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Abstract. Multidimensional linear attacks are one of the most power-
ful variants of linear cryptanalytic techniques now. However, there is no
knowledge on the key-dependent capacity and data complexity so far.
Their values were assumed to be close to the average value for a vast
majority of keys. This assumption is not accurate. In this paper, under a
reasonable condition, we explicitly formulate the capacity as a Gamma
distribution and the data complexity as an Inverse Gamma distribution,
in terms of the average linear probability and the dimension. The capac-
ity distribution is experimentally verified on the 5-round PRESENT.

Regarding to complexity, we solve the problem of estimating the
average data complexity, which was difficult to estimate because of the
existence of zero correlations. We solve the problem of using the median
complexity in multidimensional linear attacks, which is an open problem
since proposed in Eurocrypt 2011. We also evaluate the difference among
the median complexity, the average complexity and a lower bound of
the average complexity — the reciprocal of average capacity. In addition,
we estimate more accurately the key equivalent hypothesis, and reveal
the fact that the average complexity only provides an accurate estimate
for less than half of the keys no matter how many linear approximations
are involved.

Finally, we revisit the so far best attack on PRESENT based on our
theoretical result.

Keywords: Multidimensional linear attack - Capacity - Data complex-
ity - Linear hull effect - Linear probability

1 Introduction

Block ciphers are used as basic building primitives in symmetric cryptography for
encryption, authentication, construction of hash functions and so on. Evaluation
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of their practical security has been a hot research issue over the decades, giv-
ing rise to different analysis techniques. Statistical attacks exploit non-uniform
behaviors of the plaintext-ciphertext data to find information about the key.
One of the most prominent statistical attacks is linear cryptanalysis. Previously,
linear trails were assumed to behave equally for each key [3,4,17,20]. Then, by
considering many trails in one approximation [24,25], the linear hull effect raises
interesting discussions about fixed-key behaviors in single linear approximations
[21,22]. Daemen et al. gave a fixed-key probability distribution for single lin-
ear correlations [13], leading to subsequent works on e.g., fundamental assump-
tions [9], the effect of key schedules [1] and measures for data complexity [19],
all for single linear attacks. However, we still do not understand the situation in
multidimensional linear cryptanalysis.

A collection of linear approximations has a capacity which measures their bias
to the uniform distribution. One important open problem in multidimensional
linear cryptanalysis is to estimate the capacity and data complexity when a
large number of different keys are considered. In previous work, the capacity
was assumed to hold an average value constantly for most of the keys, and the
data complexity was usually measured by reciprocal of the average capacity.
However, neither is correct. As we know, the key equivalent hypothesis has been
questioned for single linear approximations and differential trails [5,9,12]. Now
this hypothesis also requires adjustment in multidimensional linear setting.

Also, it has always been difficult to compute average data complexity over
the keys in linear cryptanalysis. Using Jensen’s inequality, Murphy [22] points
out that the Fundamental Theorem [24] can only give a lower bound for the
average data complexity when a collection of linear trails in a linear approxi-
mation is used. Leander shows that in single linear attacks we should focus on
median complexity instead of average complexity since the latter usually turns
to infinity [19]. Both Murphy’s and Leander’s concerns haven’t been addressed
yet in the scenario of multidimensional linear attacks.

As one of the most powerful variants of linear attacks, multidimensional lin-
ear attacks notably benefit the data complexity, both in theory and in practice
[10,11,15,16,23]. Moreover, the multidimensional linear distinguisher has been
discovered to have connections with other statistical distinguishers, e.g., trun-
cated differential distinguishers [6], statistical saturation distinguishers [19], and
integral distinguishers [8]. All the above suggests the importance of multidimen-
sional linear cryptanalysis, hence, the lack of knowledge on fundamental aspects
of this attack is especially surprising, and deserves more attention.

Our Contributions. In this paper, we point out that under a reasonable assump-
tion, the distribution of key-dependent capacity can be explicitly formulated
with a Gamma distribution, depending on average linear probability and dimen-
sion (Sect. 3). This distribution is verified experimentally on the round-reduced
PRESENT cipher. Then, we derive the distribution of data complexity, an
Inverse Gamma distribution based on the same parameters (Sect. 4). Our results
allow a more accurate measurement for multidimensional linear attacks.
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With these distributions, in Sect.5 we discuss three well-known measures
when considering the data complexity of multidimensional linear attacks: the
reciprocal of average capacity, the average and the (general) median complexity.
The following fundamental questions in single linear attacks are then generalized
to multidimensional linear attacks and solved.

Firstly, we consider the standard key equivalence hypothesis. We discover
that instead of holding for a majority of keys, the average capacity actually
holds for less than half of the keys, no matter how many linear approximations
are used. Hence, we modify the hypothesis in a way which is more in line with
the practical situation.

