
Allocating Jobs with Periodic Demand
Variations

Olivier Beaumont1,2, Ikbel Belaid1,2, Lionel Eyraud-Dubois1,2,
and Juan-Angel Lorenzo-del-Castillo1,2(B)

1 Inria Bordeaux – Sud-Ouest, Talence, France
2 University of Bordeaux, Bordeaux, France

juan-angel.lorenzo-del-castillo@inria.fr

Abstract. In the context of service hosting in large-scale datacenters,
we consider the problem faced by a provider for allocating services to
machines. Based on an analysis of a public Google trace correspond-
ing to the use of a production cluster over a long period, we propose a
model where long-running services experience demand variations with a
periodic (daily) pattern and we prove that services following this model
acknowledge for most of the overall CPU demand. This leads to an allo-
cation problem where the classical Bin-Packing issue is augmented with
the possibility to co-locate jobs whose peaks occur at different times of
the day, which is bound to be more efficient than the usual approach that
consist in over-provisioning for the maximum demand. In this paper, we
provide a mathematical framework to analyze the packing of services
exhibiting daily patterns and whose peaks occur at different times. We
propose a sophisticated SOCP (Second Order Cone Program) formula-
tion for this problem and we analyze how this modified packing constraint
changes the behavior of standard packing heuristics (such as Best-Fit or
First-Fit Decreasing). We show that taking periodicity of demand into
account allows for a substantial improvement on machine utilization in
the context of large-scale, state-of-the-art production datacenters.

1 Introduction

The Cloud paradigm provides an illusion of infinite elasticity and seamless provi-
sioning of IT resources. However, as providers keep scaling their infrastructures
year after year, the efficient allocation of services in Platform-as-a-Service (PaaS)
becomes crucial.

We concentrate on the case of a Cloud platform in which several indepen-
dent services, typically virtualized as Virtual Machines (VMs) or lightweight con-
tainers, are serving user queries and need to be allocated onto physical machines
(PMs) [1,17]. We consider the static case where a set of dominant services define
the overall resource usage of the physical platform, which has proved to be com-
monplace in large datacenters [3]. In this context, mapping services with het-
erogeneous computing demands onto PMs is amenable to a multi-dimensional
Bin-Packingproblem(eachdimension corresponding to adifferent kindof resource,
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 147–158, 2015.
DOI: 10.1007/978-3-662-48096-0 12



148 O. Beaumont et al.

memory, CPU, disk, bandwidth,. . . ). Indeed, on the infrastructure side, each phys-
ical machine presents a given computing capacity (i.e. the number of Flops it can
process during one time-unit), a memory capacity and a failure rate (i.e. the prob-
ability that the machine will fail during the next time period). On the client side,
each service has a set of requirements along the same dimensions (memory and
CPU footprints) and a reliability requirement that has been negotiated typically
through an SLA [8].

In this work, we consider a specific feature of CPU demand that arises in the
context of service allocation. Based on the analysis of a large cluster trace provided
by Google, we demonstrate in Sect. 3 that many services representing most of the
overall CPU demand exhibit daily patterns and their demand can be modeled as a
set of sinusoids, each comprising a constant component, an amplitude and a phase.
Under this premise, the contribution of this paper is threefold. First, we propose
and advocate a novel model for jobs with time-varying resource demands and we
define the associated packing problem. This model can be used to aggregate onto
the same physical machines more resources than it would be possible based on
their maximal demands only, taking advantage of the fact that different phases for
different services imply that peak demands do not occur simultaneously. Second,
we show the benefits of antagonistic job aggregation, and how this can be used to
improve the system performance. Third, we propose several algorithms for packing
jobs with periodic demands on the hosting platform. The first one is based on
a Second Order Cone Program (SOCP) formulation [11] whereas the others are
adaptations of classical greedy packing heuristics.

The remaining of this paper is organized as follows. We discuss some related
works in Sect. 2. In Sect. 3, we characterize the periodic behavior of some of
the jobs in a cluster usage trace provided by Google. In Sect. 4, we formulate
the optimization problem using Complex Analysis and we prove that it can
be expressed as a SOCP (Second Order Cone Program). In Sect. 5, we propose
several packing heuristics, whose performance is analyzed and validated on a
realistic trace in Sect. 6. Finally, conclusions are drawn in Sect. 7.

