
A Practical Transactional Memory Interface

Shahar Timnat1(B), Maurice Herlihy2, and Erez Petrank1

1 Computer Science Department, Technion, Haifa, Israel
stimnat@cs.technion.ac.il

2 Computer Science Department, Brown University,
Providence, USA

Abstract. Hardware transactional memory (HTM) is becoming widely
available on modern platforms. However, software using HTM requires at
least two carefully-coordinated code paths: one for transactions, and at
least one for when transactions either fail, or are not supported at all. We
present the MCMS interface that allows a simple design of fast concurrent
data structures. MCMS-based code can execute fast when HTM support
is provided, but it also executes well on platforms that do not support
HTM, and it handles transaction failures as well. To demonstrate the
advantage of such an abstraction, we designed MCMS-based linked-list
and tree algorithms. The list algorithm outperforms all known lock-free
linked-lists by a factor of up to X2.15. The tree algorithm builds on Ellen
et al. [7] and outperforms it by a factor of up to X1.37. Both algorithms
are considerably simpler than their lock-free counterparts.

1 Introduction

Transactional memory (TM) is becoming an increasingly central concept in par-
allel programming. Recently, Intel introduced the TSX extensions to the x86
architecture, which include RTM: an off-the-shelf hardware that supports hard-
ware transactional memory. There are practical reasons for a developer to avoid
using hardware transactional memory. First, HTM is only available for some
of the computers in the market. Thus, a code that relies on HTM only suits a
fraction of the available computers and must be accompanied with a different
code base for the other platforms. Second, RTM transactions are “best effort”
and are not guaranteed to succeed. Thus, to work with HTM, a fall-back path
must also be provided and maintained, in case transactions repeatedly fail.

We propose a new programming discipline for highly-concurrent linearizable
objects that takes advantage of HTM when it is available, and still performs
reasonably (around X0.6) when it is not available. For this purpose, we suggest
to encapsulate the HTM inside an intermediate level operation. The intermedi-
ate operation is compiled to an HTM implementation on platforms that support
HTM, and to a non-transactional implementation otherwise. To a certain extent,
our intermediate operation can even be implemented with an “out of the box” fall-
back path for failing transactions. This fall-back path can be made lock-free, thus
rendering our operation a valid alternative for designing lock-free operations.

c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 387–401, 2015.
DOI: 10.1007/978-3-662-48096-0 30



388 S. Timnat et al.

The intermediate operation we find best suited for this purpose is a slight
variation of the well-known MCAS (Multi-word Compare And Swap) operation.
The MCAS operation executes atomically on several shared memory addresses.
Each address is associated with an expected-value and a new-value. An execution
of MCAS succeeds and returns true iff the content of each specified address equals
its expected value. In this case, the data in each address is replaced with the
new value. If any of the specified addresses contains data that is different from
the expected value, then false is returned and the content of the shared memory
remains unchanged.

We propose an extended interface of MCAS called MCMS (Multiple Compare
Multiple Swap), in which we also allow addresses to be compared without being
swapped. The extension is functionally redundant, because, in effect, comparing
an address without swapping it is identical to an MCAS in which this address’
expected value equals its new value. However, when implementing the MCMS
using transactional memory, it is ill-advised to write a new (identical) value to
replace an old one. Such a replacement may cause unnecessary transaction aborts.

In order to study the usability of the MCMS operation, we designed two
algorithms that use it. One for the linked-list data structure, and one for the
binary search tree. The MCMS tree is almost a straightforward MCMS-based
version of the lock-free binary search tree by Ellen et al. [7]. But interestingly,
attempting to design a linked-list that exploits the MCMS operation yielded
a new algorithm that is highly efficient. The main idea is to mark a deleted
node in a different and useful manner. Instead of using a mark on the reference
(like Harris [9]), or using a mark on the reference and additionally a backlink
(like Fomitchev and Ruppert [8]), or using a separate mark field (like the lazy
linked-list [11]), we mark a node deleted by setting its pointer to be a back-link,
referencing the previous node in the list. This approach works excellently with
transactions.1

