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Abstract. Gentry, Sahai and Waters recently presented the first (lev-
eled) identity-based fully homomorphic (IBFHE) encryption scheme
(CRYPTO 2013). Their scheme however only works in the single-identity
setting; that is, homomorphic evaluation can only be performed on
ciphertexts created with the same identity. In this work, we extend their
results to the multi-identity setting and obtain a multi-identity IBFHE
scheme that is selectively secure in the random oracle model under the
hardness of Learning with Errors (LWE). We also obtain a multi-key
fully-homomorphic encryption (FHE) scheme that is secure under LWE
in the standard model. This is the first multi-key FHE based on a well-
established assumption such as standard LWE. The multi-key FHE of
López-Alt, Tromer and Vaikuntanathan (STOC 2012) relied on a non-
standard assumption, referred to as the Decisional Small Polynomial
Ratio assumption.

1 Introduction

Fully homomorphic encryption (FHE) is a cryptographic primitive that facil-
itates arbitrary computation on encrypted data. Since Gentry’s breakthrough
realization of FHE in 2009 [1], many improved variants have appeared in the
literature [2–6].

A leveled FHE scheme allows an evaluator to evaluate a circuit of limited
depth L. The parameter L must be specified in advance when generating the
public parameters of the scheme, whose size may depend on L. Furthermore, a
leveled homomorphic scheme allows L to be polynomial in the security parame-
ter. A “pure” fully homomorphic encryption scheme allows circuits of unlimited
depth to be evaluated. However, for many applications in practice, a leveled
scheme is adequate.

Identity-Based Encryption (IBE) is centered around the notion that a user’s
public key can be efficiently derived from an identity string and system-wide
public parameters / master public key. The public parameters are chosen by a
trusted authority (TA) along with a secret trapdoor (master secret key), which
is used to extract secret keys for user identities. The first secure IBE schemes
were presented in 2001 by Boneh and Franklin [7] (based on bilinear pairings),
and Cocks [8] (based on the quadratic residuosity problem).
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At Crypto 2013, Gentry, Sahai and Waters presented the first (leveled)
identity-based fully homomorphic encryption (IBFHE) scheme [6]. Their scheme
is secure under the hardness of the Learning with Errors (LWE) problem, a
problem introduced by Regev [9] that has received considerable attention in
cryptography due to a known worst-case reduction to a hard lattice problem.

Gentry, Sahai and Waters described a compiler [6], which we call the GSW
compiler, to transform an LWE-based IBE satisfying certain properties into
a leveled IBFHE. They showed that all known LWE-based IBE schemes are
compatible with their compiler. However, the GSW compiler only works in the
single-identity setting. In other words, the resulting IBFHE can only evaluate
on ciphertexts created with the same identity. Recently, a multi-identity IBFHE
was described in [10], but that construction relies heavily on indistinguishability
obfuscation [11], and is therefore highly inefficient at the present time. Further-
more, security cannot be based on a well-established computational problem.
Our construction does not require indistinguishability obfuscation and is the
first multi-identity IBFHE, to the best of our knowledge, whose security can be
based on well-established problem.

Remark 1. Like [6], we omit the qualifier “leveled” for the rest of this paper
since we focus only on leveled (IB)FHE in this work.

Note that our multi-identity and multi-key leveled IBFHE are 1-hop homomor-
phic insofar as after evaluation is complete, no further homomorphic evaluation
can be carried out.

1.1 Multi-identity Setting

Consider the following simplified scenario. Alice and Bob work in an organization
C that avails of a semi-trusted cloud server E. Let a and b denote the identity
strings of Alice and Bob respectively. Their organization C serves as a trusted
authority and issues them secret keys for their respective identity strings. Public
users can send confidential data to Alice and Bob by encrypting it with their
identity string and the master public key (public parameters) published by C.
Suppose this encrypted data is sent by external users to the cloud server E.
Furthermore, suppose some entity would like to perform some computation on
E using encrypted data intended for Alice and encrypted data intended for Bob.
The result should only be decryptable (assuming C is honest) by a collaborative
effort made by Alice and Bob; they can run a multi-party computation protocol
to collaboratively decrypt the result without leaking their secret keys to each
other.

Let ca and cb be ciphertexts created with identities a and b respectively.
The goal is to allow computation on ca and cb together. Assuming this could be
achieved, let c′ denote the ciphertext that encrypts the result of the computation.
Intuitively, we expect the size of c′ to depend on the number of distinct identities
(2 in our example above i.e. a and b) because information about each identity
must be “encoded” in c′. But like the single-identity setting, the size of c′ should
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be independent of the size of the circuit evaluated. Of course we can naturally
extend this notion to ciphertexts created under k distinct identities.

In the syntax of multi-identity IBFHE, a parameter D representing the num-
ber of distinct identities tolerated in an evaluation is specified in advance of
generating the public parameters. Like the parameter L (the circuit depth sup-
ported), the size of the public parameters may depend on D. A multi-identity and
multi-attribute IBFHE and ABFHE that rely on indistinguishability obfuscation
were described in [12].

Disjunctive Policies. There is another way of viewing multi-identity IBFHE,
which might be more useful in some settings. It was mentioned in [13]1 that
access policies consisting of disjunctions can be achieved with IBE. In this case,
to issue a secret key for a policy f̂(X) � X = “MATH” OR X = “CS”, the
TA issues a secret key for identity string “MATH” and a secret key for identity
string “CS”. In this case, we view the “identities” as attributes.

Suppose the TA issues a secret key SKf̂ = {sk“MATH”, sk“CS”} for f̂ to a
professor working in both the Mathematics and Computer Science departments
in a university; this secret key comprises an IBE secret key for identity string
“MATH” and an IBE secret key for identity string “CS”. The professor can
decrypt the result of computation performed on ciphertexts with both attributes.
This matches our intuition because her policy f̂ permits her access to both
attributes.

1.2 Our Results

Multi-identity IBFHE. Our central result in this paper is informally sum-
marized in the following theorem statement. The theorem is formally stated and
proven later in AppendixA.1.

Theorem 1 (Informal). There exists a multi-identity IBFHE scheme that is
selectively secure under the Learning With Errors problem in the random oracle
model.

Multi-key FHE. Our compiler for multi-identity IBFHE also works in the
public-key setting. As a result, we can obtain a multi-key FHE [14] from LWE
in the standard model. In fact, multi-identity IBFHE can be seen as an identity-
based analog to multi-key FHE. The syntax of multi-key FHE from [14] entails
a parameter M , which specifies the maximum number of independent keys tol-
erated in an evaluation. The size of the parameters and ciphertexts are allowed
to depend polynomially on M . Note that M is fixed and specified in advance of
generating the scheme’s parameters. To the best of our knowledge, our multi-key
FHE scheme is the first such scheme (for a non-constant number of keys) that
is based on a well-established problem such as LWE; the construction from [14]

1 The paper [13] attributes this observation to Brent Waters.
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relies on a non-standard computational assumption referred to therein as the
Decisional Small Polynomial Ratio (DSPR) assumption. Our scheme positively
answers the question raised in [14] as to whether other multi-key FHE schemes
exist supporting polynomially-sized M .

1.3 Our Approach: Intuition

We now give an informal sketch of our approach to achieving multi-identity
IBFHE. This section is intended to provide an intuition and many of the details
are deferred to later in the paper. We remind the reader that a matrix M is
denoted by an uppercase symbol written in boldface, and a vector v is denoted
by a lowercase symbol written in boldface. The i-th element of v is denoted by
vi. The inner product of two vectors a, b ∈ Z

n
q for some dimension n is written

as 〈a, b〉.

GSW Single-Identity IBFHE. We start by briefly discussing the homomor-
phic properties of the GSW IBFHE schemes from [6]. This discussion applies
to any IBFHE constructed with their compiler. A ciphertext in their scheme is
an N × N matrix C over Zq whose entries are “small” with respect to q. Note
that N is a parameter that will be discussed later. A secret key for an identity
id is an N -dimensional vector vid ∈ Z

N
q with at least one “large” coefficient; let

this coefficient (say the i-th one) be vid,i ∈ Zq. The scheme can encrypt “small”
messages μ; an example to keep in mind is a message in {0, 1}. We say the matrix
C encrypts μ under identity id if C · vid = μ · vid + e ∈ Z

N
q where e is a “small”

noise vector (i.e. roughly speaking, each of its coefficients is much less than q).
As such, vid is an approximate eigenvector for the matrix C with eigenvalue μ.

