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Abstract. We introduce implicit zero-knowledge arguments (iZK) and
simulation-sound variants thereof (SSiZK); these are lightweight alter-
natives to zero-knowledge arguments for enforcing semi-honest behavior.
Our main technical contribution is a construction of efficient two-flow iZK
and SSiZK protocols for a large class of languages under the (plain) DDH
assumption in cyclic groups in the common reference string model. As
an application of iZK, we improve upon the round-efficiency of existing
protocols for securely computing inner product under the DDH assump-
tion. This new protocol in turn provides privacy-preserving biometric
authentication with lower latency.

Keywords: Hash proof systems · Zero-knowledge · Malicious adver-
saries · Two-party computation · Inner product

1 Introduction

Zero-Knowledge Arguments (ZK) enable a prover to prove the validity of
a statement to a verifier without revealing anything else [13,30]. In addition to
being interesting in its own right, zero knowledge has found numerous applica-
tions in cryptography, most notably to simplify protocol design as in the setting
of secure two-party computation [28,29,46], and as a tool for building cryp-
tographic primitives with strong security guarantees such as encryption secure
against chosen-ciphertext attacks [19,41].

In this work, we focus on the use of zero-knowledge arguments as used in effi-
cient two-party protocols for enforcing semi-honest behavior. We are particularly
interested in round-efficient two-party protocols, as network latency and round-
trip times can be a major efficiency bottleneck, for instance, when a user wants
to securely compute on data that is outsourced to the cloud. In addition, we
want to rely on standard and widely-deployed cryptographic assumptions. Here,
a standard interactive zero-knowledge argument based on the DDH assumption
would require at least three flows; moreover, this overhead in round complexity is
incurred each time we want to enforce semi-honest behavior via zero knowledge.
To avoid this overhead, we could turn to non-interactive zero-knowledge proofs
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(NIZK). However, efficient NIZK would require either the use of pairings [32]
and thus stronger assumptions and additional efficiency overhead, or the use of
random oracles [6,23].

We would like to point out that, contrary to some common belief, there is no
straightforward way to reduce the number of rounds of zero-knowledge proofs
“à la Schnorr” [42] by performing the first steps (commitment and challenges)
in a preprocessing phase, so that each proof only takes one flow subsequently.
Indeed, as noticed by Bernhard-Pereira-Warinsky in [9], the statement of the
proof has to be chosen before seeing the challenges, unless the proof becomes
unsound.

On the Importance of Round-Efficiency. In addition to being an inter-
esting theoretical problem, improving the round efficiency is also very impor-
tant in practice. If we consider a protocol between a client in Europe, and a
cloud provider in the US, for example, we expect a latency of at least 100ms
(and even worse if the client is connected with 3 g or via satellite, which may
induce a latency of up to 1s [14]). Concretely, using Curve25519 elliptic curve
of Bernstein [10] (for 128 bits of security, and 256-bit group elements) with
a 10 Mbps Internet link and 100 ms latency, 100 ms corresponds to sending 1
flow, or 40,000 group elements, or computing 1,000 exponentiations at 2 GHz on
one core of current AMD64 microprocessor1, hence 4,000 exponentiations on a
4-core microprocessor2. As a final remark on latency, while speed of networks
keeps increasing as technology improves, latency between two (far away) places
on earth is strongly limited by the speed of light: there is no hope to get a latency
less than 28 ms between London and San Francisco, for example.

Our Contributions. In this work, we introduce implicit Zero-Knowledge
Arguments or iZK and simulation-sound variants thereof or SSiZK, lightweight
alternatives to (simulation-sound) zero-knowledge arguments for enforcing semi-
honest behavior in two-party protocols. Then, we construct efficient two-flow
iZK and SSiZK protocols for a large class of languages under the (plain) DDH
assumption in cyclic groups without random oracles; this is the main techni-
cal contribution of our work. Our SSiZK construction from iZK is very efficient
and incurs only a small additive overhead. Finally, we present several applica-
tions of iZK to the design of efficient secure two-party computation, where iZK
can be used in place of interactive zero-knowledge arguments to obtain more
round-efficient protocols.

While our iZK protocols require an additional flow compared to NIZK, we
note that eliminating the use of pairings and random oracles offers both theoret-
ical and practical benefits. From a theoretical stand-point, the DDH assumption
in cyclic groups is a weaker assumption than the DDH-like assumptions used
in Groth-Sahai pairing-based NIZK [32], and we also avoid the theoretical pit-
falls associated with instantiating the random oracle methodology [5,16]. From a
practical stand-point, we can instantiate our DDH-based protocols over a larger
1 According to [20], an exponentiation takes about 200,000 cycles.
2 Assuming exponentiations can be made in parallel, which is the case for our iZKs.
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Fig. 1. Enforcing semi-honest behavior of Alice (A)

class of groups. Concrete examples include Bernstein’s Curve25519 [10] which
admit very efficient group exponentiations, but do not support an efficient pair-
ing and are less likely to be susceptible to recent breakthroughs in discrete log
attacks [4,31]. By using more efficient groups and avoiding the use of pairing
operations, we also gain notable improvements in computational efficiency over
Groth-Sahai proofs. Moreover, additional efficiency improvements come from
the structure of iZK which makes them efficiently batchable. Conversely, Groth-
Sahai NIZK cannot be efficiently batched and do not admit efficient SS-NIZK
(for non-linear equations).

New Notion: Implicit Zero-Knowledge Arguments. iZK is a two-party
protocol executed between a prover and a verifier, at the end of which both
parties should output an ephemeral key. The idea is that the key will be used to
encrypt subsequent messages and to protect the privacy of a verifier against a
cheating prover. Completeness states that if both parties start with a statement
in the language, then both parties output the same key K. Soundness states that
if the statement is outside the language, then the verifier’s ephemeral output key
is hidden from the cheating prover. Note that the verifier may not learn whether
his key is the same as the prover’s and would not be able to detect whether the
prover is cheating, hence the soundness guarantee is implicit. This is in contrast
to a standard ZK argument, where the verifier would “explicitly” abort when
interacting with a cheating prover. Finally, zero-knowledge stipulates that for
statements in the language, we can efficiently simulate (without the witness) the
joint distribution of the transcript between an honest prover and a malicious
verifier, together with the honest prover’s ephemeral output key K. Including K
in the output of the simulator ensures that the malicious verifier does not gain
additional knowledge about the witness when honest prover uses K in subsequent
interaction, as will be the case when iZK is used as part of a bigger protocol.
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More precisely, iZK are key encapsulation mechanisms in which the public
key ipk is associated with a word x and a language iL . In our case, x is the flow3

and iL the language of valid flows. If x is in iL , knowing a witness proving so
(namely, random coins used to generate the flow) enables anyone to generate ipk
together with a secret key isk, using a key generation algorithm iKG. But, if x
is not in iL , there is no polynomial-time way to generate a public key ipk for
which it is possible to decrypt the associated ciphertexts (soundness).