We present three simple fall-back alternatives to enable progress in case RTM
executions of MCMS repeatedly fail. The simplest way is to use locks, in a
similar manner to lock-elision [14]. The second approach is to use CAS-based
MCMS [10] as a fall-back. The third alternative is a copying scheme, where a
new copy of the data structure is created upon demand to guarantee progress.
Both the linked-list and tree algorithm outperform their lock-free alternatives
when using either a lock-based fall-back path or a copying fall-back path. The
list algorithm performs up to X2.15 faster than Harris’s linked-list, and the tree
algorithm performs up to X1.37 faster than the tree of Ellen et al. A fall-back
path (that does not use transactions) is at times a bit faster (up to X1.1) and
at times a bit slower than the lock-free alternatives, depending on the specific
benchmark and configuration.

Another important advantage of programming with MCMS is that the
resulting algorithms are considerably simpler to design and debug compared to

1 This approach can also be used with locks. In fact, a lock-based version of this new
algorithm outperforms all known linked-list implementations. However, the design
of effective lock-based linked-lists is beyond the scope of this paper.



A Practical Transactional Memory Interface 389

standard lock-free algorithms that build on the CAS operation. The stronger
MCMS operation allows lock-free algorithms to be designed without requiring
complicated “helping” mechanisms that facilitate lock-freedom.

2 Related Work

The search of means for simplifying the design of highly concurrent data struc-
tures, and in particular lock-free ones, has been long and it led to several impor-
tant techniques and concepts. Transactional memory [12,16] is arguably the most
general of these; a transaction can pack any arbitrary operation to be executed
atomically. But the high efficacy comes with a cost. State of the art software
implementations of transactional memory incur a high performance cost, while
hardware support only spans across few platforms, and usually only provides
“best-effort” progress guarantee (e.g., the widely available Haswell RTM).

MCAS [13] is another tool for simplifying the design of concurrent data struc-
tures. It may be viewed as a special case of a transaction. Several CAS-based
software implementations of MCAS exist [10,17] with reasonable performance.
A similar, yet more restrictive primitive is the recent LLX/SCX [3]. These prim-
itives enable to atomically read several words, but write only a single word.
Atomically with the single write, it also allows to finalize other words, which
has the effect of blocking their value from ever changing again. A CAS-based
software implementation of these primitives is more efficient than any available
implementation of MCAS, and these primitives have been shown to be particu-
larly useful for designing trees [4]. Yet, allowing only a single word to be written
atomically can be too restrictive: our MCMS linked-list algorithm, which atom-
ically modifies two different pointers, cannot be easily implemented this way.

Dragojevic and Harris explored another form of restricted transactions in [6].
They showed that by moving much of the “book keeping” responsibility to the
user, and keeping transactions very small, almost all of the overhead of software
transactional memory can be avoided. Using their restricted transactions is more
complicated than using MCAS, and they did not explore hardware transactional
memory.

Speculative lock elision [14] is a technique to replace a mutual exclusion
lock with speculative execution (i.e., transaction). This way several threads may
execute the critical section concurrently. If a read/write or a write/write collision
occurs, the speculative execution is aborted and a lock is taken. [1] studies the
interaction between transactions and locks and identifies several pitfalls. Locks
that are well suited to work with transactions are proposed in [15]. Intel’s TSX
extension also includes support of Hardware Lock Elision (HLE). Our MCMS
interface lends itself to lock-elision, and also has the potential to use other fall-
back paths, which could be lock-free.

3 The MCMS Operation

In this section we specify the MCMS interface, its semantics and implementation.
The semantics of the MCMS interface are depicted in Fig. 1(left). The MCMS



390 S. Timnat et al.

operation receives three parameters as input. The first parameter is an array of
CAS descriptors to be executed atomically, where each CAS descriptor has an
address, an expected value, and a new value. The second parameter, N , is
the length of the array, and the last parameter C signifies the number of entries
at the beginning of the array that should only be compared (but not swapped).
We use a convention that the addresses that should only be compared and not
swapped are placed at the beginning of the array. Their associated new value
field is ignored.

3.1 Implementing MCMS with Hardware Transactional Memory

Intel Haswell Restricted Transactional Memory (RTM) introduces three new
instructions: xbegin, xend, xabort. xbegin starts a transaction and receives
a code location to which execution should branch in case of a transaction abort.
xend announces the end of a transaction, and xabort forces an abort.