2 Related Works

In order to deal with resource allocation problems arising in the context of
Clouds, several sophisticated techniques have been developed in order to opti-
mally allocate user services onto PMs, either to achieve good load-balancing [4,7]
or to minimize energy consumption [5]. Most of the approaches in this domain
are based on offline [9] and online [10] variants of Bin-Packing strategies.

In this paper, we concentrate on the allocation of jobs that last for a long
time and whose CPU demands exhibit periodic patterns. Some other work deal
with allocating jobs whose demands varies over time, either with predictable
(static) or unknown (dynamic) behavior. In the static case which is the focus of
this present work, historical average resource utilization is typically used as input
to an algorithm that maps services to physical machines. Therefore, the map-
ping is done off-line. In contrast, dynamic allocation schemes are implemented
on shorter timescales. Dynamic allocation leverages the ability to perform run-
time migrations of jobs and to recompute resource allocation amongst services.



Allocating Jobs with Periodic Demand Variations 149

A dynamic migration algorithm Measure Forecast Remap is introduced in [6],
where highly variable workloads are forecast over intervals shorter than the time
scale of demand variability to ensure dynamic minimization of the number of
required machines. Based on stochastic vector packing model, the static scheme
proposed in [14] makes use of customers’ periodic access patterns in web server
farms to assign each customer to a server so as to minimize the total number of
required servers. In this latter work, the variable demand is analyzed at a differ-
ent time scale to extract probability distributions that are independent of time.
Then, stream-packing heuristics are employed to select the most complemen-
tary jobs to be packed in the same server. Urgaonkar et al. [15] rely on on-line
application profiling to demonstrate the feasibility and benefits of overbooking
resources in shared platforms to guide the application placement onto dedicated
resources while providing performance guarantees at runtime. A new mecha-
nism for dynamic resource management in cluster-based network servers [2],
called cluster reserve, allows performance isolation between service classes and
provides a minimal amount of resources, irrespective of the load imposed by
other requests. In contrast to these other directions, our work focuses on a part
of the workload which exhibits deterministic periodic variability. In this context,
dynamic resource management is unnecessary: the migration cost can be avoided
by using periodicity-aware static approaches for service allocation. Still, above
mentioned approaches can be used in order to allocate at runtime all the tasks
that do not exhibit daily sinusoidal patterns in their demand. Nevertheless, we
will prove that the overall weight of such services in terms of CPU demand makes
it useful to design specific allocation algorithms for them.

3 Periodicity Analysis

When considering efficient allocations, it is important to categorize how services
are correlated in order to schedule them efficiently. Indeed, if many services
reach their (say, CPU) peak demand at the same time (i.e. high positive cor-
relation), the stress on the platform and on the resource allocation algorithm
will be much higher. In this case, it seems reasonable to place those services on
different physical machines to avoid machine starvation. On the other hand, if
peaks are spread on a large enough time-frame, this will allow for some slack
in the allocation algorithm to provide efficient placements by co-allocating jobs
whose peaks happen at different times, hence resulting in a more efficient average
resource utilization.

Our periodicity analysis is based on the study of a usage trace released by
Google from one of its production clusters [16]. The workload consists in a
massive number of jobs, which can be further divided into tasks, being each
task assigned to a single physical machine. The data are collected from 12583
machines, span a time of 29 days and provide exhaustive profiling information
on 5 min monitoring intervals. Each job belongs to a priority group, namely
(in order of decreasing importance) Infrastructure, Monitoring, Normal Produc-
tion, Other and Gratis (free) [12,13]. The scheduler generally gives preference
to resource demands from higher priority tasks over tasks belonging to lower
priority groups, to the point of evicting the latter ones if needed.



150 O. Beaumont et al.

Given the thorough information contained in the trace, one of the main
difficulties is related to the time needed to validate any assumption based on
these data. To simplify this process without loss of accuracy, we proposed in [3] an
extraction of the information from a subset of jobs that we defined as dominant,
i.e. jobs which account for most of platform usage at any time.

In this work, we have restricted our study to dominant jobs in the Normal
Production class, given that they represent standard production utilization in the
datacenter and last for long enough to allow periodicity correlation. In addition,
considering only one priority class avoids issues due to the fact that hosts have
finite capacity. Indeed, this finite capacity implies that when the resource demand
of one job increases, another job with lower priority may end up using fewer
resources (or even getting evicted by the scheduler) even if its actual demand
remained invariable.