To ensure semi-honest behavior, as depicted in Fig. 1, each time a player sends
a flow x, he also sends a public key ipk generated by iKG and keeps the associated
secret key isk. To answer back, the other user generates a key encapsulation c
for ipk and x, of a random ephemeral key K. He can then use K to encrypt
(using symmetric encryption or pseudo-random generators and one-time pad)
all the subsequent flows he sends to the first player. For this transformation
to be secure, we also need to be sure that c (and the ability to decapsulate K
for any ipk) leaks no information about random coins used to generate the flow
(or, more generally, the witness of x). This is ensured by the zero-knowledge
property, which states there must exist a trapdoor (for some common reference
string) enabling to generate a public key ipk and a trapdoor key itk (using a
trapdoor key algorithm iTKG), so that ipk looks like a classical public key and
itk allows to decapsulate any ciphertext for ipk.

Overview of Our iZK and SSiZK Constructions. We proceed to provide an
overview of our two-flow iZK protocols; this is the main technical contribution
of our work. Our main tool is Hash Proof Systems or Smooth Projective Hash
Functions (SPHFs) [18]. We observe that SPHFs are essentially “honest-verifier”
iZK; our main technical challenge is to boost this weak honest-verifier into full-
fledged zero knowledge, without using pairings or random oracles.

Informally speaking, a smooth projective hash function on a language L is a
sort of hash function whose evaluation on a word C ∈ L can be computed in two
ways, either by using a hashing key hk (which can be seen as a private key) or by
using the associated projection key hp (which can be seen as a public key). On the
other hand, when C /∈ L , the hash of C cannot be computed from hp; actually,
when C /∈ L , the hash of C computed with hk is statistically indistinguishable
from a random value from the point of view of any individual knowing the pro-
jection key hp only. Hence, an SPHF on L is given by a pair (Hash,ProjHash)
with the requirements that, when there is a witness w ensuring that C ∈ L ,
Hash(hk,L , C) = ProjHash(hp,L , C, w), while when there is no such witness
(i.e. C /∈ L ), the smoothness property states that H = Hash(hk,L , C) is ran-
dom and independent of hp. In this paper, as in [26], we consider a weak form
of SPHFs, where the projection key hp can depend on C.

Concretely, if we have an SPHF for some language L , we can set the public
key ipk to be empty (⊥), the secret key isk to be the witness w, the ciphertext c
to be the projection key hp, and the encapsulated ephemeral key K would be the
hash value. (Similar connections between SPHF and zero knowledge were made
3 In our formalization, actually, it is the flow together all the previous flows. But we

just say it is the flow to simplify explanations.



Implicit Zero-Knowledge Arguments 111

in [1,12,25,26]). The resulting iZK would be correct and sound, the soundness
coming from the smoothness of the SPHF: if the word C is not in L , even
given the ciphertext c = hp, the hash value K looks random. However, it would
not necessarily be zero-knowledge for two reasons: not only, a malicious verifier
could generate a malformed projection key, for which the projected hash value of
a word depends on the witness, but also there seems to be no trapdoor enabling
to compute the hash value K from only c = hp.

These two issues could be solved using either Trapdoor SPHF [7] or NIZK
of knowledge of hk. But both methods require pairings or random oracle, if
instantiated on cyclic or bilinear groups. Instead we construct it as follows:

First, suppose that a projection key is well-formed (i.e., there exists a corre-
sponding hashing key). Then, there exists an unbounded zero-knowledge simu-
lator that “extracts” a corresponding hashing key and computes the hash value.
To boost this into full-fledged zero knowledge with an efficient simulator, we rely
on the “OR trick” from [22]. We add a random 4-tuple (g′, h′, u′, e′) to the CRS,
and build an SPHF for the augmented language C ∈ L or (g′, h′, u′, e′) is a DDH
tuple. In the normal setup, (g′, h′, u′, e′) is not a DDH tuple with overwhelm-
ing probability, so the soundness property is preserved. In the trapdoor setup,
(g′, h′, u′, e′) := (g′, h′, g′r, h′r) is a random DDH tuple, and the zero-knowledge
simulator uses the witness r to compute the hash value.

Second, to ensure that the projection key is well-formed, we use a second
SPHF. The idea for building the second SPHF is as follows: in most SPHF
schemes, proving that a projected key hp is valid corresponds to proving that
it lies in the column span of some matrix Γ (where all of the linear algebra is
carried out in the exponent). Now pick a random vector tk: if hp lies in the span
of Γ , then hpᵀtk is completely determined given Γ ᵀtk; otherwise, it is completely
random. The former yields the projective property and the latter yields smooth-
ness, for the SPHF with hashing key hk and projection key tp = Γ ᵀtk. Since the
second SPHF is built using the transpose Γ ᵀ of the original matrix Γ (defining
the language L ), we refer to it as a “transpose SPHF”. As it turns out, the
second fix could ruin soundness of the ensuing iZK protocol: a cheating prover
could pick a malformed Γ ᵀtk, and then the hash value hpᵀtk computed by the
verifier could leak additional information about his witness hk for hp, thereby
ruining smoothness. To protect against the leakage, we would inject additional
randomness into hk so that smoothness holds even in the presence of leakage
from the hash value hpᵀtk. This idea is inspired by the 2-universality technique
introduced in a very different context of chosen-ciphertext security [18].

Finally, to get simulation-soundness (i.e., soundness even if the adversary can
see fake or simulated proofs), we rely on an additional “OR trick” (mixed up
with an idea of Malkin et al. [40]): we build an SPHF for the augmented language
C ∈ L , or (g′, h′, u′, e′) is a DDH tuple (as before), or (g′, h′,W1(C),W2(C))
is not a DDH tuple (with Wk a Waters function [45], Wk(m) = vk,0

∏|m|
i=1 vmi

k,i ,
when m = m1‖ . . . ‖m|m| is a bitstring, the vk,0, . . . , vk,|m| are random group
elements, and C is seen as a bitstring, for k = 1, 2). In the security proof,
with non-negligible probability, (g′′, h′′,W1(C),W2(C)) is a non-DDH tuple for
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simulated proofs, and a DDH tuple for the soundness challenge, which proves
simulation-soundness.