Secondly, as we know, the average data complexity of single linear attacks is
difficult to calculate, since the linear hull effect may result in zero correlation for
some keys. However, we show that the situation changes when multiple linear
approximations are involved, and in this case the average data complexity can
be easily calculated from the Inverse Gamma distribution. Then, by generalizing
Murphy’s idea from the case of linear hulls to the case of multiple linear approx-
imations, the reciprocal of average capacity is proved to be only a lower bound
of the average data complexity. We also figure out the exact difference between
this lower bound and the average data complexity.

Thirdly, we solve the open problem proposed by Leander in [19] by develop-
ing the usage of median complexity to multidimensional linear attacks. Finally,
all measures of data complexity are compared under different dimensions. An
interesting observation is that, the median complexity infinitely approaches to
the average one as the dimension increases.

In Sect. 6, we revisit Cho’s 25 rounds of multidimensional linear attack on
PRESENT [10], which targets the most rounds of PRESENT with data complex-
ity less than the whole codebook. As an application of our theoretical analysis,
we can directly estimate the average capacity, instead of making a complex proof
like [10]. Our results are very close to Cho’s. Moreover, the exact knowledge of
the capacity distribution allows us to compute the ratio of weak keys precisely.
Using Cho’s attack method by changing some parameters in the attack, 2123-24
weak keys for 26 rounds PRESENT can be recovered with no more than 262
plaintext-ciphertext pairs.

2 Preliminaries

2.1 Block Ciphers and Linear Cryptanalysis

Let F2 be the binary field with two elements and F5 be the n-dimensional vector
space over Fy. The inner product on Fj is defined by a-b = Z;.l:l a;b;, where a,
b e 3.

A block cipher is a mapping E : F} x F§ — F3 with Eg(-) = E(k,-) for
each k € F5. If y = Ei(z), x, y and k are referred to as the plaintext, the
ciphertext and the master key, respectively. A key-alternating cipher is a block
cipher consisting of an alternating sequence of unkeyed rounds and simple bitwise
key additions.
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Linear cryptanalysis uses a linear relation between bits from z, y and k.
A linear approzimation (u,v) is a probabilistic linear relation expressed as a
boolean function of these bits, i.e.,

B(k) défuw‘@wEk(:v), (1)

where (u,v) is called the text mask. B(k) is a boolean random variable charac-
terized by

o) Py (B = 0).
We call c(k) = 2p(k) — 1 the fixed-key correlation of the linear approximation
(u,v). The linear probability (LP) of approximation (u,v) is defined as LP(k) =
c(k)?. Both c(k) and LP(k) vary over different keys, and can be regarded as
real-value random variables over the whole key space.

In a linear approximation (u,v), there may be many paths with different
intermediate masks, but sharing the same input and output mask (u,v). A path
that considers linear relation round by round is called as linear trail (or linear
characteristic). Note that in a key-alternating cipher, the LP of a linear trail® is
independent of the subkeys.

2.2 Multidimensional Linear Approximations and Data Complexity

Multidimensional linear attacks use m approximations with linearly independent
text masks, called base approximations, to construct an m-dimensional vectorial
boolean function f. Let p = (pg, p1,..., pem—_1) be the probability distribution
of f. It can be computed by the following lemma.

Lemma 1. (15, Corollary 1]) Let f : FY — F5* be a vectorial boolean function
with the probability distribution p. Then, we have

Ca = Z (—=1)*"py, for all a € F5"

nekry

and

pyp=2"" Z (=1)*"¢,, for all n € Fy".

acFp

Here, ¢, is the correlation of the boolean function a - f, a € F3*.

In multidimensional linear attack, ¢, is indeed the correlation of the approx-
imation that combines the base approximations linearly.

Let ¢ = (qo,...,q2m—1) be another discrete probability distribution of an
m-bit random variable. Then, the capacity of p and ¢ is defined as follows.

! Hereafter, whether the LP is of a linear approximation or of a linear trail will be
clear from the context.



Capacity and Data Complexity in Multidimensional Linear Attack 145

Definition 1. The capacity between two probability distributions p and q is
defined by
2™ 1
Cp.a)= > (P — )’y "
n=0
The capacity of multidimensional linear approximations with probability dis-
tribution p is C(p) = C(p, 8), where 0 is the uniform distribution.

Lemma 2. ([15, Corollary 2]) Given an m-dimensional vectorial boolean func-
tion f with the probability distribution p, the capacity is

Cpy= >, a.

a€FyY,a#0

Thus, the capacity of multidimensional linear approximations is computed
from m base approximations and other 2" —1—m approximations that are XOR
sum of the m base approximations. These 2™ —1—m approximations, denoted as
combined approximations, are linearly spanned from the m base approximations.