The spectral analysis of the Normal Production, dominant jobs that run
during the whole trace allowed us to quantify the main components of their
CPU demand, namely the amplitude, phase, frequency and background noise.
Table 1 provides the averaged ratios between the jobs’ components’ amplitudes
and their constant part. The residual noise is about 6 % of the average CPU
demand for a large part of the jobs, which can be used as a threshold: any
pattern with an amplitude significantly larger can be identified as a relevant
component. Attending to the percentile variation, we conclude that very few
jobs exhibit hourly patterns, more than half of the jobs show very strong daily
patterns, and only two thirds have significant daily patterns. Weekly patterns
are not as strong, but they are still significant for about half of the jobs.

Regarding pattern synchronization, we observed that all jobs with a weekly
pattern show the same behavior: 5 days of high usage followed by 2 days of lower
usage. For the daily patterns, we analyzed jobs with an amplitude of, at least,
10 % of the mean. Half of the jobs show a phase difference below 60 degrees (i.e.
their peaks are within 4 hours from each other). Furthermore, 90 % of the jobs
exhibit a phase difference below 120 degrees (peaks are at most 8 hours apart).
This shows that the jobs’ behavior is clearly correlated by this daily pattern.

Table 1. Ratios amplitude/mean part for long-running, dominant jobs [3]. Each row
shows the mean, standard deviation, and different percentiles of such ratios.

Stats Ratio of Amplitude to mean

Hourly Daily Weekly Long term Noise

Mean 0.057 0.267 0.148 0.154 0.100

Std 0.246 0.232 0.127 0.161 0.154

Min 0.001 0.006 0.011 0.001 0.012

25 % 0.004 0.052 0.076 0.051 0.036

50 % 0.007 0.268 0.106 0.102 0.058

75 % 0.009 0.376 0.196 0.196 0.072

Max 1.612 1.075 0.669 1.149 0.836



Allocating Jobs with Periodic Demand Variations 151

4 Packing of Jobs with Periodic Demands

4.1 Notations and Problem Formulation

Let us assume that the cloud platform we consider consists of M homogeneous
nodes M1, . . . ,Mk, . . . ,MM and let us denote the processing capacity of a node
by C. For the sake of simplicity and in order to focus on issues related to the
aggregation of periodic demands, we will concentrate on CPU demands only.

The tasks of a job (corresponding to a service in the trace) can run on any
node, and job Jj is split into Nj tasks denoted by Tj,1, . . . , Tj,l, . . . , Tj,Nj

, who
share the same characteristics in terms of CPU demand.

In turn, platform nodes are allowed to run several tasks, provided that at
any time step, their capacity is not exceeded. We assume that the set of tasks
running on a node does not change over time, what is a realistic assumption
for dominant Normal Production jobs, as shown in Sect. 3, and we model the
instantaneous demand at time t of task Tj,l, which does not depend on l, as

Wj(t) = Cj + ρj sin
(

2π
t

Pj
+ φj

)
,

where Cj denotes the average of CPU demand of Task Tj,l, ρj denotes its max-
imal amplitude with respect to Cj , Pj denotes the period of its pattern and φj

denotes its phase. As noticed in Sect. 3, one can concentrate in this context on
jobs that exhibit daily patterns and we will therefore assume in what follows
that ∀j, Pj = P , where P denotes a daytime.

In this context, our aim is to provide a static packing for the set of tasks Tj,l

such that at any step and on any resource, capacity constraints are not exceeded
and such that the number of required nodes is minimized. More specifically, our
goal is to take advantage of daily variations in order to obtain an efficient packing
of tasks. Indeed, most packing strategies are based on the maximal demand of
each task, what corresponds to Cj + ρj for a task of job j. Taking advantage of
the fact that all tasks do not achieve their peak demand at the same time in the
day, it is possible to pack more tasks, and therefore to use fewer nodes whilst
packing statically all the tasks.