Homomorphic Operations
Suppose C1 and C2 encrypt μ1 and μ2 respectively; that is, Cj ·vid = μj ·vid+ej

for j ∈ {1, 2}. An additive homomorphism is supported. Let C+ = C1 + C2.
Then we have C+ ·vid = (μ1 +μ2) ·vid +(e1 +e2). The error only grows slightly
here, and as long as it remains “small”, we can recover the sum (μ1 + μ2).
A multiplicative homomorphism is also supported. Let C× = C1 · C2. Then we
have

C× · vid = C1 · (μ2 · vid + e2)
= μ2 · (μ1 · vid + e1) + C1 · e2
= μ1 · μ2 · vid + μ2 · e1 + C1 · e2
= μ1 · μ2 · vid + “small”.

Different Identities. Now we give a flavor of how our multi-identity scheme
operates. Suppose C1 encrypts μ1 under identity id1 and C2 encrypts μ2 under
identity id2. Let v1 and v2 be the secret key vectors for id1 and id2 respectively.
It holds that C1 ·v1 = μ1 ·v1 +e1 and C2 ·v2 = μ2 ·v2 +e2 where e1,e2 ∈ Z

N
q

are short vectors.
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We would like to be able to perform homomorphic computation on both C1

and C2 together; that is, use them both as inputs to the same circuit. Here we
denote the circuit by C ∈ C. Suppose we could produce a resulting 2N × 2N
ciphertext matrix Ĉ′ ∈ Z

2N×2N
q that encrypts μ′ = C(μ1, μ2). More precisely,

suppose that

Ĉ′ ·
[
v1

v2

]
= μ′ ·

[
v1

v2

]
+ e′

where e′ is “short”. Note that the size of Ĉ′ just depends (polynomially) on the
number of distinct identities (2 in this example).

Let v ∈ Z
2N
q be the vertical concatenation of the two vectors v1 and v2.

We could exploit the homomorphic properties described above to obtain Ĉ′ if
we could somehow transform C1 and C2 into 2N × 2N matrices Ĉ1 and Ĉ2

respectively such that Ĉj · v = μj · v + “small” for j ∈ {1, 2}. Technically this
transformation turns out to be difficult; we show how to abstractly accomplish
it in Sect. 3 and concretely in Sect. 4.

2 Preliminaries

2.1 Notation

A quantity is said to be negligible with respect to some parameter λ, written
negl(λ), if it is asymptotically bounded from above by the reciprocal of all poly-
nomials in λ. We use the notation [k] for an integer k to denote the set {1, . . . , k}.

Distributions. For a probability distribution D, we denote by x
$←− D the

fact that x is sampled according to D. We overload the notation for a set S

i.e. y
$←− S denotes that y is sampled uniformly from S. Let D0 and D1 be

distributions. We denote by D0 ≈
C

D1 and the D0 ≈
S

D1 the facts that D0

and D1 are computationally indistinguishable and statistically indistinguishable
respectively.

Definition 1 (B-Bounded Distributions (Definition 2 [6])). A distribu-
tion ensemble {Dn}n∈N, supported over the integers, is called B-bounded if

Pr
e

$←−Dn

[|e| > B] = negl(n).

Matrices and Vectors. A matrix M is denoted by an uppercase symbol writ-
ten in boldface, and a vector v is denoted by a lowercase symbol written in
boldface. The i-th element of v is denoted by vi. The inner product of two
vectors a, b ∈ Z

n
q for some dimension n is written as 〈a, b〉.
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2.2 Multi-identity IBFHE

Definition 2. A Multi-Identity (Leveled) IBFHE scheme is defined with respect
to a message space M, an identity space I, a class of circuits C ⊆ M∗ → M and
ciphertext space C. A Multi-Identity IBHE scheme is a tuple of PPT algorithms
(Setup,KeyGen,Encrypt,Decrypt,Eval) defined as follows:

• Setup(1λ, L, D):
On input (in unary) a security parameter λ, a number of levels L (circuit
depth to support) and the number of distinct identities D that can be tolerated
in an evaluation, generate public parameters PP and a master secret key MSK.
Output (PP,MSK).

• KeyGen(MSK, id):
On input master secret key MSK and an identity id: derive and output a secret
key skid for identity id.

• Encrypt(PP, id,m):
On input public parameters PP, an identity id, and a message m ∈ M, output
a ciphertext c ∈ C that encrypts m under identity id.

• Decrypt(skid1 , . . . , skidd , c):
On input d ≤ D secret keys skid1 , . . . , skidd for (resp.) identities id1, . . . , idd and
a ciphertext c ∈ C, output m′ ∈ M if c is a valid encryption under identities
id1, . . . , idd ; output a failure symbol ⊥ otherwise.

• Eval(PP, C, c1, . . . , c�): On input public parameters PP, a circuit C ∈ C and
ciphertexts c1, . . . , c� ∈ C, output an evaluated ciphertext c′ ∈ C.

More precisely, the scheme is required to satisfy the following properties:

• Over all choices of (PP,MSK) ← Setup(1λ), d ≤ D, id1, . . . , idd ∈ I, C :
M� → M ∈ {C ∈ C : depth(C) ≤ L}, j1, . . . , j� ∈ [d ], μ1, . . . , μ� ∈ M,
ci ← Encrypt(PP, idji

, μi) for i ∈ [�], and c′ ← Eval(PP, C, c1, . . . , c�):
• Correctness

Decrypt(sk1, . . . , skd , c′) = C(μ1, . . . , μ�) (2.1)

for any ski ← KeyGen(MSK, idi) for i ∈ [k]
• Compactness

|c′| ≤ poly(λ,L, d ) (2.2)

where d ≤ D is the number of distinct identities; that is, d = |{j1, . . . , i�}|.
The size of evaluated ciphertexts in our construction grows with d ≤ D.

The security definition for multi-identity IBFHE is the same as that for
single-identity IBFHE. In this work, we focus on IND-sID-CPA security whose
definition remains the same for the multi-identity setting.
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2.3 Learning with Errors

The Learning with Errors (LWE) problem was introduced by Regev [9]. The goal
of the computational form of the LWE problem is to determine an n-dimensional
secret vector s ∈ Z

n
q given a polynomial number of samples (ai, bi) ∈ Z

n+1
q where

ai is uniform over Z
n
q and bi ← 〈ai, s〉 + ei ∈ Zq is the inner product of ai and

si perturbed by a small error ei ∈ Z that is sampled from a distribution χ over
Z. We call the distribution χ an error distribution (or noise distribution). The
decision variant of the problem is to distinguish such samples (ai, bi) ∈ Z

n+1
q

from uniform vectors over Zn+1
q . The decisional variant is more commonly used in

cryptography, and is most relevant to our own work. As a result, without further
qualification, when we refer to LWE throughout this thesis we are referring to
the decisional variant.

Definition 3 ((Decisional) Learning with Errors (LWE) Problem [9]).
Let λ be a security parameter. For parameters n = n(λ), q = q(λ) ≥ 2, and
a distribution χ = χ(λ) over Z, the LWEn,q,χ problem is to distinguish the
following distributions:

• Distribution 0: The i-th sample (ai, bi) ∈ Z
n+1
q is computed by uniformly

sampling ai
$←− Z

n
q and bi

$←− Zq.

• Distribution 1: Generate uniform vector s
$←− Z

n
q . The i-th sample (ai, bi) ∈

Z
n+1
q is computed by uniformly sampling ai

$←− Z
n
q , sampling an error value

ei
$←− χ and computing bi ← 〈ai, s〉 + ei.

Definition 4 (B-Bounded Distributions (Definition 2 [6])). A distribu-
tion ensemble {Dn}n∈N, supported over the integers, is called B-bounded if

Pr
e

$←−Dn

[|e| > B] = negl(n).

Definition 5 (GapSVPγ). Let n be a lattice dimension, and let d be a real
number. Then GapSVPγ is the problem of deciding whether an n-dimensional
lattice has a nonzero vector shorter than d (an algorithm should accept in this
case) or no nonzero vector shorter than γ(n) · d (an algorithm should reject in
this case); an algorithm is allowed to error otherwise.

Theorem 2 (Theorem 1 [6]). Let q = q(n) ∈ N be either a prime power or a
product of small (poly(n)) distinct primes, and let B ≥ ω(log n) ·√n. Then there
exists an efficient sampleable B-bounded distribution χ such that if there is an
efficient algorithm that solves the average-case LWEn,q,χ problem, then:

• There is an efficient quantum algorithm that solves GapSVPÕ(nq/B) on any
n-dimensional lattice.

• If q>Õ(2n/2), then there is an efficient classical algorithm for GapSVPÕ(nq/B)

on any n-dimensional lattice.
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2.4 GSW Approximate Eigenvector Cryptosystem

Recall our brief overview of the GSW IBFHE construction earlier from Sect. 1.3.
The following exposition describes this construction in more detail. Note that
the public-key GSW scheme is similar to the identity-based variant. As such, to
simplify the notation, the following discussion deals with the public-key setting,
but the ideas apply to both.