To estimate the data complexity of multidimensional linear cryptanalysis,
the Chernoff information D* can be considered [2].

Theorem 1. (2, Theorem 1]) Let BestAdvn(p,q) be the best advantage for
distinguishing probability distribution p from probability distribution q, using N
samples. We have

1 — BestAdvn(p,q) = 9—ND*(p,g)+o(N)

Hence, the data complexity is N ~ m. When ¢ is the uniform distribu-

tion and p is close to ¢, the Chernoff information can be approximated by the
capacity C(p), [2, Theorem 7], by

. c
D (pg) = S8

In this case, when the optimal distinguisher based on LLR-statistic (or x?2-
statistic) is used, the data complexity is given as %, where A\ depends on

the success probability of the distinguisher.

The probability distribution p of an m-dimensional linear approximation
actually varies over different keys, so does the capacity (as we will show later).
Hereafter, instead of using C'(p(k)), we use C(k) to represent the variable of
key-dependent capacity.

2.3 Related Distributions and Assumptions

Note 3. Let N(u,0?) be the normal distribution with mean p and variance o2.

Let I'(a,0) be the Gamma distribution under the shape-scale parametrization,
with mean af, the probability density function g and the cumulative distribution
function G. If X ~ N(0,02), then X? ~ I'(1/2,202). Inv-Gamma(a,3) denotes
the inverse-Gamma distribution with mean aél fora>1.If X ~I'(«a,0), then
+ ~ Inv-Gamma(o,671).
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Daemen et al. give the distribution of the fixed-key LP of linear approxima-
tions when linear hull effect is considered [13].

Approximation 4. [13, Theorem 22] Given a key-alternating cipher with inde-
pendent round-keys, when the number of linear trails of (u,v) is large enough and
their LP are small compared to ELP(u,v), the fized-key correlation of (u,v), c(k),
which is a real-value random variable, follows

c(k) ~ N (0, ELP(u,v)).

The fized-key LP(k) follows the distribution of I'(3,2ELP(u,v)), with mean
ELP(u,v) and variance 2ELP(u,v)?, where ELP(-) is the average linear prob-
ability of the approximation over all keys.

The ELP(u,v) can be denoted as ¢2 and computed by the following propo-
sition for key-alternating ciphers.

Proposition 1. [12,2/] Let E be a key-alternating block cipher and assume
that all subkeys are independent. The average LP of a linear approrimation is
the sum of all LP of the linear trails t;, LPT(t;), between the input and output
mask of this approximation, i.e.,

ELP(u,v) Z LPT(t

t;€(u,v)

3 Key-Dependent Capacity in Multidimensional Linear
Approximations

In this section, we study the distribution of key-dependent capacity. Let c(k)
(resp. LP(k)) be a real-value random variable representing the fixed-key correla-
tion (resp. linear probability) of the linear approximation and we can know c¢(k)
and LP(k) from Approximation 4. When multiple linear approximations are used,
we use 7 in the subscript to denote the index of linear approximations, e.g., denote
ci(k) as the fixed-key correlation of the sth linear approximation. W.l.o.g, we use
i=1,...,m to represent the subscript of m base approximations.

In [16], the authors claim that in practical experiments the probability distribu-
tions vary a lot with the keys while the capacity remains rather constant. However,
in this section we point out that the capacity also varies over different keys from
the theoretical point and give experimental verification. We focus on dealing with
two cases, both existing in practical block ciphers. These two cases are shown in
Propositions 2 and 3, respectively.

Proposition 2. In an m-dimensional linear attack using m base approximations
with correlations c;(k) i.i.d. to N'(0, %) over the keys, where c2 is the average LP.
If for each fized key, the binary random variables associated to the base approxi-
mations are statistically independent, the fized-key capacity of this m-dimensional
linear approzimation, C(k), approzimately follows Gamma-distribution I'( %, 2c2).



Capacity and Data Complexity in Multidimensional Linear Attack 147

Proof. Let f1(k),..., fm(k) be m linearly independent base approximations to
construct the m-dimensional approximation f(k), and f(k) = (f1(k),..., fm(k))
is an m-dimensional vectorial boolean function with the probability distribution
p(k) = {py(k)}, where n € F4* and p, (k) is the probability that f(k) = 7. Indeed,
fi(k) is a binary random variable with correlation ¢; (k). Since f; (k) are statistically
independent each other for each fixed key k,

pal) = [1G + (-1 0%y e vy

According to Definition 1,

Ck)= 3 (pylk) =272 /27" =27 3 (py(h) =27

neFy neFy

m . 1 ; Cl(k) —-m

=2 3 ([[4 + (-pf ) gy
neFy i=1

For each fixed key, ¢; (k) - ¢; (k) < ¢;(k),

_ om - i Cl(k)
Oy =27 30 (S (-f 02

nery i=1
m 1 cl(k ci(k) ¢j(k)
=2 Z [22m—2 (Z 9 +2Z fl(k il )T ]2 )
nekry i=1 i£]