The implementation of MCMS, given in Fig. 1(right), is mostly straightfor-
ward. First, begin a transaction. Then check to see that all the addresses con-
tain their expected value. If not, complete the transaction and return false.
If all addresses hold the expected value, then write the new values, complete the
transaction and return true. If the transaction aborts, restart from the begin-
ning. However, before restarting, read all the addresses outside a transaction,
and compare them to the expected value. If one of them has a value different
than the expected value, return false.

This last phase of comparing after an abort is not mandatory, but has two
advantages. The first is that in case the transaction failed because another thread
wrote to one of the MCMS addresses, then it is possible for the MCMS to sim-
ply fail without requiring an additional transaction. The second advantage is
that it handles a problem with page faults under RTM. A page fault causes a
transaction to abort (without bringing the page). In such a case, simply retrying
the transaction repeatedly can be futile, as the transaction will repeatedly fail
without loading the page from the disk. Loading the addresses between trans-
actions renders the possibility of repeated failures due to page faults virtually
impossible.

3.2 Implementing MCMS Without TM Support

We also implemented the MCMS operation using the method of Harris et al. [10],
including some optimizations suggested in that paper. As Harris’s algorithm
refers to MCAS, and not MCMS, we used identical expected value and new
value for addresses that are only meant for comparison.

To execute an MCAS using Harris’s algorithm, an object describing the
MCAS operation is created. This descriptor holds an entry for each address
that is to be CASed, and this entry holds the address, the expected value, and
the desired new value. In addition, the MCAS descriptor holds a status field,
which indicates one of three possible states: undecided, failed, and succeeded.
After creating the descriptor, the target addresses are accessed one by one. For



A Practical Transactional Memory Interface 391

Fig. 1. The MCMS semantics (left) and its HTM implementation (right)

each address, a CAS is used in an attempt to change the value from the expected
value of the MCAS to a pointer that points to the MCAS descriptor. In fact,
this is not done using a simple CAS, but a more evolved mechanism (named
RDCSS in [10]) which also checks that the status field of the MCAS descriptor
is still undecided. The implementation of RDCSS itself relies only on simple CAS
operations, and is also described in [10].

If while executing the MCAS, an address that does not hold the expected
value is found, then the status field is changed to failed, and any target address
whose value was already changed from the expected value to a pointer to the
MCAS descriptor is changed back to the old value using a simple CAS. If, on
the other hand, all the addresses were successfully changed from the expected
value to a pointer to the MCMS descriptor, then the status field is changed to
succeeded, and all the target addresses are changed again, this time to hold the
desired new value, using a simple CAS. The full details of [10] are considerably
more complicated, and are not described here.

This MCAS algorithm burdens concurrent read executions. When a thread
reads an address that is a part of an ongoing MCAS execution, it will see the
pointer to the MCAS descriptor instead of the correct value (which is either the
expected value or the new value) that should logically be stored in the address.
Thus, every read execution must check that the read value is not a pointer to an
MCAS descriptor, and if it is, it must first participate in completing the MCAS
execution, and only afterwards return the (correct) value.

Our non-TM MCMS implementation is thus burdened with this complica-
tion. When the MCMS algorithm reads from an address that might be the target
of an MCAS, it must be able to tell whether that memory holds regular data,
or a special pointer to an MCAS descriptor. In our applications, we were able to



392 S. Timnat et al.

steal the two least significant bits from target fields. For the list algorithm, each
target field holds a pointer to another node, and regular pointer values have zero
in those two bits. For the tree algorithm, each target field holds either a pointer
or a binary flag, and we shift the flag value to the left by two bits.

4 The Linked-List Algorithm

We consider a sorted-list-based set of integers, similar to [8,9,18], supporting the
insert, delete, and contains operations. Without locks, the main challenge
when designing a linked-list is to prevent a node’s next pointer from changing
concurrently with (or after) the node’s deletion. A node is typically deleted by
changing its predecessor to point to its successor. This can be done by an atomic
CAS, but such a CAS cannot by itself prevent an update to the deleted node’s
next pointer. For details, see [9].

