obtained on the Rheticus cluster, showing a speedup of 92
on 256 cores.

The bigger grid size (1024, 1024, 512) targeted by Emedge3D implies the
manipulation of 4 GB of memory per array. The no-MPI versions are not able
to run: the memory requirements are to high to be handled by a unique node.



556 M. Kuhn et al.

Each deployment uses 4 processes per node. The two last plots shows the
timings (left) and efficiencies (right) for 10 time loop iterations (dashed line)
and for the substep that includes communications (continuous line) as a func-
tion of the number of cores. They show a good scalability, leading to a relative
efficiency of 78.5 % for 384 cores. On 768 cores, we do not expect dramatic loss
of performance. Indeed, communication times diminish when adding cores and
remain a fraction of the global execution time (comprised between 40 % and
50 %). This is because the reference time on 4 nodes already includes intern-
odal communications. On Helios, the same (1024, 1024, 512) grid size led to an
efficiency of 70 % on 512 cores.

6 Conclusion

This work proposes a hybrid MPI/OpenMP parallelization strategy for an
advection-diffusion problem relevant to the model simulated by Emedge3D,
which is a dedicated code to study edge plasma physics in tokamaks.

The obtained parallel version allows to overcome the memory bandwith lim-
itation, which was one of the main bottlenecks of Emedge3D. Indeed, consider-
ing additional nodes allows one to add memory resources that are needed when
increasing the number of computing units. Plus, algorithm modifications (data
organization in memory, FFT 1D in each direction) are particularly critical to
reduce the amount of communications needed by the MPI version of the code.
For a domain of size (256, 256, 128), the parallel code is able to reach a speedup
of 81 on 192 computing units. In addition to that, the code is also able to handle
larger domain sizes, because adding nodes also increases available memory space.
For example, it is able to handle grids of size (1024, 1024, 512), leading to 4 GB
for each 3D array, with an efficiency of 78.5 % on 384 cores.

As an immediate extension, tests could be performed on larger parallel sys-
tems, to see the evolution of the communications’ scaling. Another axis is to
couple this parallelization strategy with semi-implicit numerical method in order
to increase the value of the time step Δt. Eventually, the integration of this par-
allelization strategy in Emedge3D code would enable to reach lower execution
times and larger domain sizes.



Parallelization of an Advection-Diffusion Problem 557

Acknowledgements. The authors acknowledge the ANR (National Research Agency,
project reference: ANR-10-BLAN-0940) and ERC Starting Grant Project GEOPARDI
No. 279389 for financial supporting, the use of the Aix-Marseille University Computing
Facility, and associated support services. The authors also express their acknowledge-
ments to the IFERC for the access to Helios super-calculator. Finally, the authors
thank the members of the research team PIIM of Aix-Marseille University for precious
help.

References

1. Arakawa, A.: Computational design for long-term numerical integration of the
equations of fluid motion: 2D incompressible flow. J. Comput. Phys. 1(1), 119–143
(1966)

2. Beyer, N., et al.: Nonlinear dynamics of transport barrier relaxations in toka-
mak edge plasmas. Phys. Rev. Lett. 94, 105001 (2005). http://link.aps.org/doi/
10.1103/PhysRevLett.94.105001

3. Fuhr, G., et al.: Evidence from numerical simulations of transport-barrier relax-
ations in tokamak edge plasmas in the presence of electromagnetic fluctua-
tions. Phys. Rev. Lett. 101, 195001 (2008). http://link.aps.org/doi/10.1103/
PhysRevLett.101.195001

4. Gorler, T., et al.: The global version of the gyrokinetic turbulence code GENE.
J. Comput. Phys. 230(18), 7053–7071 (2011). http://www.sciencedirect.com/
science/article/pii/S0021999111003457

5. Huysmans, G., et al.: Non-linear MHD simulations of edge localized modes (ELMs).
Plasma Phys. Controlled Fusion 51(12), 124012 (2009)

6. Kuhn, M., et al.: Optimization and parallelization of Emedge3D on shared memory
architecture. In: 2013 15th International Symposium on SYNASC, pp. 503–510.
IEEE (2013)

7. Lütjens, H., Luciani, J.F.: The XTOR code for nonlinear 3D simulations of MHD
instabilities in tokamak plasmas. J. Comput. Phys. 227(14), 6944–6966 (2008)

8. Maeyama, S., et al.: Computation-Communication techniques for parallel spectral
calculations in Gyrokinetic Vlasov simulations. Plasma Fusion Res. 8, 1403150
(2013)

9. Monnier, A., et al.: Penetration of resonant magnetic perturbations at the tokamak
edge. In: 38th EPS Conference on Plasma Physics (2011)

10. Orszag, S.A.: Transform method for the calculation of vector-coupled sums: appli-
cation to the spectral form of the vorticity equation. J. Atmos. Sci. 27(6), 890–895
(1970)

11. Zhang, Q., et al.: A fourth-order accurate finite-volume method with structured
adaptive mesh refinement for solving the advection-diffusion equation. SIAM J.
Sci. Comput. 34(2), 179–201 (2012). http://dx.doi.org/10.1137/110820105

http://link.aps.org/doi/10.1103/PhysRevLett.94.105001
http://link.aps.org/doi/10.1103/PhysRevLett.94.105001
http://link.aps.org/doi/10.1103/PhysRevLett.101.195001
http://link.aps.org/doi/10.1103/PhysRevLett.101.195001
http://www.sciencedirect.com/science/article/pii/S0021999111003457
http://www.sciencedirect.com/science/article/pii/S0021999111003457
http://dx.doi.org/10.1137/110820105

	Parallelization of an Advection-Diffusion Problem Arising in Edge Plasma Physics Using Hybrid MPI/OpenMP Programming
	1 Introduction
	2 The Advection-Diffusion Problem
	3 Numerical Methods and Test Case
	3.1 Spatial Discretization
	3.2 Temporal Discretization
	3.3 Analytical Test Case

	4 Parallelization MPI/OpenMP
	4.1 Sequential Algorithm
	4.2 Parallelization Potential
	4.3 OpenMP Parallel Version
	4.4 Hybrid MPI/OpenMP Parallel Version

	5 Performance Analysis
	5.1 OpenMP Parallel Version
	5.2 Hybrid MPI/OpenMP Parallel Version

	6 Conclusion
	References