Definition 6 (Sect. 1.3.2 from [6]). B-boundedness: Let B < q be an inte-
ger. Let C be a ciphertext matrix that encrypts μ. Let v be a secret key vector
such that C · v = μ · v + e. Then C is said to be B-bounded (with respect to v)
if the magnitude of μ is at most B, the magnitude of all the entries of C is at
most B, and ‖|e‖|∞ ≤ B.

Let C1 and C2 be two B-bounded ciphertext matrices. Then C+ = C1 + C2 is
2B-bounded. Furthermore, C× = C1 ·C2 is (N +1)B2

-bounded. As the authors
of [6] point out, the error grows worse than B2L

, where L is the multiplicative
depth of a circuit being evaluated. The modulus q can be chosen to exceed
this bound, but we must be careful to ensure that the ratio q/B is at most
subexponential in N to guarantee security (see Theorem 2). Hence, only circuits
of logarithmic multiplicative depth can be evaluated. This gives us a somewhat-
homomorphic scheme.

To evaluate deeper circuits, namely those with polynomial multiplicative
depth, we must keep the entries of the ciphertext matrices “small”. To achieve
this, Gentry, Sahai and Waters propose a technique called flattening. Consider
the following definition.

Definition 7 (Sect. 1.3.3 from [6]). B-strong-boundedness: Let B < q be
an integer. Let C be a ciphertext matrix that encrypts μ. Let v be a secret key
vector such that C ·v = μ ·v+e. Then C is said to be B-strongly-bounded (with
respect to v) if the magnitude of μ is at most 1, the magnitude of all the entries
of C is at most 1, and ‖|e‖|∞ ≤ B.

An example of a B-strongly-bounded ciphertext is a matrix C with binary entries
that encrypts a plaintext bit μ ∈ {0, 1}, provided the coefficients of its corre-
sponding e vector have magnitude at most B. Let C1 and C2 be ciphertext
matrices that encrypt μ1 ∈ {0, 1} and μ2 ∈ {0, 1} respectively. A NAND gate
can be evaluated on two ciphertexts C1 and C2 as follows:

C3 = IN − C1 · C2,

where IN is the N × N identity matrix. The matrix C3 encrypts μ1NANDμ2 ∈
{0, 1}. Now if C1 and C2 are B-strongly-bounded, then the coefficients of C3’s
error vector have magnitude at most (N +1)B, which is in contrast to (N +1)B2

above where C1 and C2 were just B-bounded. Suppose there were some way to
preserve strong-boundedness in C3 (i.e. to ensure the magnitude of its entries
remained at most 1). Then it would be the case that C3 is (N + 1)B-strongly-
bounded. As a result, the error level would grow to at most (N + 1)LB when
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evaluating a circuit of NAND gates of depth L. Therefore it would be possible to
evaluate circuits of polynomial depth by letting q/B be subexponential. However,
how can we preserve strong-boundedness? It is necessary to introduce some
basic operations to help describe how strong boundedness is preserved. These
operations serve as useful tools for our own constructions later.

Basic Operations. Let �q = �lg q� + 1. Let v ∈ Z
m′
q be a vector of some

dimension m′ over Zq. Let N = m′ · �q.

• BitDecomp(v): We define an algorithm BitDecomp that takes as input a vector
v ∈ Z

m′
q and outputs an N -dimensional vector (v1,0, . . . , v1,�q−1, . . . , vk,0, . . . ,

vk,�q−1) where vi,j is the j-th bit in vi’s binary representation (ordered from least
significant to most significant).

• BitDecomp−1(v′): We define an “inverse” algorithm BitDecomp−1 that takes
an N -dimensional vector v′ = (v′

1,0, . . . , v
′
1,�q−1, . . . , v

′
k,0, . . . , v

′
k,�q−1), and

outputs a m′-dimensional vector (
∑�q−1

j=0 2j · v′
1,j , . . . ,

∑�q−1
j=0 2j · v′

k,j). Note
that the input vector v′ need not be binary, the algorithm is well-defined for
any input vector in Z

N
q .

• Flatten(v′): The algorithm Flatten takes as input an N -dimensional vector v′ ∈
Z

N
q and outputs an N -dimensional binary vector BitDecomp(BitDecomp−1

(v′) ∈ {0, 1}N .
• Powersof2(v): The algorithm Powersof2 takes a m′-dimensional vector v ∈

Z
m′
q and outputs anN -dimensional vector (v1, 2v1, . . . , 2�q−1v1, . . . , vk, 2vk, . . . ,

2�q−1vk).

We also define BitDecomp, BitDecomp−1 and Flatten for matrix inputs; in this
case, the respective algorithm is applied to each row independently.

We restate the following straightforward facts from [6] (Sect. 1.3.3): Let a, b ∈
Z

m′
q be m′-dimensional vectors, and let a′ ∈ Z

N
q be an N -dimensional vector:

• 〈BitDecomp(a),Powersof2(b)〉 = 〈a, b〉.
• 〈a′,Powersof2(b)〉 = 〈BitDecomp−1(a′), b〉 = 〈Flatten(a′),Powersof2(b)〉.

Flattening. With the help of BitDecomp, BitDecomp−1, Powersof2 and Flatten,
we can tackle the problem of preserving strong boundedness after a NAND
operation. In order to make the coefficients of C3 above have magnitude at
most 1, Gentry, Sahai and Waters propose to apply Flatten to the matrix C3.
Thus, we compute CNAND ← Flatten(C3) to produce the output ciphertext of
the NAND gate. Now for this to work, the vector v must have a special form.
More precisely, v is computed as Powersof2(s) ∈ Z

N
q for some secret key vector

s ∈ Z
m′
q for some m′. Furthermore, the parameter N is defined as N = m′ · �q,

where �q = �lg q� + 1. With this form of secret key vector v, it holds that
Flatten(C) · v = C · v for any N × N matrix C. So CNAND will have entries in
{0, 1} and thus be strongly-bounded.
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2.5 GSW Compiler for IBE in the Single-Identity Setting

The Gentry, Sahai and Waters (GSW) compiler from Crypto 2013 [6] (Sect. 4)
allows transformation of an IBE scheme based on the Learning with Errors
(LWE) problem into a related IBFHE scheme, provided the IBE scheme satisfies
the following properties:

1. Property 1 (Ciphertext and Secret Key Vectors): The secret key for
identity id and a ciphertext created under id are vectors sid, cid ∈ Z

m′
q for

some m′. The first coefficient of sid is 1.
2. Property 2 (Small Dot Product): If cid encrypts 0, then 〈cid, sid〉 is

“small”.
3. Property 3 (Security): Encryptions of 0 are indistinguishable from uniform

vectors over Zq under the hardness of LWE.

As noted in [6] all known LWE-based IBE schemes satisfy the above properties
e.g.: [15–18].

Let E be an IBE satisfying the Properties 1-3 above. Then E can be trans-
formed into a single-identity IBFHE scheme E ′.

The public parameters PP generated by E .Setup includes a modulus q and
an integer m′ representing the length of both secret key and ciphertext vectors
in E . Let �q = �lg q� + 1 and N = m′ × �q.

To encrypt a message μ ∈ {0, 1} under identity id ∈ I, the encryptor
generates N encryptions of 0 using E . More precisely, she computes ei ←
E .Encrypt(PP, id, 0) ∈ Z

m′
q for every i ∈ [N ]. The set of N vectors e1, . . . ,eN

form the rows of an N ×m′ matrix E ∈ Z
N×m′
q . Finally the encryptor computes

the N × N ciphertext matrix C ∈ {0, 1}N×N as follows

C ← Flatten(μ · IN + BitDecomp(E))

where IN denotes the N × N identity matrix.
A secret key in E ′ for identity id is an N -dimensional vector vid derived from

a secret key sid for identity id in E . This is computed as vid ← Powersof2(sid).
Decryption of a ciphertext C with vid is as follows. By construction of vid, it
has at least one “large” coefficient; denote this by vid,i, To perform decryption,
we take the i-th row ci of matrix C, compute the inner product x ← 〈ci,vid〉 =
μ · vid,i + ei and output the plaintext μ ← �x/vid,i�. This is correct because

C · vid = μ · vid + E · sid = μ · vid + “small”

where E · sid is “small” as a consequence of Property 2. It is also easy to see
that semantic security for E ′ follows immediately from the fact that E satisfies
Property 3.