Harris [9] solved this problem by partitioning the deletion of a node into
two phases. In the first phase, the node’s next pointer is marked, by setting a
reserved bit on this pointer. This locks this pointer from ever changing again,
but still allows it to be used to traverse the list. In the second phase, the node
is physically removed by setting its predecessor to point to its successor. Harris
uses the pointer least significant bit as the mark bit. This bit is typically unused,
because the next pointer points to an aligned address.

Harris’s mark bit is an elegant solution to the deletion problem, but Harris’s
algorithm still has some drawbacks. First, when a mark bit is used, traversing
the list requires an additional masking operation to be done whenever reading
a pointer. This operation poses an overhead on list traversals. Second, a thread
that fails a CAS (due to contention) often restarts the list traversal from the list
head. Fomitchev and Ruppert [8] suggested a remedy for the second drawback
by introducing back-links into the linked-list. The back-link is an additional field
in each node and it is written during the node’s deletion.

Fomitchev and Ruppert used three additional fields in each node in excess of
the obligatory key and next pointer fields. Those fields are: the mark bit (similar
to Harris), another flag bit (also adjoined to the next pointer), and a back-link
pointer. To delete a node, a thread first flags its predecessor, then marks the
node to be deleted, then writes the back-link from the node to the predecessor,
and finally physically removes the node (the same CAS that removes the node
also clears the flag of the predecessor.) Due to the overhead of additional CASes,
this list typically performs slower in practice compared to the list of Harris.

To illustrate the simplicity of the MCMS operation we present a new linked-
list algorithm. The MCMS list is simpler, faster (if HTM is available), and does
not use any additional fields on top of the key and next pointer fields. Similarly
to Fomitchev and Ruppert, the MCMS list never needs to start searching from
the head on a contention failure.

The crux of our algorithm is that it uses the atomic MCMS to atomically
modify the node’s next pointer to be a back-link simultaneously with deleting
it from the list (see Fig. 2(b)). Thus the next pointer points to the next node



A Practical Transactional Memory Interface 393

while the node is in the list, and acts as a back-link once the node is deleted.
Similar to [8,9,18] and others, we use a sentinel head node with a key of minus
infinity, and a tail node with a key of infinity.

The algorithm is given in Fig. 2(a)(left), and is surprisingly simple. The
search method receives three parameters, a key to search for, and pointers
to pointers to the left and right nodes. When the search returns, the pointer
fields serves as outputs. The left node is set to the last node with a key smaller
than the given search key. The right node is set to the first node with a key
equal to or greater than the search key. The left node parameter also serves as
in input for the method, and indicates where to start the search from.

An invariant of the algorithm is that if a node A (which was already inserted
to the list) points to node B, and B’s key is greater than A’s key, then both nodes
are currently in the list. When node B is deleted, modifying its next pointer to
point to A serves two purposes. First, it serves the purpose of the mark bit that
ensures any concurrent operation that might try to modify B’s next pointer will
fail, which is vital to the correctness of the algorithm. Yet, without necessitating
a masking operation before using the next pointer. Second, it establishes a back-
link, which other threads might use to avoid the necessity of redoing the search
from scratch. Yet, this back-link does not necessitate additional fields in the
object, nor specific checks before following this back-link.

5 The Binary Search Tree Algorithm

We base our tree algorithm on the binary search tree of Ellen et al. [7] (this tree
was shown in [5] to outperform both the lock-free skiplist Java implementation
and the lock-based AVL tree of Bronson et al. [2]). Our tree is also a leaf oriented
tree, meaning all the keys are stored in the leaves of the tree, and each internal
node has exactly two children. However, in their original algorithm, each internal
node stores a pointer to a designated Info object that stores all the information
required to complete an operation. When a thread initiates an operation, it first
searches the tree for appropriate location to apply it. Then it tests the internal
node Info pointer to see whether there is already an ongoing operation, and
helps such an operation if needed. Then it allocates an Info object describing
the desired change, and attempts to atomically make the appropriate internal
node points to this info object using a CAS. Then, it can proceed with the
operation, being aware that it might get help from other threads in the process.