Let us consider several tasks Tj,l clustered together on node Mk. Knowing
that all the jobs have the same period P , the constraint stating that the capacity
of Mk is not exceeded at any time

∀t, k,
∑

j,l:Tj,l∈Mk

Wj(t) ≤ C, becomes

⇐⇒ ∀t, k,
∑

j,l:Tj,l∈Mk

Cj +
∑

j,l:Tj,l∈Mk

ρj sin(2πt/P + φj) ≤ C

⇐⇒ ∀t, k,
∑

j,l:Tj,l∈Mk

Cj + Im

⎛
⎝ ∑

j,l:Tj,l∈Mk

ρj exp(2iπt/P ) exp(iφj)

⎞
⎠ ≤ C



152 O. Beaumont et al.

⇐⇒ ∀t, k,
∑

j,l:Tj,l∈Mk

Cj + Im

⎛
⎝(exp(2iπt/P ))

⎛
⎝ ∑

j,l:Tj,l∈Mk

ρj exp(iφj)

⎞
⎠

⎞
⎠ ≤ C

⇐⇒ ∀k,
∑

j,l:Tj,l∈Mk

Cj + ‖
∑

j,l:Tj,l∈Mk

ρj exp(iφj)‖ ≤ C,

where Im(z) denotes the imaginary part of complex number z, i is the imaginary
unit satisfying i2 = −1 and ‖z‖ denotes the modulus of z.

Note that in the last expression, the constraint does not involve t anymore,
and that all above complex analysis derivations are equivalences, such that this
last expression exactly states that the capacity constraint is never exceeded at
any time step. In order to design exact solutions and heuristics, we will use the
following formulation,

∀k,
∑

j,l:Tj,l∈Mk

Cj +
√

(
∑

j,l:Tj,l∈Mk

ρj cos(φj))2 + (
∑

j,l:Tj,l∈Mk

ρj sin(φj))2 ≤ C (1)

4.2 Quadratic Formulation

From this modified packing constraint (1), we propose a quadratically con-
strained programming (QCP) formulation of our problem. This formulation uses
two types of variables:

Integer variables Xj,k representing the number of tasks of job j allocated on
the node Mk,

Boolean variables Yk representing whether node Mk is used.
With these variables, the formulation is the following:

Minimize
∑
k

Yk

∀j ∈ J,
∑
k∈M

Xj,k = Nj (2)

∀k ∈ M, (
∑
j∈J

Xj,kρj cos(φj))2 + (
∑
j∈J

Xj,kρj sin(φj))2 ≤ (C Yk −
∑
j∈J

Xj,k Cj)2

(3)

∀k ∈ M, C Yk −
∑
j∈J

Xj,k Cj ≥ 0 (4)

In this formulation, constraint (2) ensures that all instances of all jobs are
allocated. Tasks belonging to the same job could co-exist in the same node.
Constraints (3) and (4) are a quadratic reformulation of Eq. (1), ensuring that
an unused node does not contribute any resource to the platform. Due to the
nature of this constraint, this formulation can be expressed as a Second Order
Cone Program, and can thus benefit from efficient general purpose solvers [11] for
convex optimization. However, on real-size instances with thousands of machines,
this formulation can not be solved in reasonable time with integer and boolean



Allocating Jobs with Periodic Demand Variations 153

values. Relaxing the problem by allowing rational variables makes it possible to
obtain a lower bound on the necessary number of resources in reasonable time.

5 Packing Heuristics

5.1 Complexity and Lower Bound

The optimization problem that consists in packing tasks with periodic demands
into nodes is clearly NP-Complete, since it is amenable to classical Bin-Packing
problems [9,10] in its most simplified setting where ∀j, ρj = 0, i.e. the case when
demands do not change over time. The SOCP formulation proposed in Sect. 4.2
can be used to solve the optimization problem, but its use is in practice restricted
to small cases. On the other hand, the relaxation of this SOCP where variables
can take rational values (including the Xj,l’s) can be solved in reasonable time.
This solution is not feasible in general but it provides a lower bound on the
number of necessary nodes that will be used in order to evaluate the quality of
the heuristics we propose.

5.2 Notations

In order to describe the algorithms, we will consider that tasks are sorted by
decreasing values of Cj , as usual when designing packing heuristics. Other pos-
sible choices would include sorting tasks by decreasing values of Cj +ρj and will
be discussed in Sect. 6.2. Let us assume that tasks Tj,l have been assigned to
node Mk. Then, the load of node Mk will be represented, following the analysis
performed in Sect. 4, by the triplet Sk = (Ck, xk, yk), where

Ck =
∑

j,l:Tj,l∈Mk

Cj , xk =
∑

j,l:Tj,l∈Mk

ρj cos(φj), yk =
∑

j,l:Tj,l∈Mk

ρj sin(φj).

The maximal load of node Mk at any time step t is therefore given by

L(Mk) = Ck +
√

x2
k + y2

k

and becomes L(Mk, Tj,l) = Ck + Cj +
√

(xk + ρj cos(φj))2 + (yk + ρj sin(φj))2
when one task Tj,l of job Jj is added to Mk.