3 A Compiler for Multi-identity Leveled IBFHE

In this section, we present a new compiler that can transform an LWE-based IBE
into a multi-identity IBFHE. As we will see, achieving multi-identity IBFHE is
far more difficult than single-identity IBFHE.
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3.1 Intuition

Suppose E is an LWE-based IBE that satisfies properties 1 - 3 above. We can
apply the GSW compiler to yield an IBFHE scheme E ′ in the single-identity set-
ting. Our goal is to construct a compiler for the multi-identity setting. Consider
two ciphertexts C1 and C2 that encrypt μ1 and μ2 under identities id1 and id2
respectively. Let s1 and s2 be secret keys in the scheme E for identities id1 and
id2 respectively. Accordingly, a decryptor can compute v1 ← Powersof2(s1) and
v2 ← Powersof2(s2). It holds that C1 ·v1 = μ1 ·v1+e1 and C2 ·v2 = μ2 ·v2+e2
where e1,e2 ∈ Z

N
q are short vectors.

We would like to be able to perform homomorphic computation on both C1

and C2 together; that is, use them both as inputs in the same circuit. Here we
denote the circuit by C ∈ C. We expect the size of the resulting ciphertext to
grow if id1 �= id2. This is intuitive because the resulting ciphertext must encode
information about both identities. Assume that id1 �= id2. The compactness con-
dition of multi-identity IBFHE allows the size of the resulting ciphertext to
depend polynomially on the number of distinct identities d (in this case d = 2).
Suppose we could produce a resulting 2N × 2N ciphertext matrix C′ ∈ Z

2N×2N
q

that encrypts μ′ = C(μ1, μ2). More precisely, suppose that

C′ ·
[
v1

v2

]
= μ′ ·

[
v1

v2

]
+ e′

where e′ is “short”. The size of the ciphertext matrix is quadratic in the number
of distinct identities, and thus satisfies the compactness condition. How can such
a matrix C′ be computed?

The main idea behind our approach is to transform each input ciphertext
matrix (i.e. C1 and C2 in this example) into a corresponding d N ×d N “expanded
matrix” where d is the number of distinct identities (i.e. d = 2 in our example).

Consider any input ciphertext matrix C ∈ Z
N×N
q that encrypts a plaintext

μ under identity id1. We denote by Ĉ ∈ Z
2N×2N
q its corresponding “expanded

matrix”. We require this expanded matrix to satisfy

Ĉ ·
[
v1

v2

]
= μ ·

[
v1

v2

]
+ “small”.

Now Ĉ can be viewed as consisting of 2 × 2 submatrices in Z
N×N
q . We denote

the submatrix on row i and column j as Ĉi,j ∈ Z
N×N
q . To satisfy the “top” part

of the above equation, it is sufficient to set Ĉ1,1 ← C and Ĉ1,2 ← 0. To satisfy
the “bottom” part of the equation, we need to find matrices X,Y ∈ {0, 1}N×N

such that
X · v1 + Y · v2 = μ · v2 + “small”.

We refer to a pair of solution matrices (X,Y) as a “mask” because of the fact
that they hide the plaintext μ from a party that does not have a secret key for
the recipient identity. In this section, we will abstract over the process of finding
solution matrices X and Y with respect to arbitrary identities. Towards this
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goal, we introduce an abstraction called a masking system. In short, a masking
system allows an encryptor to produce information U ∈ {0, 1}∗ that allows an
evaluator to derive matrices X and Y that solve the above equation with respect
to any arbitrary identity. Informally, an adversary without a secret key for the
recipient identity (id1 in the above example) learns nothing about μ given U , but
can still efficiently derive solution matrices X and Y with respect to any chosen
identity. This notion is formalized in the next section, where we present our
compiler. A concrete construction of a masking system is presented in Sect. 4.2.

3.2 Abstract Compiler

We start by describing an abstract framework for multi-identity IBFHE from
Learning with Errors (LWE). Our compiler uses the aforementioned abstraction
which we call a masking system. An additional prerequisite for an IBE scheme E
(beyond Properties 1-3) to work with our compiler is that there exists a masking
system MSE for E . First we provide a formal definition of a masking system.

Definition 8. Let E be an IBE scheme satisfying Properties 1-3. A masking
system for E is a pair of PPT algorithms (GenUnivMask,DeriveMask) defined as
follows:

• GenUnivMask(PP, id, μ) takes as input public parameters PP for E, an identity
id ∈ I and a message μ ∈ {0, 1}, and outputs U ∈ {0, 1}∗ (referred to as a
universal mask).

• DeriveMask(PP, U, id′) takes as input public parameters PP for E, a universal
mask U ∈ {0, 1}∗ and an identity id′ ∈ I, and outputs a pair of matrices
(X,Y) ∈ (ZN×N

q )2.

A masking system (GenUnivMask,DeriveMask) must satisfy the following
properties:

• Correctness: Let w(·) be a polynomial associated with the masking system.
Let w = w(λ). We refer to w as the error expansion factor. For correctness,
it is required that for any (PP,MSK) ← E .Setup(1λ), any identities id, id′ ∈
I, any secret keys vid ← Powersof2(E .KeyGen(MSK, id)) ∈ Z

N
q and vid′ ←

Powersof2(E .KeyGen(MSK, id′)) ∈ Z
N
q , and any μ ∈ {0, 1}, and over all

• U ← GenUnivMask(PP, id, μ),
• (X,Y) ← DeriveMask(PP, U, id′)

it holds that
Xvid + Yvid′ = μ · vid′ + e (3.1)

where ‖|e‖|∞ ≤ w · B.
• Security: The masking system is said to be secure if all PPT adversaries have

a negligible advantage in the following modified IND-X-CPA game for E where
X ∈ {sID, ID}. The only change in the security game is that the adversary is
given U∗ ← GenUnivMask(PP, id∗, μb) in place of the challenge ciphertext in

the original game, where b
$←− {0, 1} is the challenger’s random bit, id∗ is the

adversary’s target identity, and μ0 and μ1 are the challenge messages chosen
by the adversary.
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Our compiler can compile an IBE scheme E into a IBFHE scheme E ′ if the
following conditions are met (for completeness, we restate Properties 1-3 above):

CP.1: (Ciphertext and secret key vectors): The secret key for identity id
and a ciphertext created under id are vectors sid, cid ∈ Z

m′
q for some m′.

The first coefficient of sid is 1.
CP.2: (Small Dot Product): If cid encrypts 0 under identity id, then e =

〈cid, sid〉 is “small” where sid is generated as in CP.1. Formally, e is
B-bounded; that is, ‖|e‖|∞ ≤ B.

CP.3: (Security): Encryptions of 0 are indistinguishable from uniform vectors
over Zq under the hardness of LWE.

CP.4: (Masking System): There exists a masking system (GenUnivMask,
DeriveMask) for E meeting the correctness and security conditions of
Definition 8.

Let MSE = (MSEGenUnivMask,MSEDeriveMask) be a masking system for E
that satisfies CP.4. A formal description is now given of a generic scheme, which
we call mIBFHE, that uses E and MSE . We have mIBFHE.Setup = E .Setup and
mIBFHE.KeyGen = E .KeyGen. The remaining algorithms are described as follows.

Encryption. To encrypt a message μ under identity id ∈ I, an encryptor
performs the following steps. The encryptor computes the universal mask

U ← MSE .GenUnivMask(PP, id, μ)

and outputs the ciphertext CT := (id, type := 0, enc := U). Setting the type
component of CT to 0 indicates a “fresh” ciphertext.

Evaluation. The evaluator is given as input a circuit C ∈ C and a collection of
� ciphertexts CT1 := (id1, type := 0, enc := U1), . . . ,CT� := (id�, type := 0, enc :=
U�).

Consider the set of distinct identities I = {id1, . . . , id�}. Suppose that |I| =
d ≤ � is the number of distinct identities. If d > D (i.e. the maximum sup-
ported number of distinct identities is exceeded), the evaluator aborts the eval-
uation. For simplicity we re-label the distinct identities as id1, . . . , idd . Thus,
each distinct identity in the collection is associated with a unique index in [d ].
Before evaluation can be performed, each ciphertext must be “transformed” into
a d N ×d N matrix, which we call an expanded matrix. This is achieved as follows.

Let (idr, type := 0, enc := U) be a ciphertext whose associated identity has
been assigned the index r ∈ [d ]. A matrix Ĉ ∈ Z

d N×d N
q is formed as follows.

Start by setting Ĉ to the zero matrix. Now Ĉ can be viewed as consisting of
d × d submatrices in Z

N×N
q . We denote the submatrix on row i and column j

as Ĉi,j ∈ Z
N×N
q .