Organization. First, we formally introduce the notion of implicit zero-
knowledge proofs (iZK) in Sect. 2. Second, in Sect. 3, we discuss some difficul-
ties related to the construction of iZK from SPHF and provide an intuition
of our method to overcome these difficulties. Next, we show how to construct
iZK and SSiZK from SPHF over cyclic groups for any language handled by the
generic framework [7], which encompasses most, if not all, known SPHFs over
cyclic groups. This is the main technical part of the paper. Third, in Sect. 4, we
indeed show a concrete application of our iZK constructions: the most efficient
3-round two-party protocol computing inner product in the UC framework with
static corruption so far. We analyze our construction and provide a detailed
comparison with the Groth-Sahai methodology [32] and the approach based on
zero-knowledge proofs “à la Schnorr” [42]. In addition, as proof of concept, we
show in the full version [8] that iZK can be used instead of ZK arguments to
generically convert any protocol secure in the semi-honest model into a protocol
secure in the malicious model. This conversion follows the generic transforma-
tion of Goldreich, Micali and Wigderson (GMW) in their seminal papers [28,29].
While applying directly the original transformation with Schnorr-like ZK proto-
cols blows up the number of rounds by a multiplicative factor of at least three
(even in the common reference string model), our conversion only adds a small
constant number of rounds. Eventually, in the full version [8], we extend our
construction of iZK from SPHF to handle larger classes of languages described
by computational structures such as circuits or branching programs.

Additional Related Work. Using the “OR trick” with SPHF is reminiscent
of [2]. However, the methods used in our paper are very different from the one
in [2], as we do not use pairings, but consider weaker form of SPHF on the other
hand.

A recent line of work has focused on the cut-and-choose approach for trans-
forming security from semi-honest to malicious models [34,35,37–39,43,44] as an
alternative to the use of zero-knowledge arguments. Indeed, substantial progress
has been made towards practical protocols via this approach, as applied to Yao’s
garbled circuits. However, the state-of-the-art still incurs a large computation
and communication multiplicative overhead that is equal to the security parame-
ter. We note that Yao’s garbled circuits do not efficiently generalize to arithmetic
computations, and that our approach would yield better concrete efficiency for
natural functions F that admit compact representations by arithmetic branch-
ing programs. In particular, Yao’s garbled circuits cannot take advantage of the
structure in languages handled by the Groth-Sahai methodology [32], and namely
the ones defined by multi-exponentiations: even in the latter case, Groth-Sahai
technique requires pairings, while we will be able to avoid them.

The idea of using implicit proofs (without the zero-knowledge requirement) as
a lightweight alternative to zero-knowledge proofs also appeared in an earlier work
of Aiello, Ishai and Reingold [3]. They realize implicit proofs using conditional
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disclosure of secrets [27]. The latter, together with witness encryption [24] and
SPHFs, only provide a weak “honest-verifier zero-knowledge” guarantee.

Recently, Jarecki introduced the concept of conditional key encapsulation
mechanism [36], which is related to iZK as it adds a “zero-knowledge flavor”
to SPHFs by allowing witness extraction. The construction is a combination of
SPHF and zero-knowledge proofs “à la Schnorr”. Contrary to iZK, it does not aim
at reducing the interactivity of the resulting protocol, but ensures its covertness.

Witness encryption was introduced by Garg et al. in [24]. It enables to encrypt
a message M for a word C and a language L into a ciphertext c, so that any
user knowing a witness w that C ∈ L can decrypt c. Similarly to SPHFs, witness
encryption also only has this “honest-verifier zero-knowledge” flavor: it does not
enable to decrypt ciphertext for words C /∈ L , with a trapdoor. That is why, as
SPHF, witness encryption cannot be used to construct directly iZK.

2 Definition of Implicit Zero-Knowledge Arguments

2.1 Notations

Since we will now be more formal, let us present the notations that we will
use. Let {0, 1}∗ be the set of bitstrings. We denote by PPT a probabilistic
polynomial time algorithm. We write y ← A(x) for ‘y is the output of the
algorithm A on the input x’, while y

$← A(x) means that A will addition-
ally use random coins. Similarly, X

$← X indicates that X has been cho-
sen uniformly at random in the (finite) set X . We sometimes write st the
state of the adversary. We define, for a distinguisher A and two distributions
D0,D1, the advantage of A (i.e., its ability to distinguish those distributions) by
AdvD0,D1(A) = Prx∈D0 [A(x) = 1] − Prx∈D1 [A(x) = 1]. The qualities of adver-
saries will be measured by their successes and advantages in certain experiments
ExpsecA or Expsec−b

A : Succsec(A,K) = Pr[ExpsecA (1K) = 1] and Advsec(A,K) =
Pr[Expsec−1

A (1K) = 1] − Pr[Expsec−0
A (1K) = 1] respectively, where K is the secu-

rity parameter, and probabilities are over the random coins of the challenger and
of the adversary.

2.2 Definition

Let (iLcrs)crs be a family of NP languages, indexed by a common reference
string crs, and defined by a witness relation iRcrs, namely iL = {x ∈ iXcrs |
∃iw, iRcrs(x, iw) = 1}, where (iXcrs)crs is a family of sets. crs is generated by some
polynomial-time algorithm Setupcrs taking as input the unary representation of
the security parameter K. We suppose that membership to Xcrs and iRcrs can
be evaluated in polynomial time (in K). For the sake of simplicity, crs is often
implicit.

To achieve stronger properties (namely simulation-soundness in Sect. 3.4), we
sometimes also assume that Setupcrs can also output some additional information
or trapdoor Tcrs. This trapdoor should enable to check, in polynomial time,
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whether a given word x is in iL or not. It is only used in security proofs, and is
never used by the iZK algorithms.

An iZK is defined by the following polynomial-time algorithms:

– icrs
$← iSetup(crs) generates the (normal) common reference string (CRS)

icrs (which implicitly contains crs). The resulting CRS provides statistical
soundness;

– (icrs, iT ) $← iTSetup(crs)4 generates the (trapdoor) common reference string
icrs together with a trapdoor iT . The resulting CRS provides statistical zero-
knowledge;

– (ipk, isk) $← iKG�(icrs, x, iw) generates a public/secret key pair, associated to a
word x ∈ iL and a label � ∈ {0, 1}∗, with witness iw;

– (ipk, itk) $← iTKG�(icrs, iT , x) generates a public/trapdoor key pair, associated
to a word x ∈ X and a label � ∈ {0, 1}∗;

– (c,K) $← iEnc�(icrs, ipk, x) outputs a ciphertext c of a value K (an ephemeral
key), for the public key ipk, the word x, and the label � ∈ {0, 1}∗;

– K ← iDec�(icrs, isk, c) decrypts the ciphertext c for the label � ∈ {0, 1}∗, and
outputs the ephemeral key K;

– K ← iTDec�(icrs, itk, c) decrypts the ciphertext c for the label � ∈ {0, 1}∗, and
outputs the ephemeral key K.

The three last algorithms can be seen as key encapsulation and decapsulation
algorithms. Labels � are only used for SSiZK and are often omitted. The CRS
icrs is often omitted, for the sake of simplicity.