5.3 Heuristics

We propose the following set of heuristics, adapted from classical efficient greedy
Bin-Packing algorithms to the case of tasks exhibiting daily patterns.

– First-Fit Decreasing FFD is a greedy algorithm in which tasks are considered
by decreasing values of Cj . At any step, task Tj,l (from job Jj) is allocated to
the node with the smallest index and such that L(Mk, Tj,l) ≤ C. If no such
node exists, then a new node is added to the system to hold the task.



154 O. Beaumont et al.

– Best-Fit Decreasing BFD is a greedy algorithm in which tasks are considered
by decreasing values of Cj . At any step, task Tj,l (from job Jj) is allocated
to the node Mk such that L(Mk, Tj,l) is maximized (while remaining below
C). Note that contrarily to what happens in classical BFD, the size that is
considered is the size after the allocation. If no such node exists, then a new
node is added to the system to hold the task.

– In Min-Max MM(M), the target number of nodes is fixed to M a priori.
Then, MM is a greedy algorithm where tasks are considered by decreasing
values of Cj . At any step, task Tj,l (from job Jj) is allocated to the node Mk

such that L(Mk, Tj,l) is minimized, in order to balance the load between the
different nodes. The allocation may fail if M is to small. In MM, the best
number of nodes is found using dichotomic search.

– Min-Max-Module MMM is similar to MM, except that tasks are repre-
sented using their maximal demand over time Cj + ρj only. Hence, in this
case, the problem is reduced to the classical bin packing. This is typically
what happens when one neglects the possibility to take advantage of the fact
that peak demands do not occur at the same time for all jobs.

6 Experimental Evaluation

6.1 Simulated Data

We perform a set of experiments with synthetic data in order to assess the
influence of the parameters on the performance of the different heuristics. In
all the experiments, we display the ratio between the number of nodes using
the heuristics described in Sect. 5 against the lower bound on the number of
necessary nodes described in Sect. 5.1.

In the following, we set the capacity of the nodes to 20 and we consider the
following parameters:

– CPU footprint of the tasks: we consider the case of Big Tasks (where Cj is
chosen uniformly at random in [0, 10]) and Small Tasks (where Cj is chosen
uniformly at random in [0, 1]).

– Daytime amplitude: we consider the case of Large Daytime Amplitude (where
ρj is chosen uniformly at random in [0, Cj ]) and Small Daytime Amplitude
(where ρj is chosen uniformly at random in [0, Cj/2]).

– Size of the Jobs: we consider the case of Large Jobs (where the number of
identical tasks of the job is set to 10) and Small Jobs, which consist in a
single task.

In all cases, the phase of each job is chosen uniformly at random in [0, 2π]. In
all the experiments, in order to perform a fair comparison, the expected value
of the lower bound is set to 250, so that there are 10 times more tasks in the
case of Small Tasks with respect to the case of Big Tasks. We performed other
experiments with different number of jobs and tasks, but the results showed very
little sensitivity to these parameters and were excluded from the paper in order
to save space.



Allocating Jobs with Periodic Demand Variations 155

Results for the eight possible combinations (Small or Big tasks/Small or Big
amplitude/Small or Big jobs) are displayed in Fig. 1.

Fig. 1. Performance of the heuristics on synthetic data

The first conclusion that can be drawn is that failing to take periodic demand
variations leads to a large waste of resources. Indeed, the performance of Min-
Max-Module MMM is consistently far from the lower bound, by 50 % in the
case of Big Amplitudes and by 25 % in the case of Small Amplitudes.

The second conclusion is that when the tasks are Small, so that each node
holds a few tens of tasks, Min-Max MM performs extremely well and is always
at most within 1 % of the lower bound. The results of Min-Max MM slightly
degrade when tasks get Big. Indeed, in this case, the number of tasks per node is
relatively small (a few units) and greedy heuristics fail to achieve close to opti-
mal performance. Nevertheless, the number of nodes required by MM always
stays within 20 % of the lower bound, and this lower bound is certainly under-
estimated, especially in the case of Big Tasks.

In the case of Big Tasks, it happens that First-Fit Decreasing FFD outper-
forms Min-Max MM. Indeed, FFD is an efficient heuristic for classical Bin-
Packing problems. On the other hand, it tends to pack together on the same
node tasks whose characteristics are close in terms of Cj . In the case of Big Jobs
consisting in several identical tasks, then FFD packs together tasks that achieve
their peak demand at the same time and therefore fails to take full benefit of
their periodic behavior.