1 ; . ci(k) c;(k) __
Since 3, e Z#j(_l)fi(kag(k) { ) { ) —,

C(k) = 222% > Z(Ci(zk > eilk)? =Y LPi(k)

nery i=1 i=1 i=1

Since ¢;(k) are ii.d. to N(0,¢2), LP;(k) are i.i.d to I'(3,2¢%), i = 1,.
Thus, C(k) is the sum of m independent Gamma distribution I"(3, 2¢2). Hence
C(k) ~ I'(Z,2c2). 0

Recall that for one-dimensional linear approximations, ¢2 can be calculated by
Proposition 1 when the dominant trails in a linear approximation are known.

Proposition 2 considers the scenario where the LP of base approximations are
dominant. In this case, we approximate the capacity by summing the LP of base
approximations and ignoring the LP of combined approximations (see Lemma 2).
To show the reasonableness of this approximated capacity, we also bound the error
of our approximation. For this part of analysis, please see Appendix B.

In the other hand, Proposition 3 considers the case that not only m base approx-
imations but also 2™ — 1 — m combined approximations have non-negligible con-
tribution to the capacity. In this case, the correlations of 2™ — 1 — m combined
approximations are not independent any more. Thus, we derive the capacity in this
case under another hypothesis.
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Proposition 3. In an m-dimensional linear attack using the m-dimensional lin-
ear approzimation with the probability distribution p, (k) i.i.d to a normal distri-
bution N'(27™,02), n € FJ, the fived-key capacity of this m-dimensional linear
approzimation, C(k ) follows Gamma-distribution I'(2 _1 ,2-2mg?).

Proof. Since p, (k) are i.i.d. to N'(27™, 02),

2m1 m m
=% (k) =270 2om 1y = p(20 L )

2
According to the definition of capacity,
5 (k) —27")? 2m -1
n=0

Compared with Proposition 2 which considers only m base approximations with
equally dominant correlations, Proposition 3 indeed addresses the situation where
the correlation ¢, (k) of 2™ — 1 approximations are identically distributed (for the
proof please refer to Appendix A). Thus, the average LP of 2™ — 1 approximations
are equal, denoted as ¢2 again. As we know, the average capacity is the sum of the
average LP of involved approximations, i.e., (2™ — 1) - 2™g? = (2™ — 1)c2, the
distribution of capacity in Proposition 3 can also be represented as I'( 27n2_1 ,2¢2).

Experimental Verification. In order to verify that the above analysis reflects
the reality with reasonable accuracy, we have experimentally computed the capac-
ity distributions sampled from 5000 randomly chosen keys for 5-round PRESENT.
A set of usable one-dimensional linear approximations is discovered in [26],
with theoretical average LP computed as 2716-83, Thus, the correlation distrib-
utions of these approximations are A/(0,2716-83) and the LP distributions are
F(%, 2715‘83)2.

We can select linearly independent approximations from this set as the base
approximations. Here we examine the 2-dimensional and 4-dimensional linear
approximations for the case of Proposition 2.

In this case, the base approximations with input masks from different S-boxes in
the first round and output masks from different S-boxes in the last round are chosen.
According to Proposition 2, the theoretical distribution of 2-dimensional capacity
is I'(1,271583) and of 4-dimensional capacity is I'(2,271°8%). The experimental
distributions of 2-dimensional and 4-dimensional capacity sampled over 5000 keys
are as (a) and (b) of Fig. 1, respectively.

As illustrated in Fig. 1, the experimental distribution of capacity follows the
theoretical estimate closely. The scattering of data points occurs due to the fact
that we basically use a histogram, and deal with raw data instead of averaging.

2 For more details about the approximations used in our experiments, please refer to [26].
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Fig. 1. Experimental (black) and theoretical (red) distributions of the capacity for the 2
and 4-dimensional approximation of the first case (Color figure online)

4 Distribution of Data Complexity

With the knowledge of capacity distribution, the distribution of data complexity,
which approximates to A times the reciprocal of capacity, can be obtained formally.
Hereafter we focus on the case mentioned in Proposition 2. The case of Proposition 3
can be deduced in a similar way.

Corollary 1. If the fized-key capacity of the multidimensional linear approxima-
tion follows C'(k) ~ I'("g, 2c?), then the fized-key data complexity of the correspond-
ing multidimensional attack follows N (k) ~ Inv- Gamma(%,%).