MCMS allows all changes to take place simultaneously. This saves the algo-
rithm designer the need to maintain an Info object, and also boosts performance
in the common case, in which an HTM successfully commits. Similarly to a list,
a central challenge in a lock-free binary search tree is to ensure that pointers
of an internal node will not be modified while (or after) the node is deleted
(see [7] for details). For this purpose, in the MCMS tree algorithm, each inter-
nal node contains a mark bit (in addition to its key, and pointers to two chil-
dren). The mark bit is in a separate field, not associated with any pointer. Leaf
nodes contain only a key. Upon deleting an internal node, its mark bit is set.



394 S. Timnat et al.

Fig. 2. The list and tree algorithms

Each MCMS operation that changes pointers of a node also reads the mark bit
and compares it to zero. If the bit is set, the MCMS will return false without
changing the shared memory, guaranteeing that a deleted node’s pointers are
never mistakenly altered.

In order to avoid corner cases, we initialize the tree with two infinity keys,
∞1 and ∞2, such that ∞2 > ∞1 > any other value. The root always has
the value ∞2 its right child is always ∞2 and its left child is always ∞1. This
idea is borrowed from the original algorithm [7]. Both the insert and delete
operations begin by calling the search method. The search method traverses the
tree looking for the desired key, and returns a leaf (which will holds the desired
key if the desired key is in the tree), its parent, and its grandparent.



A Practical Transactional Memory Interface 395

To insert a key, replace the leaf returned by the search method with a subtree
containing an internal node with two leaf children, one with the new desired
key, and one with the key of the leaf being replaced (See Fig. 2(c)). An MCMS
operation atomically executes this exchange while guaranteeing the parent is
unmarked (hence, not deleted).

To delete a key, the grandparent pointer to the parent is replaced by a pointer
to the deleted node’s brother (See Fig. 2(d)), atomically with setting the parent
mark bit on, marking it as deleted, and guarding against concurrent (or later)
changes to its child pointers. An MCMS instruction also ensures that the grand-
parent is unmarked, and that the parent’s child pointers retain their expected
value during the deletion.

6 Fall-Back Execution for Failed Transactions

Formally, transactions are never guaranteed to commit successfully, and spuri-
ous failures may occur infinitely without any concrete reason. Our experimental
results show that such repeated failures are not observed in practice. Never-
theless, we implemented several fall-back avenues that general algorithms using
MCMS may benefit from, and we briefly overview them here. Each transaction
is attempted several times before switching to a fall-back execution path. The
number of retries is a parameter that can be tuned, denoted MAX FAILURES.

6.1 Using Locking for the Fall-Back Path

The idea of trying to execute a code snippet using a transaction, and take a
lock if the transaction fails to commit, is known as lock elision. We add a single
integer field, denoted lock to the data structure. In the HTM implementation of
MCMS, before calling xend the lock field is read, and compared to zero. If the
lock is not zero, xabort is called. This way, if any thread acquires the lock (by
CASing it to one) all concurrent transactions will fail. If an MCMS operation
fails to commit a transaction MAX FAILURES times, the thread tries to obtain
the lock by repeatedly trying to CAS it from 0 to 1 until successful. The MCMS
is then executed safely. When complete, the thread sets the lock back to 0.

Our implementation of lock-elision is slightly different than that of traditional
lock-elision. As described in Sect. 3.1, after each transaction abort we compare
each address to its expected value, and thus in many cases we can return false
after a failure without using any locking or transactions at all.

6.2 Non-Transactional MCMS Implementation as a Fall-Back Path

Another natural fall-back path alternative is to use the non-transactional MCMS
implementation of Harris et al., described in Sect. 3.2. While this implementation
was proposed for implementing the MCMS on a platform that does not support
HTM, it may also be used as a fall-back when hardware transactions repeatedly
fail. Several threads can execute this implementation of the MCMS operation



396 S. Timnat et al.

concurrently. However, as mentioned in Sect. 3.2, during the execution of the
MCMS operations, the target addresses temporarily store a pointer to a special
operation descriptors instead of their “real” data. This requires a careful test
for any read of the data structure, which unfortunately comes with a significant
overhead.