Normally, the algorithms iKG and iDec are used by the user who wants to
(implicitly) prove that some word x is in iL (and we often call this user the
prover), while the algorithm iEnc is used by the user who wants to (implicitly)
verify this (and we often call this user the verifier), as shown in Figs. 1 and 3.
The algorithms iTKG and iTDec are usually only used in proofs, to generate
simulated or fake implicit proofs (for the zero-knowledge property).

2.3 Security Requirements

An iZK satisfies the four following properties (for any (crs, Tcrs)
$← Setupcrs(1K)):

– Correctness. The encryption is the reverse operation of the decryption, with
or without a trapdoor: for any icrs

$← iSetup(crs) or with a trapdoor, for any
(icrs, iT ) $← iTSetup(crs), and for any x ∈ X and any � ∈ {0, 1}∗,
• if x ∈ iL with witness iw, (ipk, isk) $← iKG�(icrs, x, iw), and (c,K) $←

iEnc�(ipk, x), then we have K = iDec�(isk, c);
• if (ipk, itk) $← iTKG�(iT , x) and (c,K) $← iEnc�(ipk, x), then we have K =

iTDec�(itk, c).

4 When the CRS is word-dependent, i.e., when the trapdoor iT does only work for one

word x∗ previously chosen, there is a second argument: (icrs, iT )
$← iTSetup(crs, x∗).

Security notions are then slightly different. See details in the full version [8].



Implicit Zero-Knowledge Arguments 115

– Setup Indistinguishability. A polynomial-time adversary cannot distin-
guish a normal CRS generated by iSetup from a trapdoor CRS generated by
iTSetup. More formally, no PPT can distinguish, with non-negligible advan-
tage, the two distributions:

{icrs | icrs $← iSetup(crs)} {icrs | (icrs, iT ) $← iTSetup(crs)}.

– Soundness. When the CRS is generated as icrs
$← iSetup(crs), and when

x /∈ L , the distribution of K is statistically indistinguishable from the uniform
distribution, even given c. More formally, if Π is the set of all the possible
values of K, for any bitstring ipk, for any word x /∈ iL , for any label � ∈ {0, 1}∗,
the two distributions:

{(c,K) | (c,K) $← iEnc�(ipk, x)} {(c,K ′) | (c,K) $← iEnc�(ipk, x);K ′ $← Π}

are statistically indistinguishable (iEnc may output (⊥,K) when the public
key ipk is not well formed).

– Zero-Knowledge. For any label � ∈ {0, 1}∗, when the CRS is generated
using (icrs, iT ) $← iTSetup�(crs), for any message x∗ ∈ iL with the witness iw∗,
the public key ipk and the decapsulated key K corresponding to a ciphertext
c chosen by the adversary, either using isk or the trapdoor itk, should be
indistinguishable, even given the trapdoor iT . More formally, we consider the
experiment ExpiZK-zk-b in Fig. 2. The iZK is (statistically) zero-knowledge if
the advantage of any adversary A (not necessarily polynomial-time) for this
experiment is negligible.

We defined our security notion with a “composable” security flavor, as Groth
and Sahai in [32]: soundness and zero-knowledge are statistical properties, the
only computational property is the setup indistinguishability property. This is
slightly stronger than what is needed, but is satisfied by our constructions and
often easier to use.

Fig. 2. Experiments ExpiZK-zk-b for zero-knowledge of iZK, and ExpiZK-ss-b for
simulation-soundness of SSiZK
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Prover P Verifier V
(ipk, isk)

$← iKG(icrs, x, iw)
x, ipk

(c, K)
$← iEnc(ipk, x)

c

K ← iDec(isk, c) accept if K = K
K

Fig. 3. Three-round zero-knowledge from iZK for a word x ∈ iL and a witness iw

We also consider stronger iZK, called simulation-sound iZK or SSiZK, which
satisfies the following additional property:

– Simulation Soundness. The soundness holds (computationally) even when
the adversary can see simulated public keys and decryption with these keys.
More formally, we consider the experiment ExpiZK-ss-b in Fig. 2, where the
oracle O, and the lists L and L′ are defined as follows:
• on input (�, x), O generates (ipk, itk) $← iTKG(icrs, iT , x), stores (�, x, ipk, itk)

in a list L, and outputs ipk;
• on input (ipk, c), O retrieves the record (�, x, ipk, itk) from L (and aborts

if no such record exists), removes it from L, and adds it to L′, computes
K ← iTDec�(icrs, itk, c), and outputs K.

The iZK is (statistically) simulation-sound if the advantage of any adversary
A (not necessarily polynomial-time) for this experiment is negligible.

Remark 1. An iZK for some language iL directly leads to a 3-round zero-
knowledge arguments for iL . The construction is depicted in Fig. 3 and the proof
is provided in the full version [8]. If the iZK is additionally simulation-sound, the
resulting zero-knowledge argument is also simulation-sound.

Remark 2. For the sake of completeness, in the full version [8], we show how to
construct iZK from either NIZK or Trapdoor SPHFs. In the latter case, the result-
ing iZK is not statistically sound and zero-knowledge but only computationally
sound and zero-knowledge. In both cases, using currently known constructions
over cyclic groups, strong assumptions such as the random oracle model or pair-
ings are needed.

3 Construction of Implicit Zero-Knowledge Arguments

Let us first recall the generic framework of SPHFs [7] for the particular case of
cyclic groups, and when the projection key hp can depend on the word C, as it
is at the core of our construction of iZK. Second, we explain in more details the
limitations of SPHFs and the fact they cannot directly be used to construct iZK
(even with a concrete attack). Third, we show how to overcome these limitations
to build iZK and SSiZK.
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3.1 Review of the Generic Framework of SPHFs over Cyclic Groups

Languages. Let G be a cyclic group of prime order p and Zp the field of integers
modulo p. If we look at G and Zp as the same ring (G,+, •), where internal
operations are on the scalars, many interesting languages can be represented as
subspaces of the vector space G

n, for some n. Here are some examples.

Example 3 (DDH or ElGamal Ciphertexts of 0). Let g and h be two generators
of G. The language of DDH tuples in basis (g, h) is

L = {(u, e) ∈ G
2 | ∃r ∈ Zp, u = gr and e = hr} ⊆ G

2,

where r is the witness. It can be seen as the subspace of G2 generated by (g, h).
We remark that this language can also be seen as the language of (additive)
ElGamal ciphertexts of 0 for the public key pk = (g, h). �	
Example 4 (ElGamal Ciphertexts of a Bit). Let us consider the language of
ElGamal ciphertexts of 0 or 1, under the public key pk = (g, h):

L := {(u, e) ∈ G
2 | ∃r ∈ Zp,∃b ∈ {0, 1}, u = gr and e = hrgb}.