Corollary 1 is derived directly from Proposition 2 (also refer to Note 3), and
addresses the case that m correlations of base approximations play a prominent
role in the capacity. Since A is a constant for any fixed success probability in an
attack, w.l.o.g. hereafter we study the above data complexity distribution as Inv-
Gamma( ‘g, %) For each key k, N (k) is asymptotically inversely proportional to
C(k). The average data complexity over all keys is denoted by N, N = Ei[N(k)],

which is proportional to

1 1 1
5| om) = 1 2 o

where IC denotes the whole key space, and Fj () means an expected value taken over
the whole key space. According to Corollary 1 and the mean of inverse Gamma dis-
1

tribution (see Note 3), the average data complexity is Ek[ﬁ] = oD =
1

mec2—2¢2 "
Remark. The data complexity distribution in Corollary 1 also holds for single linear

attacks wherem = 1. Inthe case of m = 1, the average data complexity is infinite as
pointed out by [19]%, which corresponds to the fact that the mean of the distribution

3 In fact, the data complexity should be upper-bounded by the size of the codebook.
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Fig. 3. Distributions of the capacity for m = 2, 4, 6, 8, 20.
Inv-Gamma( 3, 2—2) doesn’t exist. When m is equal to 2, the mean of the inverse

Gamma distribution also doesn’t exist because there are always values going to
infinite according to the distribution.
Similarly, the average capacity over the keys

Ei[C( \IC|ZC

ke

is equal to mc2, derived from the mean of the Gamma distribution in
Proposition 2 (see Note 3).

Example 5. For clearer explanation, hereafter a simple example which quite meets
real situations in practical ciphers is used in our analysis. We take c2 as 2740, which
roughly equates the case in 15-round PRESENT, and take differentm as 2, 4, 6, 8,
20 respectively. In this example, the distribution functions of data complezity are
shown in Fig. 2, and the distribution functions of capacity are shown in Fig. 3.
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5 Evaluation of the Data Complexity

In practical attacks, Ek[ﬁ] and m are highly related to the evaluation
of data complexity. Since Ek[ﬁ] is hard to estimate, the complexity is usually
measured by m In this section, we firstly propose a refined key equivalent
hypothesis for Ei[C(k)] (Sect.5.1). With the exact description of data complex-
ity distributions, the difficulty of evaluating Ek[ﬁ] is overcome, and a basic
issue about the relation of average capacity and average data complexity is studied
(Sect. 5.2). We also extend Leander’s idea of exploiting median data complexities
[19] to multidimensional linear attacks (Sect. 5.3). Finally, all measures are com-
pared.

5.1 Adjusted Key Equivalence Hypothesis

In regard to the connection between the fixed-key capacity and the average capac-
ity in a multidimensional linear system, the traditional key equivalence hypothesis
indicates that the fixed-key capacity does not deviate significantly from its aver-
age value [14,18]. This key equivalence hypothesis can be interpreted as follows:
C(k) = E[C(k)], for almost all keys k. As we have shown, the capacity is actu-
ally Gamma distributed so that this hypothesis does not hold. Thus, two questions
arise: which value is suitable for the evaluation of the attack complexity? Is that
average value enough and correct? We start with the following conjecture to show
that the average capacity is far from being able to represent the majority of keys.

Conjecture 1. There are always less than half of the keys having a capacity larger
than the average capacity. That is, [{k* € K|C(k*) > E,[C(k)]}| < 1|K|. Hence,
less than half of the right keys can be recovered with a data complexity of m,

where /C is the whole key space.

This conjecture is illustrated in Table 1 with Example 5. With the increase of m,
the ratio of keys that have a capacity larger than the average capacity approximates
to %, but cannot equal to % This is because, for such a skew Gamma distribution
as in Proposition 2, the median value is always smaller than the mean. It can be
concluded that, using the number of cipher texts equal to m, more than half
of the keys cannot be recovered successfully with areasonable probability. Thus, the
average capacity is not enough to bring a sound estimation of attack complexities
for most keys, especially when m is not large enough.

Since the capacity is highly dependent on the choice of the key, we concern that
with how many data texts the multidimensional attacks can succeed for a majority

Table 1. The ratio of keys that have a capacity larger than the average capacity

m 2 4 6 8 20
ratio(%) | 36.79 % | 40.6 % | 42.32 % | 43.35% | 45.79 %
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of keys. A natural way to adjust the hypothesis is to consider the upper bound of
data complexity for, e.g. 90 %, of the keys, meaning that for these 90 % keys the
amount of data texts can guarantee a successful attack with high probability, even
for some of these keys this data complexity is overestimated.

Hypothesis 6. (Adjusted Key Equivalence Hypothesis) If the capacity distribu-

tion of an m-dimensional linear attack satisfies Proposition 2, then 90 % of the keys

in the key space have a capacity no smaller than G=1(0.1), where G is the cumula-
m

tive distribution function of I'(*, 2¢2). Using g_+(0.1) data is enough for recovering
90 % of the keys in the key space.