For i ∈ [d ]:
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1. Run (Xi,Yi) ← MSE .DeriveMask(PP, U, idi).
2. Set Ĉi,i ← Yi.
3. Set Ĉi,r ← Flatten(Ĉi,r + Xi). (The reason for addition here is to handle the

special case of i = r).

This completes the process for computing the expanded matrix Ĉ. Consider an
example where r = 1 and d > 2. The expanded matrix looks like the following:

Ĉ =

⎛
⎜⎜⎜⎝

(Flatten(X1 + Y1)
X2 Y2

...
. . .

Xd Yd

⎞
⎟⎟⎟⎠

Perform the steps above to produce the expanded matrix Ĉ(i) for every input
ciphertext CTi. Then the circuit C ∈ C is evaluated gate-by-gate (NAND gates)
on the expanded matrices to yield a d N × d N matrix Ĉ′. Suppose each Ĉ(i)

encrypts μi ∈ {0, 1}. Then Ĉ′ encrypts C(μ1, . . . , μ�). Finally, the evaluation
algorithm outputs the tuple CT′ := (id1, . . . , idd , type := 1, enc := Ĉ′). Setting
the type component to 1 indicates an evaluated ciphertext. Note that the scheme
is 1-hop homomorphic.

Decryption. On input a ciphertext CT := (id1, . . . , idd , type, enc) and a sequence
of secret keys vid1 , . . . ,vidd ∈ Z

N
q where vidi is a secret key for idi for i ∈ [d ], the

decryptor performs the following steps. Form the column vector v as the vertical
concatenation of the column vectors vid1 , . . . ,vidd . If type = 0, parse enc as the
universal mask U , compute (X,Y) ← MSE .DeriveMask(PP, U, id1) and set C ←
X + Y. Else if type = 1, parse enc as Ĉ and set C ← Ĉ.

Let i be an index such that vi = 2i ∈ (q/4, q/2]. Compute di ← 〈ci,v〉 where
ci is the i-th row of C and output μ′ ← �di/vi� ∈ {0, 1}. This works to recover
the message because as a result of Eq. 3.1 (in Definition 8), we have

Cv = μ · v + e

with ‖|e‖|∞ ≤ w · B, where w is the error expansion factor associated with the
masking system MSE .

Lemma 1. Let B be a bound such that all freshly encrypted ciphertexts are B-
strongly-bounded. Let D and L be positive integers. If q > 8·w·B(DN+1)L2, then
the scheme mIBFHE is correct and can evaluate NAND-based Boolean circuits of
depth L with any number of distinct identities d ≤ D.

See AppendixB for the proof of Lemma1.

Theorem 3. Let E be an IBE scheme satisfying CP.1 - CP.4. Then E can be
transformed into a multi-identity IBFHE scheme E ′.
2 Note that N (which depends on n) is itself dependent on lg q. For security, it is

required that q/B = 2nε

for some ε ∈ (0, 1). A discussion on parameters is provided
in Appendix C.
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Proof. The proof of the theorem is constructive. By CP.4, there exists a mask-
ing system MSE for E . The multi-identity IBFHE scheme E ′ that we obtain is
mIBFHE instantiated with E and MSE . By Lemma 1, the scheme is correct. CP.4
implies that E ′ is IND-X-CPA secure for some X ∈ {sID, ID}.

4 Concrete Construction of Multi-identity Leveled
IBFHE

To exploit our compiler from the last section to obtain a multi-identity IBFHE,
we need to find an LWE-based IBE scheme E that satisfies CP.1 - CP.4. The
major obstacle is finding a scheme for which a secure masking system can be
constructed. A natural starting point is the IBE of Cash, Hofheinz, Kiltz and
Peikert (CHKP) [18], which is IND-ID-CPA secure in the standard model. This
IBE was adapted by Gentry, Sahai and Waters ([6] Appendix A.1) to work with
their compiler. There are difficulties however in developing a secure masking sys-
tem for this IBE. Instead, we consider the IBE of Gentry, Peikert and Vaikun-
tanathan (GPV) [15]. Unfortunately this scheme is only secure under LWE in
the random oracle model. On the plus side, we show that it enjoys the distinction
of admitting a secure masking system, and as a consequence of Theorem 3 can
be compiled into a multi-identity IBFHE scheme.

4.1 The Gentry, Peikert and Vaikuntanthan (GPV) IBE

In the GPV scheme, the TA needs to use a lookup table3 to store secret keys
that are issued to users in order to ensure that only a single unique secret key
is ever issued for a given identity. This is required for the security proof in the
random oracle model.

A hash function H : {0, 1}∗ → Z
n
q (modeled as a random oracle in the

security proof) is used to map an identity string id ∈ {0, 1}∗ to a vector zid ∈ Z
n
q .

Due to space constraints a formal description of the GPV scheme is deferred to
Appendix A. It is easy to see that GPV fulfills CP.1 and CP.2. Furthermore,
GPV can be shown to be IND-sID-CPA secure in the random oracle model [15]
under LWE, and CP.3 follows from the security proof. It remains to construct a
masking system for GPV.

4.2 A Masking System for GPV

Relaxation: Support for a Single Identity. As a warm up, we consider a
relaxation of a masking system. In this relaxation, it is sufficient to find X and Y
for only one identity id′, specified by the encryptor. More precisely, let id be the
recipient’s identity and let id′ �= id be another identity known to the encryptor.
3 Alternatively with the additional assumption of a PRF, a lookup table could be

avoided by deterministically deriving secret keys (i.e. obtaining random coins from
the PRF).
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Furthermore, let v be a secret key for id and let v′ be a secret key for id′. Then
the goal is to allow the evaluator to find matrices X and Y satisfying

X · v + Y · v′ = μ · v′ + “small”,

where μ is the plaintext. For every i ∈ N , we need to find row vectors xi and yi

with 〈xi,v〉 + 〈yi,v
′〉 = μ · v′ + “small”.

A trivial way to do this is for the encryptor to set xi ← 0 and yi ←
Flatten(( 0︸︷︷︸

1,...,i−1

, μ, 0︸︷︷︸
i+1,...,N

) + BitDecomp(E .Encrypt(PP, id′, 0)) ∈ {0, 1}N where

the latter is a GSW row encryption of μ under identity id′. Observe that such
an xi and yi serve as a solution to the above equation. However, it is easy to
see that such a trivial solution violates semantic security, since a decryptor with
a secret key v′ for id′ (and no secret key for id) can still recover the plaintext μ.

One strategy for remedying the above approach is to prevent a key holder for
identity id′ from recovering μ from yi by appropriately hiding some components
of yi. Let us take a look at the structure of yi when E is GPV. It is of the form

Flatten(( 0︸︷︷︸
1,...,i−1

, μ, 0︸︷︷︸
i+1,...,N

) + BitDecomp((〈zid′ , r〉 + e, r · A + f) ∈ Z
m′
q )

where e
$←− χ, f $←− χm, r $←− Z

n
q and zid′ = H(id′) ∈ Z

n
q . Suppose we instead

generate yi as

yi ← Flatten(( 0︸︷︷︸
1,...,i−1

, μ, 0︸︷︷︸
i+1,...,N

) + BitDecomp((0, r · A + f).

Now what we have done here is effectively set the first �q components of yi to
0 with the exception of the special case i ∈ [�q] which we will handle separately
later. As a result of this modification, we will have 〈yi,v

′〉 ≈ −〈zid′ , r〉 + μ ·
2i mod �q (the symbol ≈ denotes equality up to “small” differences). Therefore,
to cancel out the term −〈zid′ , 〉, we need to ensure that we set xi such that
〈xi,v〉 ≈ 〈zid′ , r〉.

The approach we take to achieve this is to blind the element 〈zid′ , r〉 with
a GPV encryption of zero under identity id such that it can only be unblinded
with a secret key for identity id (note that the value cannot be recovered out-
right; instead a noisy approximation is obtained). For simplicity we define the
algorithm Blind which takes an identity id and a value v ∈ Zq and outputs a
vector Flatten((c1 + v, c2, . . . , cm′)) where c ← E .Encrypt(PP, id, 0). So to pro-
vide an xi counterpart to the vector yi we generated above, we set xi ←
Blind(id, (〈zid′ , r〉) where r is the vector used in the generation of yi above.
It follows that 〈xi,v〉 + 〈yi,v

′〉 = μ · v′ + “small”.
There are subtleties that we have overlooked. For security reasons, we need

to change how we generate xi and yi for i ∈ [�q]. This is because for the first
�q components of yi as generated above, the plaintext μ is not hidden; it is
effectively sent in the clear. However we can resolve this issue by setting xi ←
Blind(id, μ · 2i−1 yi ← 0 and simply setting yi ← 0.
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However there is still a major weakness in this approach. Suppose a decryptor
has access to two decryption vectors u′,v′ ∈ Z

N
q that decrypt ciphertexts with

identity id′. For example, the TA might have generated distinct secret key vectors
when issuing keys to different parties, and the parties may have shared that
information.