We experimented with several different mechanisms to guarantee that each
read of the data structure is safe. The first mechanism is to always execute the
same read procedure that is applied when MCMS is implemented without TM,
as described in [10]. The second alternative is to use transactions for the reads
as well. Instead of doing a simple read, we can put the read in a transaction, and
before executing the transaction xend, read a lock field and abort if it does not
equal zero. Each thread that executes a non-transactional MCMS increments the
lock before starting it, and decrements the lock once the MCMS is completed.
The reads can be packed into a transaction in different granularity. One may
place each read in a different transaction and add a read of the lock field; but
one may also pack all the reads up to an MCMS into a single transaction and
add a single read of the lock. We tried a few granularities and found out that
packing five reads into a transaction was experimentally optimal.

6.3 A Copying-Based Fall-Back Path

A third avenue for implementing a fall-back for failing transactions is copying-
based. Again, a lock field is added. Additionally, a single global pointer which
points to the data structure is added. When accessing the data structure an
indirection is added: the external pointer is read, and the operation is applied to
the data structure pointed by it. As usual, each HTM based MCMS operation
compares the lock to zero before committing, and aborts if the lock is not zero.

Unlike previous solutions, in the copying fall-back implementation the lock
is permanent, and the current copy of the data structure becomes immutable.
After setting the lock to one, the thread creates a complete copy of the data
structure, and applies the desired operation on that copy. Other threads that
observes the lock is set act similarly. The new copy is associated with a new
lock that is initiated to zero. Then, a CAS attempts an atomic change of the
global pointer to point to the newly created copy instead of the original copy
of the data structure (from which it copied the data). Afterwards, execution
will continue as usual on the new copy, until the next time a thread will fail to
commit a transaction MAX FAILURES times.

7 Performance

In this section we present the performance of the different algorithms and vari-
ants discussed in this paper. In Figs. 3 and 4 we present the throughput of the list
and tree algorithms compared against their lock-free counterparts. Each line in
each chart represent a different variant of an algorithm. In the micro-benchmarks
tested each thread executes either 50 % insert and 50 % delete operations,



A Practical Transactional Memory Interface 397

or 20 % insert, 10 % delete, and 70 % contains operations. The operation
keys are integers that are chosen randomly and uniformly in a range of either
1–32, 1–1024, or 1–1048576. Before starting each test, a data structure is pre-
filled to 50 % occupancy with randomly chosen keys from the appropriate range.
Deleted nodes were not reclaimed. In addition to the reported results we also
tested a work-load of a 100 % contains, and a work-load of 25 % insert, 25 %
delete and 50 % contains We also tested a key range of 1–65536. The addi-
tional results are similar and are omitted from the figures for lack of space.

In all our experiments, we set the number of MAX FAILURES to be 7. With
this setting, we see MCMS operations that need to complete execution in the
fallback path. Reducing this parameter to 6 causes a (slight) performance degra-
dation in a few scenarios. We also tested the number of total MCMS transaction
aborts, and the number of MCMS operations that were completed in the fall-back
path, when valid. Higher MAX FAILURES values yield similar performance, but
with almost no executions in the fall-back path. This makes the measurements
less informative, so 7 was chosen.

The measurements were taken on an Intel Haswell i7-4770, with 4 dual
cores (overall 8 hardware threads) and 6 MB cache size, running Linux Suse.
Haswell processors with more cores that support HTM are currently unavailable.
The algorithms were written in C++ and compiled with GNU C++ compiler
version 4.5.

In each chart we present nine algorithms. One for the original lock-free algo-
rithm, which is either Harris’s linked-list, or the binary search tree of Ellen
et al. A line denoted HTM MCMS for the HTM based algorithm without any
fall-back path. A line denoted Software MCMS for the algorithm in which MCMS
is implemented without transactional memory, as described in Sect. 3.2. A line
denoted Locking for the algorithm in which MCMS is implemented using HTM,
and a locking fall-back path is used (Sect. 6.1). A line denoted Software Read
for an HTM based implementation with a non-transactional based MCMS fall-
back path (Sect. 6.2), where each read is executed as in Sect. 3.2. Three lines
denoted 1-Read, 5-Read, all-Read, for HTM based implementations with a non-
transactional based MCMS fall-back path (Sect. 6.2), where reads are executed
inside transactions in different granularity. And a line denoted Copying, for an
HTM based implementation with a copying based fall-back path (Sect. 6.3).