5.2 On Average Data Complexity

Why the Average Data Complexity is Calculable? It is known that in the
classical single linear attacks considering linear hull effect, the average data com-
plexity is hard to derive and usually infinite because of the existence of zero cor-
relation. This difficulty now can be solved in the situation of m-dimensional linear
attacks, since the average value can be easily derived from the accurate distribu-
tions of data complexity, when m is larger than 2. From the point of capacity distrib-
utions, we can understand more about the reason why the average data complexity
is calculable in multidimensional attacks.

In the single linear setting, the keys with zero C (k) may make the average com-
plexity infinite, thus, this part of keys should be focused on. Here, we point out
that by taking multiple linear approximations simultaneously into consideration
instead of only one, the number of keys with zero capacity can be very tiny so that
the average complexity turns out to be computable.

We compare the ratio of keys bringing C'(k) between zero and €, where € is a fixed
value very close to zero. From (b) of Fig. 3, it is obvious that with the increase of m,
the ratio of keys with capacity going to zero decreases. This ratio for several fixed
€ is shown in Table 2. From Table 2 we can see that as the increase of m, the ratio
of keys with capacity close to zero decreases dramatically. This is because as the
number of approximations grows, for each key there is higher probability that at
least one approximation brings a non-zero LP, so that a non-zero capacity. Hence,
for a fixed €, the more base approximations are used, the fewer the number of keys
which bring infinite data complexities becomes. When € is small enough and m has
a reasonable size, this ratio can be negligible in the whole key space. In this case it
is sound to assume that there is no key causing a zero capacity, so that the average
data complexity is computable.

A Difference Between E k[ﬁ] and m The problem discussed here is
firstly found in the context of linear hull effect by Murphy [22]. We extend it to
multidimensional linear attacks and make further investigation.

In some attack analysis, e.g. [10], the reduction in data complexity given by
multiple approximations is based on the assertion that the data complexity N is
proportional to m Like the effectiveness issue of linear hull effect studied
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Table 2. The ratio of keys with capacity close to zero for different m and e

e\m |2 4 6 8 20

10716155 x107°% |1.5x107% [2.77x 107 |3.8 x 10719 6.95 x 10~°
10720 55 %x107% 1.5 x 10717 2,77 x 10725 | 3.8 x 1072° | 6.95 x 10~%°
1072 5.5 x 1071 | 1.5 x 10727 | 2.77 x 107 | 3.8 x 10755 | 6.95 x 107140
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in [22], there is also a difference between m and the actual average data com-
plexity. According to Jensen’s Inequality and the fact that reciprocal of positive

real numbers is a convex function, we have
1 } 1

> .
C(k)| — Ex[C(k)]

gy

Thus, the m can only be used to give a lower bound to the average data com-
plexity.
Jensen’s Inequality gives a general comparison without considering the details

of the variables. When the distributions of both C'(k) and % areknown, F|

71 e
mc2—2c?

o)

and m can be derived as in Sect. 4. Their difference is formulated as
1 2

m(m—2)c2 "’
2, i.e., Ek[ﬁ] is always larger than m The difference can be ignored only
when m is large enough. Figure 4 shows the difference for m = 4 and m = 20. For
small m the difference is much more non-negligible, and m does not reflect the

— Therefore, in fact the equality will never hold for m larger than

real average data complexity. As more approximations are involved, the difference
has a quicker trend to be small. For a fixed m, the smaller the average LP is, the
larger the difference becomes. That is, as ¢? decreases, which is a typical case since
cryptanalysts always try to break as many rounds of the cipher as possible, the
difference between Ej| (5] and g5py turns to be huge.

5.3 On Median Data Complexity

Leander proposed a way to overcome the problem of infinite data complexities for
single linear attacks [19]. Namely, instead of studying the average complexity, he
studied the median complexities N such that for half of the keys the data complex-
ity of an attack is less than or equal to V. So far the usage of median complexity
in multidimensional linear attacks remains unsolved, which we will discuss in this
section. A general definition of N,, is as follows, where N = Ny /5.

Definition 2. ([19, Definition 1]) N, is defined as the complexity such that the
probability that for a given key the attack complexity is lower than Np, is p.

Although Leander gave this general definition, he focused on the case of Ny /5 in
single linear attacks. With the knowledge of accurate distributions of data complex-
ity, we generalize Leander’s Theorem 2 in [19] not only under the multidimensional
linear model but also from Ny /5 to Np,.
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Fig. 4. The difference between E}, [ﬁ] and m with ¢2 ranging from 279 to 2740,

Theorem 2. Assuming independent subkeys in an m-dimensional linear attack
using m base approrimations with the i.i.d. LP that is F(%, 207), p percent of the
keys yield to a capacity of at least G~ (1 —p), where G is the cumulative distribution
function of I'(%, 2¢?). Thus, the complexity of this m-dimensional linear attack is
less than ﬁ with the probability p.