156 O. Beaumont et al.

6.2 Task Ordering

Note that in all the heuristics described in Sect. 5, tasks are sorted by decreasing
values of Cj , whereas their maximal demand is Cj + ρj . We also tried to sort
tasks according to Cj +ρj but it degrades the performance of the heuristics. The
reason is the following. As observed in Sect. 5.2, each task can be represented
by a triplet (Cj , xj , yj), where ρj =

√
x2
j + y2

j and the state of each node can
be represented by a triplet (Ck, xk, yk) and the maximal load at any time step
is given by Ck +

√
x2
k + y2

k. In practice, the x’s and y’s can be either positive or
negative whereas the C’s are always positive. Therefore, the packing heuristics
that take periodicity into account tend to annihilate x’s and y’s and therefore,
the amplitude of ρ should not be given as much importance as the amplitude of
C when initially sorting the tasks.

In the (most difficult) case of 1000 Big tasks with Big amplitudes, for instance,
the number of nodes required by Min-Max MM heuristic is on average 30 % larger
than the lower bound when tasks are ordered by decreasing values of Cj + ρj ,
whereas the number of nodes required by MM is on average only 15 % larger
than the lower bound when tasks are ordered by decreasing values of Cj .

6.3 Jobs and Tasks of Google Trace

As advocated in Sect. 3, in the trace released by Google [16] and corresponding to
one production center, the jobs of the Normal Production class that last for the
duration of the trace and that exhibit strong daily patterns count for about 50 %
of the overall load. In this paper, we concentrate on this set of jobs, and we prove
that their characteristics make them suitable for the design of efficient resource
allocation algorithms, which take into account both their periodic nature and
the fact that they do not all reach their peak values at the same time step.

Of course, since this set of jobs accounts for half of the overall demand,
it is also crucial to design more dynamic strategies for the rest of the jobs.
These jobs typically correspond to the Gratis (free) class [12,13] and can be
allocated at runtime and then migrated to other nodes when the load of a node
becomes too high so that the QoS (Quality of Service) of the Normal Production
class cannot be enforced. Nevertheless, this important problem, addressed in the
papers mentioned in Sect. 2, is out of the scope of this paper.

Following the classification of Sect. 3, we have extracted 89 jobs corresponding
to a total of 22600 tasks. The largest job (in terms of tasks) consists in 1608
tasks. The largest job (in terms of CPU demand) corresponds to the capacity
of 184 nodes at its peak demand. A capacity equivalent to 2198 nodes would
be required if all jobs reached their peak demand at the same instant. On the
other hand, the overall peak demand for the whole set of jobs is equivalent to
the capacity of 2090 nodes.

Therefore, there exists a potential improvement on the number of required
nodes of 5 %, what should be considered as large in the context of an actual
production center. The results achieved by the different heuristics are displayed
in Table 2.



Allocating Jobs with Periodic Demand Variations 157

Table 2. Number of nodes required per heuristic.

First-Fit Best-Fit Min-Max Min-Max-Module

FFD BFD MM MMM
Number of nodes 2181 2182 2114 2226

It can be observed that the results of MM are extremely good on this actual
dataset. Indeed, the number of required machines is only 1.1 % higher than the
lower bound (2090 nodes), whereas MMM, the equivalent heuristic that does
not benefit from daily patterns, requires 6.5 % more machines than the lower
bound. This result proves that there is clear interest to take benefit of daily
patterns on an actual dataset.

7 Conclusions

This paper assesses the impact of designing efficient resource allocation algo-
rithms for jobs that exhibit daily periodic sinusoidal patterns. First, we demon-
strate that in a trace of a production cluster released by Google, those jobs
actually represent a significant part of the workload. Then, we present a novel
model of periodic jobs with variable resource demand in shared hosting plat-
forms. We prove that the job aggregation problem, where the objective is to
minimize the number of nodes, can be formulated as a SOCP, what enables us
to solve it exactly in reasonable time, at least for small instances. We argue that
provisioning resources solely based on the maximal demand of tasks, as showed
by Min-Max-Module heuristic, results in larger number of nodes. On the other
hand, resource provisioning based on an antagonistic job aggregation, as illus-
trated by the Min-Max heuristic, can yield gains that significantly decrease the
number of required nodes. As future work, we plan to extend job aggregation
strategies to provide performance guarantees for other resources like memory,
disk, network bandwidth, etc. Our future research plans include refining the
suggested second order cone program to more efficient mathematical program-
ming relying on column generation algorithm. This algorithm is proved to be
efficient for solving larger programs as it generates only variables which have the
potential to improve the objective function. At last, in order to deal with larger
classes of problems, it is crucial to understand how to mix the (close to opti-
mal) strategies used to schedule long-running high priority job classes and the
dynamic resource allocation strategies that are used for short and low priority
classes.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: Above the clouds: a berkeley view of
cloud computing, University of California, Berkeley (2009)