It is easy to see that

Y · u′ − Y · v′ = μ · (u′ − v′) + “small”,

which allows the decryptor to easily determine μ ∈ {0, 1}. Hence a necessary
condition for the approach to work is that there be a unique secret key vector for
every identity. In fact, this is the primary reason our techniques do not work for
ABE. Technically, this restriction means that the system can only support simple
classes of access policies, namely classes of predicates with disjoint support sets,
which includes the special case of IBE. Fortunately, in the GPV scheme, only a
single secret key is ever issued for a given identity.

Support for All Identities. The algorithm above allows an encryptor to create
a secure “mask” for a specific identity that he knows. But how can we create
a succinct “universal mask” from which “masks” for arbitrary identities can be
derived? To achieve this, we need to take a look at the structure of vector xi

in our masking system, which is constructed as xi ← Blind(id, 〈zid′ , r〉) where
id′ is known to the encryptor. But what if id′ is an arbitrary identity (i.e. not
simply one that is known beforehand by the encryptor but one that is chosen
by the evaluator at evaluation time)? In this case, we need to obtain an xi that
blinds 〈zid′ , r〉. Our goal is to include information in the universal mask that we
derive so that for any identity id′ one can derive an xi that blinds 〈zid′ , r〉 where
zid′ = H(id′).

Recall the following property of BitDecomp from Sect. 2.4:

〈zid′ , r〉 = 〈BitDecomp(zid′),Powersof2(r)〉.

Our approach is to blind each coefficient of Powersof2(r), whose length is �q·n. We
produce a matrix B(i) ∈ Z

(�q·n)×m′
q by letting b

(i)
j ← BitDecomp−1(Blind(id, pj))

where pj be the j-th coefficient of Powerof2(r). Then to generate xi, one com-
putes xi ← Flatten(BitDecomp(zid′) · B(i)). Note that yi is generated as before.

More precisely what we have is shown is how to generate B(i) and yi for
i ∈ [�q]. Recall that in our previous masking system we generated xi and yi

differently for i ∈ [�q]. This will also apply here. Instead of computing B(i) for
i ∈ [�q], we instead merely compute xi ← Blind(id, μ · 2i−1) and yi ← 0. This
completes the description of our masking system.

We now formally present our masking system for GPV. (which we call MSGPV).
Let η = �q · n.

MSGPV.GenUnivMask(PP, id, μ) :



Multi-identity and Multi-key Leveled FHE from Learning with Errors 647

1. For i ∈ [�q]:
(a) Set xi ← Blind(id, μ · 2i−1)
(b) Set yi ← 0

2. For �q < i ≤ N :
(a) Generate r

$←− Z
n
q and sample a short error vector e

$←− χm′
.

(b) For j ∈ [η] :
(i) Set b

(i)
j ← BitDecomp−1(Blind(id, pj)) ∈ Z

m′
q where pj be the j-th

coefficient of Powerof2(r)
(c) Form matrix B(i) from rows b

(i)
1 , . . . , b(i)η .

(d) Set yi ← Flatten(( 0︸︷︷︸
1,...,i−1

, μ, 0︸︷︷︸
i+1,...,N

) + BitDecomp((0, r · A + f)))

3. Form matrix Y from rows y1, . . . ,yN .
4. Output U := (x1, . . . ,x�q ,Y,B(�q+1), . . . ,B(N)).

MSGPV.DeriveMask(PP, U, id′) :

1. Parse U as (x1, . . . ,x�q ,Y,B(�q+1), . . . ,B(N)).
2. Compute zid′ ← H(id′).
3. For �q < i ≤ N :

(a) Set xi ← Flatten(BitDecomp(zid′) · B(i))
4. Form X ∈ {0, 1}N×N from x1, . . . ,xN .
5. Output (X,Y).

It is easy to see from the definition of MSGPV.DeriveMask that the error
expansion factor is w = η + 1. This is because each row in an expanded matrix
is formed from a row of X and a row of Y. But the former decomposes into a
sum of η ciphertexts (and hence error terms).

Theorem 4. [Informal] The masking system MSGPV is selectively secure in the
random oracle model (i.e. MSGPV meets the security condition of Definition 8).

A formal statement of Theorem 4 along with the proof is given in AppendixE.
See AppendixA.1 on how to apply the compiler.

5 Multi-key FHE

If we replace the GPV IBE with the Dual-Regev public-key encryption scheme
from [15], then we can obtain a multi-key FHE. The only change in the masking
system is that identity vectors (i.e. zid = H(id) ∈ Z

n
q ) are replaced with public-

key vectors in Z
n
q . As a result, the random oracle H is no longer needed, and

security holds in the standard model. Our multi-key scheme is the first to the
best of our knowledge that is based on well-established problem such as LWE in
the standard model (recall that the scheme from [14] requires the non-standard
Decisional Small Polynomial Ratio (DSPR) problem). See the full version [19] of
this work for a description of an adaptation of our masking systm to the RLWE
setting.

Acknowledgments. We would like to thank the anonymous reviewers of for their
helpful comments. The authors would like to thank Fuqun Wang for pointing out
errors in an earlier version of this paper.
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A The Gentry, Peikert and Vaikuntanthan (GPV) IBE

Note that this variant has been adapted in the same manner as CHKP in [6] for
compatibility with the GSW compiler.

Let A ∈ Z
n×m
q be a matrix. We define the lattice Λ⊥(A) = {x ∈ Z

m : A·x =
0 mod q} as the space of vectors orthogonal to the rows of A modulo q. GPV
depends on two efficient probabilistic algorithms, which are informally presented
as follows:

• TrapGen(n,m, q): [21,22] Generate a statistically uniform matrix A ∈ Z
n×m
q

together with a short basis S ∈ Z
m×m for Λ⊥(A). Output (A,S).

• SamplePre(S,A,u): [15] Generate a “short” solution x ∈ Z
m
q to the equation

A · x = u ∈ Z
n
q .

See AppendixC.1 for more background on these algorithms. Furthermore, see
AppendixC for a discussion on suitable parameter settings.

GPV.Setup(1λ): Choose parameters n = n(λ), m = m(λ), q = q(λ), a noise
distribution χ : Z. Let m′ = m + 1. These parameters are implicit in the public
parameters PP below. Generate statistically uniform A ∈ Z

n×m
q together with a

short basis S ∈ Z
m×m of Λ⊥(A) by running (A,S) ← TrapGen(n,m, q). Choose

a collision-resistant hash function H : {0, 1}t → Z
n
q . Output PP := (A,H) and

MSK := S.

GPV.KeyGen(MSK, id ∈ {0, 1}∗): If (id, sid) ∈ store, output sid and abort.
Compute zid ← H(id) ∈ Z

n
q . Compute wid ← SamplePre(S,A,zid) ∈ Z

m
q . Set

sid ← (1,−wid) ∈ Z
m′
q . Add (id, sid) to store. Output sid.

Let A′
id = zid ‖ A ∈ Z

m′
q . Observe that A′

id · sid = 0 ∈ Z
n
q .

GPV.Encrypt(PP, id ∈ {0, 1}∗, μ ∈ {0, 1}): Compute zid ← H(id) ∈ Z
n
q . Let

A′
id = zid ‖ A ∈ Z

m′
q . Let µ ∈ Z

m′
q be the vector of 0’s except with μ · �q/2� in

the first coefficient. Choose random r
$←− Z

n
q and small error vector e

$←− χm′
.

Output cid ← r · A′
id + e + µ ∈ Z

m′
q .

GPV.Decrypt(sid, cid): Set δ ← 〈cid, sid〉 ∈ Zq. If δ is small, output 0; if δ − q/2
mod q is small, output 1; otherwise, output ⊥.

A.1 Proof of Theorem 1

It is now possible to put all the pieces together. In more detail, we can now apply
our compiler to the IBE scheme GPV with the masking system MSGPV to yield
an IND-sID-CPA secure multi-identity IBFHE in the random oracle model.

Theorem 1. There exists a multi-identity leveled IBFHE scheme that is IND-
sID-CPA secure in the random oracle model under the hardness of LWE.
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Proof. Let D be a maximum degree of composition to support, and let L be a
desired number of levels. Let λ be the security parameter. We show there exists
a leveled IBFHE scheme with maximum degree of composition D, maximum
circuit depth L and security parameter λ.