—p
Leander’s Theorem 2 is a special case of Theorem 2 taking m as 1 and p as %,
when the noisy linear trails are ignored in the linear hull effect (If the noisy trails
are considered, the ratio of keys reduces by a factor of 2). If we explain Leander’s
Theorem 2 in our context, we use the fact that F'~*(1/2) = 0.46¢2, where F is the
cumulative distribution function of I'(%,2¢?) (see [19] for more details).

As illustrated in (b) of Fig.3, for the Y-axis at 1/2, the median capacity
increases with the increment of m. That is, when the LP of base approximations
arei.i.d., the more approximations we use, the lower data complexity we require for
the same ratio of weak keys. Given a fixed capacity (so that a fixed data complex-
ity), the ratio of keys causing a larger capacity than the fixed one increases when
more base approximations are used. Thus, the ratio of weak keys resulting in a data
complexity lower than the fixed one also increases.

Considering Example 5 again, we take different p, and fix the same A (as 1
w.l.o.g.) for each m. The highest data complexity required for different m-
dimensional linear attacks for p percent of keys is shown in Table 3.

When the general median complexity [V, is applied, there is such a question:
which p is more suitable for measuring and comparing the strength of a linear
attack. Obviously, it is meaningless to compare Ny /3 and Ny /3 directly. A natural

and simple way is to consider the value of % because the division of p can unify the
disparity for different N, to a reasonably great extent. For example, if the attack
complexity is lower than Ny /3 with probability 1/3, then the attack requires to be
repeated 3 times for a sufficiently sound success rate. This should be equivalently
compared with the case that, let’s say, an attack with complexity lower than Ny /5

has to be repeated twice. By confirming the existence of the minimal %, we can

evaluate different multidimensional linear attacks with the value of min, %. The
results are shown in Table 4.
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Table 3. The highest data complexity for different m and different ratios of keys

m 2 4 6 8 20

logy(N1/3) | 38.864 | 37.805 | 37.22 | 36.813 | 35.532
log,(Ny/2) | 39.529 | 38.253 | 37.581 | 37.123 | 35.727
log,(N2/3) | 40.302 | 38.75 | 37.974 | 37.457 | 35.931

Moreover, comparing Fy, [%} , m and the median complexity, we observe
that the average complexity is always larger than the median one, and the median
complexity is always larger than the reciprocal of average capacity. As m increases,
the difference between these three values decreases. When m is large enough, these
values are approximately equal (see Table 4), since the Gamma and Inverse Gamma
distribution turn to be normal distributions.

6 Application to Cho’s Multidimensional Attack
on PRESENT

6.1 Cho’s Attack on 25-Round PRESENT

The structure of PRESENT [7] makes it vulnerable for a multidimensional attack:
there are several strong one-dimensional approximations. The linear hull of each
such approximation with non-negligible correlations consists of several equally
strong single-bit trails, whose intermediate masks have Hamming weight one.
The average LP ¢2 of all such approximations are 22(—2") L(r) [26], where L(r)
is the number of r-round trails in each approximation. The so far best result
for PRESENT is proposed by Cho aiming to 25 rounds [10]. Nine 23-round m-
dimensional linear approximations are used simultaneously, and each of them has
the dimension m = 8 starting at one of the S-boxes S;, i = 5, 9 or 13 and end-
ing at one of the S-boxes S, j = 5, 6 or 7. They recover 16 bits of key in the first
round and 16 bits of key in the last round. Please refer to [10] for more details of
this attack. Cho proved that the average capacity is 27°277, and gave the formula
of data complexity as in [10]:

Table 4. Comparison of the average data complexity, the median data complexity, the
reciprocal of average capacity, and min), 7”.

m 2 4 6 8 20

logy (x| e )) | 00 39 38 37.41 | 35.83

log, (N1 2) 39.529 | 38.253 | 37.581 | 37.123 | 35.727
log, (emmy) | 39 38 37.41 |37 35.68

log, (min, 72) | 40.44 |39.25 |38.55 |38.04 |36.46




156 J. Huang et al.

N = (\/advantage - 4 - M + 4($~1(2P, — 1))?)/C = \/C (2)

where @ is the cumulative distribution function of the normal distribution, P is the
success probability, C'(p) is the capacity, M is the number of linear approximations
used in the attack. In Eq. (2), if the advantage is equal to a bits, then the right key
candidate should be within the position of 2=, where ¢ is the number of targeted
key bits. Cho chose the A = 29-%8 (advantageis 32bits, M = 9-(28—1), P, = 0.95)%,
and estimated the average data complexity about 26185,

6.2 Our Investigation on Cho’s Attack

We give a simpler but close estimation on the capacity and data complexity of Cho’s
attack. The authors in [16] claimed that Cho observes in practical experiments that
the probability distribution of multidimensional linear approximations varies a lot
with the keys, while the capacity remains rather constant. We have shown that the
capacity also varies for different keys from theoretical and experimental viewpoints.