The fastest performing algorithm is always the HTM-based MCMS without
any fall-back path. On a range of 1048576 available keys, this list algorithm out-
performs Harris’s by 30–60 %; on a range of 1024 available keys, it outperforms
by 40–115 %, and on a range of 32 keys, it outperforms by 20–55 %. The tree
algorithm outperforms the tree of Ellen et al. by 6–37 %. For both data structures
the lock-based fall-back path adds very little overhead, and the corresponding
algorithms trail behind the algorithms without the fall-back path by 1–5 %.

The copying fall-back path algorithm also performs excellently for the linked-
list. On average, it performs the same as the lock-based algorithm, with a differ-
ence smaller than half a per cent. This makes the HTM MCMS algorithm with
the copying fall-back path the fastest lock-free linked-list by a wide margin.



398 S. Timnat et al.

Fig. 3. MCMS-based lists vs. Harris’s linked-list. The x-axis represents the number of
threads. The y-axis represents the total number of operations executed per second (in
millions for key ranges 32 and 1024, in thousands for key range 1048576.)

The copying tree algorithm is not as good, trailing behind the pure HTM algo-
rithm by about 10 %. Yet this algorithm still beats the lock-free algorithm of
Ellen et al. in all number of threads for all benchmarks, excluding, surprisingly,
the benchmark of 100 % contains for 32 and 1024 available keys. This is surpris-
ing, because in this benchmark MCMS is not executed at all. We suspect that
the reason is the fact that the search method of the copying based tree receives



A Practical Transactional Memory Interface 399

Fig. 4. MCMS-based trees vs. the BST of Ellen et al. The x-axis represents the number
of threads. The y-axis represents millions of operations executed per second.

the root of the tree as an input parameter. In the pure HTM algorithm, the root
is known at compile time to be final (never changed once it is allocated), which
could allow the compiler to optimize its reading.

Using a CAS-based MCMS fall-back path does not work as well as the copy-
ing or the lock-based fall-back alternatives. For the list, packing five reads into a
transaction yields reasonable performance, usually beating Harris’s linked list
for a lower number of threads and a larger range of keys (up 20 % faster),
but trailing up to 40 % behind it for 8 threads in 32 or 1024 keys when the



400 S. Timnat et al.

micro-benchmark is 50 % inserts and 50 % deletes. Packing all the reads into
a single transaction works quite badly for the longer lists, were the large num-
ber of reads causes the vast majority of reading transactions to abort. It also
works badly for a 32 keys range when the benchmark is 50 % inserts and 50 %
delete. The high number of MCMS transactions combined with read transac-
tions results in poor performance. For the tree, is at times better and at times
worse than the tree of Ellen et al., and the difference is up to 10 %. This holds
for the option of packing all the reads into a single transaction as well.

Aborts and Fall-back Executions. As expected from the performance results, the
number of MCMS executions that are completed in the fall-back path is low. For
instance, a copying of a list or a tree of 1048576 keys, which one would expect to
be costly, never takes place. On the other end, In a list of 32 keys, for 8 threads,
in the micro-benchmark of 50 % inserts and 50 % deletes, copying is executed
once every 5000 list operations. In a list of 1024, it is never executed. In a tree of
32 keys when executing with 8 threads, on the 50 % inserts and 50 % deletes
micro-benchmark, a copying occurs once every 1730 tree operations, and once
every 54000 operations for a tree of 1024 keys running 8 threads. In general,
note that once an MCMS is executed in the fall-back path, other MCMS’s may
abort as a result of the lock field being set.

8 Conclusions

In this paper we proposed to use MCMS, a variation of MCAS operation, as
an intermediate interface that encapsulates HTM on platforms where HTM is
available, and can also be executed in a non-transactional manner when HTM
is not available. We established the effectiveness of the MCMS abstraction by
presenting two MCMS-based algorithms, for a list and for a tree. When HTM is
available, these algorithms outperform their lock-free counterparts. We have also
briefly discussed possible “fall-back” avenues for when transactions repeatedly
fail. We have implemented these alternatives, and explored their performance
overhead.