Here C = (u, e) cannot directly be seen as an element of some vector space. How-
ever, a word C = (u, e) ∈ G

2 is in L if and only there exists λ = (λ1, λ2, λ3) ∈ Z
3
p

such that:

u = gλ1 (= λ1 • g) e = hλ1gλ2 (= λ1 • h + λ2 • g)

1 = uλ2gλ3 (= λ2 • u + λ3 • g) 1 = (e/g)λ2hλ3 (= λ2 • (e − g) + λ3 • h),

because, if we write C = (u, e) = (gr, hrgb) (with r, b ∈ Zp, which is always
possible), then the first three equations ensure that λ1 = r, λ2 = b and λ3 = −rb,
while the last equation (right bottom) ensures that b(b − 1) = 0, i.e., b ∈ {0, 1},
as it holds that (hrgb/g)bh−rb = gb(b−1) = 1.

Therefore, if we introduce the notation Ĉ = θ(C) :=
(
u e 1 1

)
∈ G

4, then
the language L can be defined as the set of C = (u, e) such that Ĉ is in the
subspace of G4 generated by the rows of the following matrix

Γ :=

⎛

⎝
g h 1 1
1 g u e/g
1 1 g h

⎞

⎠ . �	

Example 5 (Conjunction of Languages). Let gi and hi (for i = 1, 2) be four
generators of G, and Li be (as in Example 3) the languages of DDH tuples in
bases (gi, hi) respectively. We are now interested in the language L = L1×L2 ⊆
G

4, which is thus the conjunction of L1 × G
2 and G

2 × L2: it can be seen as
the subspace of G4 generated by the rows of the following matrix

Γ :=
(

g1 h1 1 1
1 1 g2 h2

)

. �	

This can also be seen as the matrix, diagonal by blocks, with Γ1 and Γ2 the
matrices for L1 and L2 respectively.
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More formally, the generic framework for SPHFs in [7] considers the languages
L ⊆ X defined as follows: There exist two functions θ and Γ from the set of
words X to the vector space Gn of dimension n, and to set Gk×n of k×n matrices
over G, such that C ∈ L if and only if Ĉ := θ(C) is a linear combination of the
rows of Γ (C). From a witness w for a word C, it should be possible to compute
such a linear combination as a row vector λ = (λi)i=1,...,k ∈ Z

1×k
p :

Ĉ = θ(C) = λ • Γ (C). (1)

For the sake of simplicity, because of the equivalence between w and λ, we will
use them indifferently for the witness.

SPHFs. Let us now build an SPHF on such a language. A hashing key hk is
just a random column vector hk ∈ Z

n
p , and the associated projection key is

hp := Γ (C) • hk. The hash value of a word C is then H := Ĉ • hk, and if λ is a
witness for C ∈ L , this hash value can also be computed as:

H = Ĉ • hk = λ • Γ (C) • hk = λ • hp = projH,

which only depends on the witness λ and the projection key hp. On the other
hand, if C /∈ L , then Ĉ is linearly independent from the rows of Γ (C). Hence,
H := Ĉ • hk looks random even given hp := Γ (C) • hk, which is exactly the
smoothness property.

Example 6. The SPHF corresponding to the language in Example 4, is then
defined by:

hk = (hk1, hk2, hk3, hk4)ᵀ $← Z
4
p

hp = Γ (C) • hk = (ghk1hhk2 , ghk2uhk3(e/g)hk4 , ghk3hhk4)

H = Ĉ • hk = uhk1ehk2 projH = λ • hp = hpr
1 · hpb

2 · hp−rb
3 .

For the sake of clarity, we will omit the C argument, and write Γ , instead of
Γ (C).

3.2 Limitations of Smooth Projective Hash Functions

At a first glance, as explained in the introduction, it may look possible to con-
struct an iZK from an SPHF for the same language L = iL as follows:

– iSetup(crs) and iTSetup(crs) outputs the empty CRS icrs :=⊥;
– iKG(icrs, x, iw) outputs an empty public key ipk :=⊥ together with the secret

key isk := (x, iw);
– iEnc(ipk, x) generates a random hashing key hk

$← HashKG(crs, x) and outputs
the ciphertext c := hp ← ProjKG(hk, crs, x) together with the ephemeral key
K := H ← Hash(hk, crs, x);

– iDec(isk, c) outputs the ephemeral key K := projH ← ProjHash(hp, crs, x, iw).
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This construction is sound: if x /∈ L , given only c = hp, the smoothness ensures
that K = H looks random. Unfortunately, there seems to be no way to compute
K from only c, or in other words, there does not seem to exist algorithms iTKG
and iTDec.

Example 6 is not Zero-Knowledge. Actually, with the SPHF from
Example 6, no such algorithm iTKG or iTDec (verifying the zero-knowledge prop-
erty) exists. It is even worse than that: a malicious verifier may get information
about the witness, even if he just has a feedback whether the prover could use
the correct hash value or not (and get the masked value or not), in a protocol
such as the one in Fig. 1. A malicious verifier can indeed generate a ciphertext
c = hp, by generating hp1 honestly but by picking hp2 and hp3 uniformly at
random. Now, a honest prover will compute projH = hpr

1hp
b
2hp

−rb
3 , to get back

the ephemeral key (using iDec). When C is an encryption of b = 1, this value
is random and independent of H, as hp2 and hp3 have been chosen at random,
while when b = 0, this value is the correct projH and is equal to H. Thus the
projected hash value projH, which is the ephemeral output key by the honest
prover, reveals some information about b, part of the witness.

If we want to avoid such an attack, the prover has to make sure that the hp
he received was built correctly. Intuitively, this sounds exactly like the kind of
verifications we could make with an SPHF: we could simply build an SPHF on
the language of the “correctly built” hp. Then the prover could send a projection
key for this new SPHF and ask the verifier to XOR the original hash value H
with the hash value of this new SPHF. However, things are not that easy: first
this does not solve the limitation due to the security proof (the impossibility of
computing H for x /∈ iL ) and second, in the SPHF in Example 6, all projection
keys are valid (since Γ is full-rank, for any hp, there exists necessarily a hk such
that hp = Γ • hk).

3.3 iZK Construction

Let us consider an SPHF defined as in Sect. 3.1 for a language iL = L . In
this section, we show how to design, step by step, an iZK for iL from this
SPHF, following the overview in Sect. 1. At the end, we provide a summary of
the construction and a complete proof. We illustrate our construction on the
language of ElGamal ciphertexts of bits (Examples 4 and 6), and refer to this
language as “our example”. We suppose a cyclic group G of prime order p is
fixed, and that DDH is hard in G

5.
We have seen the limitations of directly using the original SPHF are actually

twofold. First, SPHFs do not provide a way to compute the hash value of a word
outside the language, with just a projection key for which the hashing key is not
known. Second, nothing ensures that a projection key has really been derived
from an actually known hashing key, and in such a bad case, the projected hash
value may leak some information about the word C (and the witness).
5 The construction can be trivially extended to DLin, or any MDDH assumption [21]

though.
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To better explain our construction, we first show how to overcome the first
limitation. Thereafter, we will show how our approach additionally allows to
check the validity of the projection keys (with a non-trivial validity meaning). It
will indeed be quite important to notice that the projection keys coming from our
construction (according to one of the setups) will not necessarily be valid (with
a corresponding hashing key), as the corresponding matrix Γ will not always be
full rank, contrary to the projection keys of the SPHF in Example 6. Hence, the
language of the valid projection keys will make sense in this setting.