Choose dimension parameter n = n(λ,L) and bound B = B(n). Lemma 1
requires

q > 8 · w · B(DN + 1)L (A.1)

to ensure correctness. Note that w is the expansion factor of the masking system.
Now the error expansion factor of MSGPV is w = η+1. But this can be simplified
to N4. Theorem 4 requires m ≥ 2n lg q, and we have N = (m + 1) lg q. We
need to set q first before setting these parameters (m and N) because of their
dependence on q. To do so, q must be expressed without dependence on N .
It can be straightforwardly derived from the inequality A.1 that a suitable q is
given by

q = B · 2O(L lg nD)

with additional care taken to ensure q/B is subexponential in n.
Our parameter settings ensure that the GPV scheme meets CP.1, CP.2 and

CP.3, three of the prerequisites for our compiler in Sect. 3. Furthermore, the
masking system MSGPV is secure (via Theorem 4). As a result, CP.4 is addition-
ally satisfied. Therefore, Theorem 3 ensures there exists a secure leveled IBFHE
scheme, which by virtue of our parameter settings above (which meet Lemma 1),
can correctly evaluate L-depth circuits over ciphertexts with at most D distinct
identities.

B Proof of Lemma1

Lemma 1. Let B be a bound such that all freshly encrypted ciphertexts are
B-strongly-bounded. Let D and L be positive integers. If q > 8 ·w ·B(DN + 1)L5,
then the scheme mIBFHE is correct and can evaluate NAND-based Boolean cir-
cuits of depth L with any number of distinct identities d ≤ D.

Proof. Let the d ≤ D distinct identities involved in an evaluation be id1, . . . , idd .
Consider an expanded matrix derived from a “fresh” ciphertext CT=(idi, type :=
0, enc := U) associated with identity idi for some i ∈ [d ]. Let vj be a secret key
that decrypts ciphertexts with identity idj for j ∈ [d ]. Let v̂ be the column
vector consisting of the concatenation of v1, . . . ,vd . Let Ĉ be the expanded
matrix for CT computed with respect to identities id1, . . . , idd and (Xj,Yj) ←
MSE .DeriveMask(PP, U, idj) for j ∈ [d ] . Now by construction, Ĉ consists of d ×d
submatrices in Z

N×N
q . There are 2 non-zero submatrices on N − 1 rows when Ĉ

4 w = η + 1 = �q · n + 1 ≤ �q · m < N .
5 Note that N (which depends on n) is itself dependent on lg q. For security, it is

required that q/B = 2nε

for some ε ∈ (0, 1). A discussion on parameters is provided
in Appendix C.
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is viewed as d × d matrix over Z
N×N
q , and one non-zero submatrix on the i-th

row. The correctness condition for the masking system MSE gives us
⎛
⎜⎜⎜⎜⎜⎜⎝

Y1 X1

. . .
...

Flatten(Xi + Yi)
...

. . .
Xd Yd

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎡
⎢⎢⎢⎢⎢⎢⎣

v1

...
vi

...
vd

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

X1v1 + Y1v1

...
Xivi + Yivi

...
Xd vd + Yd vd

⎤
⎥⎥⎥⎥⎥⎥⎦

=μ ·

⎡
⎢⎢⎢⎢⎢⎢⎣

v1

...
vi

...
vd

⎤
⎥⎥⎥⎥⎥⎥⎦

+’small’.

Since each of these submatrices is B-strongly-bounded, it follows that Ĉ · v̂ =
μ·v̂+ê where the coefficients of the error vector ê are bounded by w·B.Therefore,
Ĉ is w · B-strongly-bounded. Multiplying two d N × d N expanded matrices in
a NAND operation produces a matrix that is w · B(d N + 1)-strongly-bounded.
After L successive levels, the bound on the error is w·B(d N+1)L. For correctness
of decryption we need w · B(d N + 1)L < q/8. Since we have d ≤ D, it follows
that

w · B(d N + 1)L ≤ w · B(DN + 1)L ≤ 8 · w · B(DN + 1)L

8
<

q

8
.

��

C Parameters for Our Scheme

Before discussing how parameters are chosen for our scheme, more background
is needed on preimage sampling.

C.1 Background on Preimage Sampling

Let A ∈ Z
n×m
q be a matrix. We define the lattice Λ⊥(A) = {x ∈ Z

m : A ·x = 0
mod q} as the space of vectors orthogonal to the rows of A modulo q. There
exist efficient algorithms to generate a statistically uniform matrix A ∈ Z

n×m
q

together with a short basis S ∈ Z
m×m for Λ⊥(A) [21,22]. Such an algorithm will

be simply called TrapGen here; that is, we will write (A,S) ← TrapGen(n,m, q).
We denote by S̃ the Gram-Schmidt orthonormalization of a basis S. Let L = ‖S̃‖
be the norm of S. There are instances of TrapGen that achieve L = m1+ε for any
ε > 0 [15], although this has been improved upon in other works [23]. Hence,
our setting of L later will be a conservative choice.

Let d and t be positive integers with d ≤ t. Let B ∈ R
d×t be a basis for

a d-dimensional lattice Λ(B) ⊂ R
t. Then the discrete Gaussian distribution on

Λ(B) with center c ∈ R
t and standard deviation σ ∈ R is denoted by DΛ(B),s,c.

When c is understood to be zero, the center parameter is omitted.
Gentry, Peikert and Vaikuntanthan [15] describe an algorithm to sample from

a discrete Gaussian distribution on an arbitrary lattice. They describe an efficient
probabilistic algorithm SampleD(B, σ, c) that samples from a distribution that
is statistically close to DΛ(B),σ,c, provided σ ≥ ‖B̃‖ · ω(

√
log d).
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Consider the function fA : Zm
q → Z

n
q defined by f(x) = A · x ∈ Z

n
q . Given

any vector u ∈ Z
n
q , a preimage of u under fA is any x ∈ Z

m
q with fA(x) = u.

It turns out SampleD can be used to efficiently to find short preimages x ∈ Z
m
q

such that A ·x = u ∈ Z
n
q for an arbitrary vector u ∈ Z

n
q . Consider the following

algorithm SamplePre from [15]. Note that s is a parameter for which possible
settings are given in the next section.

• SamplePre(S,A,u): Find an arbitrary solution t ∈ Z
m
q (via linear algebra)

such that A · t = u mod q. Sample a vector e
$←− DΛ⊥(A),s,−t by running

e ← SampleD(S, s,−t), and output the vector x ← e + t.

We remind the reader that there are improved variants of SamplePre in the
literature [23].

C.2 Preimage Distribution

We need s ≥ L ·ω(
√

log m) to satisfy Theorem 5.9 of [15]. Let Bpreimage ≥ √
n · s.

Then the probability of the magnitude of any coefficient of a preimage vector
exceeding Bpreimage is exponentially small in n via a standard tail inequality for a
normal distribution6. One possible setting is s = L · log m, and Bpreimage =

√
n ·s.

C.3 Noise Distribution

To satisfy Theorem 2, we need the noise distribution χ to be Bχ-bounded for
some Bχ (to satisfy Theorem 2, we require q/Bχ to be at most subexponential).
Setting χ ← DZ,r with r = log m and Bχ ≥ √

n ·r ensures that χ is Bχ-bounded,

since by the aforementioned tail inequality, we have that Pr[x $←− DZ,r, |x| > Bχ]
is exponential in n.

C.4 Parameter B (B-Strong-Boundedness)

“Fresh” ciphertexts in our scheme are B-strongly-bounded. The parameter B is
derived from the product of Bpreimage and Bχ, since when the ciphertext matrix
is multiplied by a secret key vector, the resulting error vector is formed from the
inner product of the noise vector in the ciphertext (drawn from χ) and the secret
key (a sampled preimage). Concretely, with the suggested parameter setting, we
have B = L · n · log2 m. It is necessary that q/B1 is at most subexponential in
N . However, our analysis simplifies this by taking q/B to be subexponential;
however, since Bpreimage is polynomial in N , it also holds that q/Bχ is subexpo-
nential.
6 A normal variable with standard deviation σ is within t · σ standard deviations of

its mean, except with probability at most 1
t

· 1

et2/2 [15].
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C.5 Sample Parameters and Ciphertext Size

Gentry, Sahai and Waters simplify their analysis by taking n to be a fixed para-
meter. This is a simplification because q/B must be subexponential in n, and q
depends on L; therefore in actuality n depends on L.