References

1. Bobba, J., Moore, K.E., Volos, H., Yen, L., Hill, M.D., Swift, M.M., Wood, D.A.:
Performance pathologies in hardware transactional memory. In: 34th International
Symposium on Computer Architecture (ISCA 2007), 9–13 June 2007, San Diego,
California, USA, pp. 81–91 (2007)

2. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: A practical concurrent binary
search tree. In: PPOPP, pp. 257–268 (2010)

3. Brown, T., Ellen, F., Ruppert, E.: Pragmatic primitives for non-blocking data
structures. In: PODC, pp. 13–22 (2013)

4. Brown, T., Ellen, F., Ruppert, E.: A general technique for non-blocking trees. In:
PPOPP, pp. 329–342 (2014)



A Practical Transactional Memory Interface 401

5. Brown, T., Helga, J.: Non-blocking k -ary search trees. In: Fernàndez Anta, A.,
Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 207–221. Springer,
Heidelberg (2011)

6. Dragojevic, A., Harris, T.L.: STM in the small: trading generality for performance
in software transactional memory. In: European Conference on Computer Sys-
tems, Proceedings of the Seventh EuroSys Conference 2012, EuroSys 2012, Bern,
Switzerland, 10–13 April 2012, pp. 1–14 (2012)

7. Ellen, F., Fatourou, P., Ruppert, E., van Breugel, F.: Non-blocking binary search
trees. In: Proceedings of the 29th Annual ACM Symposium on Principles of Distrib-
uted Computing, PODC 2010, Zurich, Switzerland, 25–28 July 2010, pp. 131–140
(2010)

8. Fomitchev, M., Ruppert, E.: Lock-free linked lists and skip lists. In: PODC 2004,
pp. 50–59 (2004)

9. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: Welch,
J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer, Heidelberg (2001)

10. Harris, T.L., Fraser, K., Pratt, I.A.: A practical multi-word compare-and-swap
operation. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 265–279. Springer,
Heidelberg (2002)

11. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N., Shavit, N.:
A lazy concurrent list-based set algorithm. In: Anderson, J.H., Prencipe, G.,
Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 3–16. Springer,
Heidelberg (2006)

12. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: ISCA, pp. 289–300 (1993)

13. Israeli, A., Rappoport, L.: Disjoint-access-parallel implementations of strong
shared memory primitives. In: PODC, pp. 151–160 (1994)

14. Rajwar, R., Goodman, J.R.: Speculative lock elision: enabling highly concurrent
multithreaded execution. In: MICRO, pp. 294–305 (2001)

15. Rossbach, C.J., Hofmann, O.S., Porter, D.E., Ramadan, H.E., Aditya, B., Witchel,
E.: TxLinux: using and managing hardware transactional memory in an operat-
ing system. In: Proceedings of the 21st ACM Symposium on Operating Systems
Principles 2007, SOSP 2007, Stevenson, Washington, USA, 14–17 October 2007,
pp. 87–102 (2007)

16. Shavit, N., Touitou, D.: Software transactional memory. Distrib. Comput. 10(2),
99–116 (1997)

17. Sundell, H.: Wait-free multi-word compare-and-swap using greedy helping and
grabbing. Int. J. Parallel Prog. 39(6), 694–716 (2011)

18. Valois, J.D.: Implementing lock-free queues. In: Proceedings of 7th International
Conference on Parallel and Distributed Computing Systems, pp. 64–69 (1994)


	A Practical Transactional Memory Interface
	1 Introduction
	2 Related Work
	3 The MCMS Operation
	3.1 Implementing MCMS with Hardware Transactional Memory
	3.2 Implementing MCMS Without TM Support

	4 The Linked-List Algorithm
	5 The Binary Search Tree Algorithm
	6 Fall-Back Execution for Failed Transactions
	6.1 Using Locking for the Fall-Back Path
	6.2 Non-Transactional MCMS Implementation as a Fall-Back Path
	6.3 A Copying-Based Fall-Back Path

	7 Performance
	8 Conclusions
	References