Adding the Trapdoor. The CRS of our construction is a tuple icrs =
(g′, h′, u′ = g′r′

, e′ = h′s′
) ∈ G

4, with g′, h′ two random generators of G, and

– r′, s′ two random distinct scalars in Zp, for the normal CRS generated by
iSetup, so that (g′, h′, u′, e′) is not a DDH tuple;

– r′ = s′ a random scalar in Zp, for the trapdoor CRS generated by iTSetup,
with iT = r′ the trapdoor, so that (g′, h′, u′, e′) is a DDH tuple.

Then, we build an SPHF for the augmented language Lt defined as follows: a
word Ct = (C, u′, e′) is in Lt if and only if either C is in the original language L
or (u′, e′) is a DDH tuple. This new language Lt can be seen as the disjunction of
the original language L and of the DDH language in basis (g′, h′). Construction
of disjunctions of SPHFs were proposed in [2] but require pairings. In this article,
we use an alternative more efficient construction without pairing6. Let us show
it on our example, with Ct = (C, u′, e′). We set Ĉt := (g′−1, 1, 1, 1, 1, 1, 1) and
Γt(Ct) ∈ G

(k+3)×(n+3) as

Γt(Ct) :=

⎛

⎜
⎜
⎜
⎜
⎝

1 Γ (C)
g′ 1 1 Ĉ = θ(C)
1 g′ h′ 1 . . . 1
g′ u′ e′ 1 . . . 1

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 g h 1 1
1 1 1 1 g u e/g
1 1 1 1 1 g h
g′ 1 1 u e 1 1
1 g′ h′ 1 1 1 1
g′ u′ e′ 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2)

Let us show the language corresponding to Γt and Ĉt is indeed Lt: Due to the
first column of Γt and the first element of Ĉt, if Ĉt is a linear combination of
rows of Γt with coefficients λt (i.e., Ĉt = λt • Γt), one has λt,4 + λt,6 = −1, and
thus at least λt,4 or λt,6 is not equal to zero.

– If λt,6 
= 0, looking at the second and the third columns of Γt gives that:

λt,5 • (g′, h′) + λt,6 • (u′, e′) = (1, 1) , i.e., (u′, e′) = (g′λt,5/λt,6 , h′λt,5/λt,6),

or in other words (u′, e′) is a DDH tuple in basis (g′, h′);
– if λt,4 
= 0, looking at the last four columns of Γt gives that: λt,4 • Ĉ =

λt,4 • (u, e, 1, 1) is a linear combination of rows of Γ , hence Ĉ too. As a
consequence, by definition of L , C ∈ L .

6 Contrary to [2] however, our matrix Γt depends on the words Ct, which is why we
get this more efficient construction.
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Now, whatever the way the CRS is generated (whether (u′, e′) is a DDH tuple or
not), it is always possible to compute projH as follows, for a word C ∈ L with
witnesses r and b:

projH = λt • hp λt = (λ,−1, 0, 0) = (r, b,−rb,−1, 0, 0)

When the CRS is generated with the normal setup, as shown above, this is
actually the only way to compute projH, since (u′, e′) is not a DDH tuple and so
Ĉt is linearly dependent of the rows of Γt if and only if C ∈ L . On the opposite,
when the CRS is generated by the trapdoor setup with trapdoor r′, we can also
compute projH using the witness r′: projH = λ′

t•hp with λ′
t = (0, 0, 0, 0, r′,−1).

However, the latter way to compute projH gives the same result as the former
way, only if hpt,5 and hpt,6 involve the correct value for hk1. A malicious verifier
could decide to choose random hpt,5 and hpt,6, which would make λ′

t • hp look
random and independent of the real hash value!

Ensuring the Validity of Projection Keys. The above construction and
trapdoor would provide zero-knowledge if we could ensure that the projection
keys hp (generated by a potentially malicious verifier) is valid, so that, intuitively,
hpt,5 and hpt,6 involve the correct value of hk1. Using a zero-knowledge proof
(that hp derives from some hashing key hk) for that purpose would annihilate
all our efforts to avoid adding rounds and to work under plain DDH (interactive
ZK proofs introduce more rounds, and Groth-Sahai [32] NIZK would require
assumptions on bilinear groups). So we are left with doing the validity check
again with SPHFs.

Fortunately, the language of valid projection keys hp can be handled by the
generic framework, since a valid projection key hp is such that: hp = Γt • hk,
or in other words, if we transpose everything hpᵀ = hkᵀ • Γ ᵀ

t . This is exactly
the same as in Eq. (1), with Ĉ ↔ hpᵀ, Γ ↔ Γ ᵀ

t and witness λ ↔ hkᵀ. So we
can now define a smooth projective hash function on that language, where the
projection key is called transposed projection key tp, the hashing key is called
transposed hashing key tk, the hash value is called transposed hash value tH
and the projected hash value is called transposed projected hash value tprojH.

Finally, we could define an iZK, similarly to the one in Sect. 3.2, except, ipk
contains a transposed projection key tp (generated by the prover from a random
transposed hashing key tk), and c contains the associated transposed projected
hash value tprojH in addition to hp, so that the prover can check using tk that
hp is valid by verifying whether tprojH = tH or not.

An Additional Step. Unfortunately, we are not done yet, as the above
modification breaks the soundness property! Indeed, in this last construction,
the prover now learns an additional information about the hash value H:
tprojH = hkᵀtp, which does depend on the secret key hk. He could therefore
choose tp = Ĉᵀ

t , so that tprojH = hkᵀĈᵀ
t = Ĉthk is the hash value H = K of C

under hk.
We can fix this by ensuring that the prover will not know the extended word

Ĉt on which the SPHF will be based when he sends tp, using an idea similar to
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the 2-universality property of SPHF introduced by Cramer and Shoup in [18].
For that purpose, we extend Γt and make Ĉt depends on a random scalar ζ ∈ Zp

chosen by the verifier (and included in c).