Let L be the desired number of levels and let D be the desired maximum
number of distinct identities to support in an evaluation. According to Lemma1,
correctness requires that

q > 8 · w · B(DN + 1)L. (C.1)

In AppendixC.1, it was mentioned that L ≈ m. Putting this together with
the derivation of B above in AppendixC.4 gives B = mn · log2 m, where m ≥
2n lg q from Theorem 4. Choosing B in this way means that it is not too large
and allows us to derive lg q from the inequality C.1 above as follows: lg q =
O(L(lg D + lg n)).

Consider the following concrete parameters. Suppose we require a circuit
depth of L = 40 and a number of distinct identities up to D = 100. We can
satisfy the correctness constraint given by C.1 by setting lg q = �c · L(lg D +
lg L) = 4 · 40(lg 100 + lg 40)� = 1915 (the constant c = 4 was chosen to meet the
condition) and choosing the dimension to be n = 2000. However the size of freshly
encrypted ciphertexts in our leveled IBFHE scheme with these parameters is
greater than one exabyte (i.e. > 230 gigabytes) per bit of plaintext, which is
extremely impractical. This illustrates the impracticality of our scheme, but it
also highlights the impracticality at the present time of the GSW leveled IBFHE
and ABFHE schemes.

D Size of Evaluated Ciphertexts

As mentioned in the previous section, n is not a fixed parameter that depends
solely on the security level λ. Instead n grows with both L and D because q/B
must be subexponential in n to guarantee security. There is an optimization that
applies to both our construction and the GSW constructions in terms of the size
of evaluated ciphertexts. Decryption only requires a single row of a ciphertext
matrix (see Sect. 3.2), so an evaluated ciphertext can have size d · N where d is
the number of distinct identities in the evaluation. Let this vector be denoted by
ĉ ∈ {0, 1}d ·N . Applying BitDecomp−1, the vector c ← BitDecomp−1(ĉ) ∈ Z

m′
q is

obtained. As explained in [6], if we include additional information in the public
parameters, the technique of modulus reduction [5] can be employed to each
coefficient in c so that the size of each coefficient can be made independent of
D and L; their size must still depend on d to ensure correctness, but this is
allowed for by the compactness condition. However, while every coefficient can
be reduced, the dimension cannot be reduced. This is because the technique
of dimension reduction [5] appears to be only compatible with the public key
setting since it relies on publishing encryptions of the secret key. We defer the
details to [5]. So the length of the ciphertext vector is the length of c, namely
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m′, which in turn depends on both L and D. Therefore, technically speaking, our
multi-identity IBFHE in addition to both the IBFHE and ABFHE constructions
of Gentry, Sahai and Waters are not leveled in the strict sense of the size of an
evaluated ciphertext being independent of L.

E Proof of Theorem4

Corollary 1 (Corollary 5.4 [15]). Let n be a positive integer, and let q be a
prime. Let m ≥ 2n lg q. Then for all but a 2q−n fraction of all A ∈ Z

n×m
q and

for any s ≥ ω(
√

log m), the distribution of the syndrome u = Ae mod q is
statistically close to uniform over Z

n
q , where e ∼ DZm,s.

Theorem 4. Let n,m, q be chosen to meet Corollary 1. Let χ be a Bχ-bounded
distribution where Bχ satisfies Theorem2. Let TrapGen be an algorithm that
generates a statistically uniform matrix A ∈ Z

n×m
q together with a basis S ∈

Z
m×m such that ‖S̃‖ ≤ L except with negligible probability. Let s ≥ L·ω(

√
log m).

Let the scheme GPV be instantiated with TrapGen and the SamplePre algorithm
(with parameter s) described in AppendixC.1.

Then the masking system MSGPV is selectively secure in the random oracle
model (i.e. MSGPV meets the security condition of Definition 8) under the hard-
ness of LWEn,q,χ.

Proof. We prove the theorem by means of a hybrid argument.
Game 0: This is the standard selective security game described in Definition 8.

Game 1: The following changes are made in this game. Let id∗ ∈ I be the
adversary’s target identity.

1. The matrix A $←− Z
n×m
q is generated as uniformly random.

2. The vector zid∗
$←− Z

n
q is generated as uniformly random.

3. The random oracle H is simulated as follows: if the adversary A queries H
on identity id ∈ I, run:
(a) If id = id∗, then return zid∗ .
(b) Else if (id, sid,zid) ∈ store, return zid.

(c) Else sample tid
$←− D

Zm′−1,s, compute zid ← A · tid mod q, set sid ←
(1,−tid) ∈ Z

m′
q , add (id, sid,zid) to store and return zid.

(d) Secret key queries are answered as follows. Suppose A queries a secret
key for identity id �= id∗. We assume w.l.o.g. that A has first queried H
on id. In response to the query, sid is returned where (id, sid,zid) ∈ store.

We claim that A’s view in Game 0 is statistically close to A′s view in
Game 1. The first two changes above follow immediately from the definition
of GPV (in particular, the trapdoor basis generation algorithm employed guar-
antees that a near uniform A can be generated). In regard to the simulation
of H, Corollary 1 implies that the vector H(id) when id �= id∗ is statistically close
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to uniform. Finally, with regard to the distribution of secret keys, Lemma 5.2
from [15] states that a preimage tid sampled with SamplePre (with parameter
s) in GPV.KeyGen is identically distributed to tid ∼ D

Zm′−1,s conditioned on
Aid ·tid = zid mod q. It follows that the secret keys sid in Game 1 have the same
distribution as Game 0.
For i ∈ [�q]:

Game i + 1: This game is the same as the previous game except that Step 1a
of MSGPV.GenUnivMask for iteration i (only) is replaced with

xi ← BitDecomp(t).

where t
$←− Z

m′
q .

Given an LWE instance x∗ ∈ Z
m′
q , one can easily generate xi according to

Game i or Game i+1. Suppose a distinguisher D has a non-negligible advantage
distinguishing between Game i and Game i + 1. We can use D to construct an
algorithm B that can solve an LWE instance. Given an appropriate number of
samples from either the distribution D0 := {{(uj , 〈uj , s〉+ej) : uj

$←− Z
n
q , e)j

$←−
χ} : s

$←− Z
n
q } or the distribution D1 := {{(uj ,vj) : uj ,vj

$←− Z
n
q }}, the uj

are used to construct A ∈ Z
n×m
q and zid∗ ∈ Z

n
q . The algorithm B simulates

the random oracle H as explained above, and answers secret key queries in
the manner described above. Note that the distribution of A and zid∗ remain
unchanged.

The algorithm B runs the same variant of MSGPV.GenUnivMask as the previ-
ous game. The only difference is that on the i-th iteration, it replaces Step 1a
with

xi ← BitDecomp(x∗ + (μ · 2i, 0, . . . , 0))

where x∗ ∈ Z
m′
q is an LWE challenge vector that is either s · zid∗ ‖ A + e ∈ Z

m′
q

or a uniformly random t∗ ∈ Z
m′
q . In the former case, the view is statistically

close to Game i whereas the view in the latter case is statistically close to Game
i + 1. It follows that B can output D’s guess to solve an LWE instance. The
games are thus indistinguishable by the hypothesized hardness of LWE.

As a shorthand for Game (�q + 1) + (i − �q − 1) · (η + 1) + j, we use the
notation Game (i, j) for �q < i ≤ N and j ∈ [η + 1].

For �q < i ≤ N :

For j ∈ [η]:

• Game (i, j): This game is the same as the previous game except that we
change the way that the j-th row of B(i) is generated in MSGPV.GenUnivMask.
More precisely, Step 2(b)i of algorithm MSGPV.GenUnivMask is replaced with

b
(i)
j ← BitDecomp(t)

with t
$←− Z

m′
q . for the specific case of the i-th iteration of the outer loop and

the j-th iteration of the inner loop.
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An analogous argument to the argument made above concerning the indis-
tinguishability of Game i and i + 1 for i ∈ [�q] can be made here to show
that a non-negligible advantage distinguishing between the games implies a
non-negligible advantage against LWE.

Remark 2. At this stage, note that B(i) from MSGPV.GenUnivMask is uniform
over Zη×m′

q ; in particular it does not rely on any r associated with a yi nor does
it rely on μ.

Game (i, η + 1): The modification in this game is as follows. Step 2d of
MSGPV.GenUnivMask for the i-th iteration is replaced with

yi ← Flatten((BitDecomp((0, t)).

with t
$←− Z

m′
q .

Once again an analogous LWE-based argument to that above shows that one
can embed an LWE challenge when generating yi such that indistinguishability
between the games implies a non-negligible advantage against LWE.

We conclude the proof by observing that in Game (N, η + 1), the plaintext
bit μ has been eliminated entirely from the generation of the universal mask U .
It follows that an adversary has a zero advantage guessing the challenger’s bit
b, since no information about b is incorporated in the universal mask U given to
the adversary. ��
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