158 O. Beaumont et al.

2. Aron, M., Druschel, P., Zwaenepoel, W.: Cluster reserves: a mechanism for resource
management in cluster-based network servers. In: Proceedings of the ACM SIG-
METRICS Conference, pp. 90–101 (2000)

3. Beaumont, O., Eyraud-Dubois, L., Lorenzo-del Castillo, J.A.: Analyzing real clus-
ter data for formulating allocation algorithms in cloud platforms. In: 2014 IEEE
26th International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), pp. 302–309 (2014)

4. Beaumont, O., Eyraud-Dubois, L., Rejeb, H., Thraves, C.: Heterogeneous resource
allocation under degree constraints. In: IEEE Transactions on Parallel and Dis-
tributed Systems (2012)

5. Beloglazov, A., Buyya, R.: Energy efficient allocation of virtual machines in cloud
data centers. In: IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, pp. 577–578. IEEE (2010)

6. Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for
managing SLA violations. In: 10th IFIP/IEEE International Symposium on Inte-
grated Network Management, IM 2007, pp. 119–128 (2007)

7. Calheiros, R., Buyya, R., De Rose, C.: A heuristic for mapping virtual machines
and links in emulation testbeds. In: Proceedings of International Conference on
Parallel Processing (ICPP), pp. 518–525. IEEE (2009)

8. Cirne, W., Frachtenberg, E.: Web-scale job scheduling. In: Cirne, W., Desai, N.,
Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2012. LNCS, vol. 7698, pp.
1–15. Springer, Heidelberg (2013)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability, a Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, San Francisco (1979)

10. Hochbaum, D.: Approximation Algorithms for NP-hard Problems. PWS Publishing
Company, Boston (1997)

11. Mittelmann, H.D.: An independent benchmarking of SDP and SOCP solvers.
Math. Program. 95(2), 407–430 (2003)

12. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Towards under-
standing heterogeneous clouds at scale: google trace analysis. Technical report,
Carnegie Mellon University, April 2012

13. Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage traces: format +
schema. Technical report, Google Inc., Mountain View, CA, USA (2011). Revised
20 March 2012. http://code.google.com/p/googleclusterdata/wiki/TraceVersion2

14. Shahabuddin, J., Chrungoo, A., Gupta, V., Juneja, S., Kapoor, S., Kumar, A.:
Stream-packing: resource allocation in web server farms with a QoS guarantee. In:
Monien, B., Prasanna, V.K., Vajapeyam, S. (eds.) HiPC 2001. LNCS, vol. 2228,
pp. 182–191. Springer, Heidelberg (2001)

15. Urgaonkar, B., Shenoy, P., Roscoe, T.: Resource overbooking and application pro-
filing in shared hosting platforms. In: SIGOPS Operating Systems Review, vol.
36(SI), pp. 239–254 (2002). http://doi.acm.org/10.1145/844128.844151

16. Wilkes, J.: More google cluster data. Google research blog (2011). http://
googleresearch.blogspot.com/2011/11/more-google-cluster-data.html

17. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research
challenges. J. Internet Serv. Appl. 1(1), 7–18 (2010)

http://code.google.com/p/googleclusterdata/wiki/TraceVersion2
http://doi.acm.org/10.1145/844128.844151
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html

	Allocating Jobs with Periodic Demand Variations
	1 Introduction
	2 Related Works
	3 Periodicity Analysis
	4 Packing of Jobs with Periodic Demands
	4.1 Notations and Problem Formulation
	4.2 Quadratic Formulation

	5 Packing Heuristics
	5.1 Complexity and Lower Bound
	5.2 Notations
	5.3 Heuristics

	6 Experimental Evaluation
	6.1 Simulated Data
	6.2 Task Ordering
	6.3 Jobs and Tasks of Google Trace

	7 Conclusions
	References