Detailed Construction. Let us now formally show how to build an iZK from
any SPHF built from the generic framework of [7], following the previous ideas.
We recall that we consider a language L = iL , such that a word x = C is in
iL , if and only if Ĉ = θ(C) is a linear combination of the rows of some matrix
Γ ∈ G

k×n (which may depend on C). The coefficients of this linear combination
are entries of a row vector λ ∈ Z

1×k
p : Ĉ = λ • Γ , where λ = λ(iw) can be

computed from the witness iw for x.
The setup algorithms iSetup(crs) and iTSetup(crs) are defined as above

(page 13). We define an extended language using the generic framework:

θt(x, ζ) = Ĉt = (g′−1, 1, . . . , 1, g′−ζ , 1, . . . , 1) ∈ G
1×(2n+6)

Γt(x) =
(

Γ ′
t (x) 1
1 Γ ′

t (x)

)

∈ G
(2k+6)×(2n+6),

where Γ ′
t (x) is the matrix (initially called Γt(x) in Eq. (2), 1 is the matrix of

G
(2k+3)×(2n+3) with all entries equal to 1, and ζ is a scalar used to ensure the

prover cannot guess the word Ĉt which will be used, and so cannot choose
tp = Ĉt. As explained above, this language corresponds to a 2-universal SPHF
for the disjunction of the language of DDH tuples (g′, h′, u′, e′) and the original
language L . We write:

λt(ζ, iw) = (λ(iw),−1, 0, 0, ζλ(iw),−ζ, 0, 0)
λt(ζ, iT ) = (0, . . . , 0, r′,−1, 0, . . . , 0, ζr′,−ζ) with iT = r′,

so that:

Ĉt =

{
λt(ζ, iw) • Γt(x) if (g′, h′, u′, e′) is a DDH tuple, with witness iT
λt(ζ, iT ) • Γt(x) if x ∈ iL with witness iw.

The resulting iZK construction is depicted in Fig. 4. This is a slightly more
efficient construction that the one we sketched previously, where the prover does
not test anymore explicitly tprojH, but tprojH (or tH) is used to mask K. Thus,
tprojH no more needs to be included in c.

Variants. In numerous cases, it is possible to add the trapdoor in a slightly
more efficient way, if we accept to use word-dependent CRS. While the previous
construction would be useful for security in the UC framework [15], the more
efficient construction with a word-dependent CRS is enough in the stand-alone
setting. Independently of that improvement, it is also possible to slightly reduce
the size of hp, by computing ζ with an entropy extractor, and so dropping it
from hp. Details for both variants are given in the full version [8].
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iSetup(crs)

(g , h )
$← G

∗2

(r , s )
$← Z

2
p \ {(a, a) | a ∈ Zp}

(u , e ) ← (g
r

, h
s

) ∈ G
2

icrs ← (g , h , u , e )
return icrs

iTSetup(crs)

(g , h )
$← G

∗2

r
$← Zp

(u , e ) ← (g
r

, h
r

) ∈ G
2

icrs ← (g , h , u , e ); iT ← r
return (icrs, iT )

iKG(icrs, x, iw)

tk
$← Z

2k+6
p

ipk := tp ← Γt(x) • tk ∈ G
2n+6

isk := (x, tk, iw)
return (ipk, isk)

iTKG(icrs, x, iT )

tk
$← Z

2k+6
p

ipk := tp ← Γt(x) • tk ∈ G
2n+6

itk := (x, tk, iT )
return (ipk, itk)

iEnc(icrs, ipk, x)

tp ← ipk; hk $← Z
2n+6
p ; ζ $← Zp

hp ← Γt(x) • hk ∈ Z
2k+6
p

tprojH ← hk • tp ∈ G

H ← θt(x, ζ) • hk ∈ Zp

K ← H · tprojH ∈ G

c := (ζ, hp)
return (K, c)

iDec(icrs, isk, c)
(x, tk, iw) ← isk
(ζ, hp) ← c
tH ← hp • tk ∈ Zp

projH ← λt(ζ, iw) • hp ∈ G

return K := projH · tH ∈ G

iTDec(icrs, itk, c)
(x, tk, iT ) ← itk
(ζ, hp) ← c
tH ← hp • tk ∈ Zp

trapH := λt(ζ, iT ) • hp ∈ G

return K := trapH · tH ∈ G

Fig. 4. Construction of iZK

3.4 SSiZK Construction

Our SSiZK construction is similar to our iZK construction, except that, in addi-
tion both iSetup and iTSetup add the CRS icrs, a tuple (vk,i)

k=1,2
i=0,...,2K of group

elements constructed as follows: for i = 0 to 2K (with K the security parame-
ter): r′

i
$← Zp, v1,i ← g′r′

i , v2,i ← h′r′
i . We also define the two Waters func-

tions [45] Wk : {0, 1}2K → G, as Wk(m) = vk,0

∏2K
i=1 vmi

k,i , for any bitstring

m = m1‖ . . . ‖m2K ∈ {0, 1}2K. Finally, the CRS is also supposed to contain
a hash function H : {0, 1}∗ → {0, 1}2K drawn from a collision-resistant hash
function family HF .

Next, the language Lt is further extended by adding 3 rows and 2 columns
(all equal to 1 except on the 3 new rows) to both the sub-matrices Γ ′

t (x) of Γt(x),
where the 3 new rows are:

⎛

⎝
1 1 1 1 . . . 1 g′ h′

1 1 1 1 . . . 1 u′′ e′′

g′ 1 1 1 . . . 1 g′ 1

⎞

⎠ ∈ G
3×(n+5),

with u′′ = W1(H(�, x)) and e′′ = W2(H(�, x)). The vector Ĉt becomes
Ĉt = (g−1, 1, . . . , 1, g−ζ , 1, . . . , 1) (it is the same except for the number of 1’s).
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Due to lack of space, the full matrix is depicted in the full version [8], where the
security proof can also be found. The security proof requires that Setupcrs also
outputs some additional information or trapdoor Tcrs, which enables to check, in
polynomial time, whether a given word x is in iL or not.

Here is an overview of the security proof. Correctness, setup indistinguisha-
bility, and zero-knowledge are straightforward. Soundness follows from the fact
that (g′, h′, u′′, e′′) is a DDH-tuple, when parameters are generated by iSetup
(and also iTSetup actually), and so (g′, 1) is never in the subspace generated
by (g′, h′) and (u′′, e′′) (as h′ 
= 1), hence the corresponding language Lt is the
same as for our iZK construction. Finally, to prove simulation-soundness, we
use the programmability of the Waters function [33] and change the generation
of the group elements (vk,i) so that for the challenge proof (generated by the
adversary) (g′, h′, u′′, e′′) is not a DDH-tuple, while for the simulated proofs it is
a DDH-tuple. Then, we can change the setup to iSetup, while still being able to
simulate proofs. But in this setting, the word Ĉt for the challenge proof is no
more in Lt, and smoothness implies simulation-soundness.

4 Application to the Inner Product

In case of biometric authentication, a server S wants to compute the Hamming
distance between a fresh user’s feature and the stored template, but without
asking the two players to reveal their own input: the template y from the server
side and the fresh feature x from the client side. One can see that the Hamming
distance between the �-bit vectors x and y is the sum of the Hamming weights of x
and y, minus twice the inner product of x and y. Let us thus focus on this private
evaluation of the inner product: a client C has an input x = (xi)�

i=1 ∈ {0, 1}�

and a server S has an input y = (yi)�
i=1 ∈ {0, 1}�. The server S wants to learn

the inner product IP =
∑�

i=1 xiyi ∈ {0, . . . , �}, but nothing else, while the client
C just learns whether the protocol succeeded or was aborted.

Semi-Honest Protocol. C can send an ElGamal encryption of each bit under
a public key of her choice and then S can compute an encryption of IP+R, with
R ∈ Zp a random mask, using the homomorphic properties of ElGamal, and
sends this ciphertext. C finally decrypts and sends back gIP+R to S who divides
it by gR to get gIP. Since IP is small, an easy discrete logarithm computation
leads to IP.

Malicious Setting. To transform this semi-honest protocol into one secure
against malicious adversaries, we could apply our generic conversion presented in
the full version [8]. Here, we propose an optimized version of this transformation
for this protocol. We use the ElGamal scheme for the encryption Epk, where pk

is a public key chosen by C and the secret key is sk = (skj)
log p
j=1 , and the Cramer-

Shoup scheme [17] for commitments Com, of group elements or multiple group
elements with randomness reuse, where the public key is in the CRS. The CRS
additionally contains the description of a cyclic group and a generator g of this
group. The construction is presented on Fig. 5. First, the client commits to her
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C
pk, (ci = Epk(g

xi))i=1 S
i=1 cyii · Epk(g

R) ≡ Epk(g
IP+R)

gIP+R

C
pk,Com ((gskj )log p

j=1 ), (ci = (ui, ei) = Epk(g
xi))i=1 , ipkC

S
Com ((gyi)i=1, g

R, gR , uyi
i , eyii ), (û, ê), ipkS , cC

gR·IP+R · KS , cS

Fig. 5. Semi-honest and malicious protocols for secure inner product computation

secret key (this is the most efficient alternative as soon as n 
 �) and sends
encryptions (ci)i≤n of her bits. Then, the server commits to his inputs (yi)i

and to two random integers (R,R′), computes the encryption (û, ê) of gR·IP+R′
),

re-randomized with a randomness ρ, masked by an iZK to ensure that the ci’s
encrypt bits under the key pk whose corresponding secret key sk is committed
(masking one of the two components of an ElGamal ciphertext suffices). The
client replies with gR·IP+R′

, masked by a SSiZK (this is required for UC security)
to ensure that the Com(gyi) contains bits, and that the masked ciphertext has
been properly built. The server then recovers gR·IP+R′

, removes R and R′, and
tries to extract the discrete logarithm IP. If no solution exists in {0, . . . , �}, the
server aborts. This last verification avoids the 2-round verification phase from
our generic compiler: if the client tries to cheat on R · IP + R′, after removing
R and R′, the result would be random, and thus in the appropriate range with
negligible probability �/p, since � is polynomial and p is exponential. We prove in
the full version [8] that the above protocol is secure against malicious adversaries
in the UC framework with static corruptions, under the plain DDH assumption,
and in the common reference string setting.

Efficiency and Comparison with Other Methodologies. In the full ver-
sion [8], we provide a detailed analysis of our inner product protocol in terms of
complexity. Then, we estimate the complexity of this protocol when, instead of
using iZK, the security against malicious adversaries in the UC model is ensured
by using the Groth-Sahai methodology [32] or Σ-protocols. In this section, we
sum up our comparisons in a table. The notation > indicates that the given
complexity is a lower bound on the real complexity of the protocol (we have
not taken into account the linear blow-up incurred by the conversion of NIZK
into SS-NIZK), and 
 indicates a very loose lower bound. We stress that with
usual parameter, an element of G2 is twice as big as an element of G1 (or G)
and the number of rounds in the major efficiency drawback (see Sect. 1). The
efficiency improvement of iZK compared to NIZK essentially comes from their
“batch-friendly” nature.

Moreover, our iZKs do not require pairings, which allows us to use more
efficient elliptic curves than the best existing curves for the Groth-Sahai
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Proofs Pairings Exponentiations Communication Rounds

Σ-proofs 0 38� 20� 5

GS proofs >14� �28�(G1) + 6�(G2) >11�(G1) + 10�(G2) 3

iZK (this paper) 0 67� 21� 3

methodology. With a reasonable choice of two curves, one without pairing and
one with pairing, for 128 bits of security, we get the following results: (counting
efficiency as a multiple of the running time of an exponentiation in G1).

Curve\Efficiency Pairings Exponentiations in G1 Exponentiations in G2

Curve25519 [10] no pairings 1 ✗

[11] ≈8 ≈3 ≈6
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31. Granger, R., Kleinjung, T., Zumbrägel, J.: Breaking ‘128-bit Secure’ supersingular
binary curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS,
vol. 8617, pp. 126–145. Springer, Heidelberg (2014)

32. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

33. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. J.
Cryptol. 25(3), 484–527 (2012)

34. Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using sym-
metric cut-and-choose. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II.
LNCS, vol. 8043, pp. 18–35. Springer, Heidelberg (2013)

35. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for
secure computation. In: Kleinberg, J.M. (ed.) 38th ACM STOC, pp. 99–108. ACM
Press, May 2006

36. Jarecki, S.: Practical covert authentication. In: Krawczyk, H. (ed.) PKC 2014.
LNCS, vol. 8383, pp. 611–629. Springer, Heidelberg (2014)

37. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adver-
saries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 1–17. Springer, Heidelberg (2013)

38. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

39. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer,
Heidelberg (2011)

40. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to continual
leakage on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol.
6597, pp. 89–106. Springer, Heidelberg (2011)

41. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990

42. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

43. Shelat, A., Shen, C.: Two-output secure computation with malicious adversaries.
In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405.
Springer, Heidelberg (2011)

44. Shelat, A., Shen, C.H.: Fast two-party secure computation with minimal assump-
tions. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 13, pp. 523–534.
ACM Press, November 2013



Implicit Zero-Knowledge Arguments 129

45. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

46. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986


	Implicit Zero-Knowledge Arguments and Applications to the Malicious Setting
	1 Introduction
	2 Definition of Implicit Zero-Knowledge Arguments
	2.1 Notations
	2.2 Definition
	2.3 Security Requirements

	3 Construction of Implicit Zero-Knowledge Arguments
	3.1 Review of the Generic Framework of SPHFs over Cyclic Groups
	3.2 Limitations of Smooth Projective Hash Functions
	3.3 iZK Construction
	3.4 SSiZK Construction

	4 Application to the Inner Product
	References