In order to attack 25-round PRESENT, 23-round approximations are used,
thus r = 23. According to [26], L(23) = 367261713, thus ¢2 = 27355, With
Propositions 2 and 3, the fixed-key capacity of 9 8-dimensional approximations is

estimated to be I'(9 - %, 2762:55) Hence, the average capacity is 27523, With
the same A as Cho, we obtain the data complexity N = %?(% ~ Inv-Gamma(9 -

22;1, 271:63) The average data complexity is 26147, This result is very close to the
estimate in Cho’s attack, but easier to compute.

In the same way, we compute the capacity distribution used for 26-round
PRESENT, which approximates to I'(9- 251, 276516) With the knowledge of dis-
tributions, we can derive the exact number of weak keys corresponding to different
attack scenarios. Using Cho’s attack method by taking A = 2758 (advantage is 4
bits, Ps = 0.8), there are now 212324 (3.7 % in the whole key space) weak keys with
capacity larger than 275492, That means, for 2123-24 keys out of 2!2® keys, 26-round
PRESENT can be attacked using less than 262-5 plaintext /ciphertext pairs, with
success probability 0.8.

7 Conclusion and Further Work

In this paper, we deal with the multidimensional linear attacks using m base
approximations with i.i.d. correlations (linear probability). We focus more on the
case where the base linear approximations can be regarded as statistically inde-
pendent. In this case, we point out that the capacity of multidimensional linear
approximations satisfies a Gamma distribution, which also leads to an exact Inverse
Gamma distribution for the data complexity. Both distributions are parametrized
by the dimension and the average linear probability of each approximation. These
theoretical results have been verified by experiments on PRESENT. We establish

* This result is slightly different from [10], since Eq. (2) is slightly corrected in [16] and
our computation uses the corrected formula.
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an explicit connection between the fixed-key behaviour and the average behaviour.
Based on the distributions, several fundamental issues are discussed in more detail.
Multidimensional linear attacks not only benefit from data complexity, but also
offer more convenience for measuring the average data complexity due to the fact
that the ratio of keys with capacity going to zero decreases with the increase of
dimension. The relation of the median and average data complexity, as well as the
inverse of average capacity is derived. When the dimension is large enough, these
three values are infinitely close. We also propose a modified key equivalent hypothe-
sis that is more suitable for practical situations. Finally, the multidimensional lin-
ear attack on 25- and 26-round PRESENT is analyzed based on our theoretical
result.

In future work, more complicated cases about the relations of LP distributions
should be studied, which may bring more precise evaluation on multidimensional
attacks. The measure of 22 can be extended to single linear attacks. Moreover,
given the close relation between statistical saturation attacks and multidimen-
sional linear attacks, our results may allow a clearer understanding for the capacity
of statistical saturation attacks, whose key-dependent performance still lacks accu-
rate measurement.

A Appendix - Proof of Lemma 7

Lemma 7. For an m-dimensional linear approximation with the probability dis-
tribution py (k) i.i.d. to the normal distribution N'(2=™,02), n = 0,...,.2™ — 1, the
correlations cq (k) (a € F5, a # 0) of the involved 2™ — 1 approxzimations are iden-
tically distributed.

Proof. According to Lemma 1, for a # 0,

ca(k) = Y (=1)"py(k)

nery

= > (1" (py(k) =27 +277)
nEFP

= > (=1)"(py(k) =27 + Y (12
nekry nelfy

As p, (k) are i.i.d. to the normal distribution N'(27™, 02), p,, (k) — 27" are i.i.d. to
N(0,0?). Thus,

Y (=1 (py(k) —27™) ~ N(0,270%)

neEFy

As Znem} (=1)@"27™ isequal to 0, ¢, (k) are identically distributed to the normal
distribution A(0,2™0?), where a € F3* and a # 0. O
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B Appendix - Error Bound of Proposition 2

In Proposition 2, the binary random variables associated to the base approxi-
mations are statistically independent, for each fixed key. According to Piling-up
Lemma, the LP of combined approximations is equal to the multiplication of the
corresponding base LPs. Thus, the accurate capacity is the summation of LP of all
base and combined approximations (see Lemma 2):

C(k) = LPy(k)+- -+ LPp (k) + LPy (k) X LPy(k)+- - -+ LPy (k) x LP3(k) % - - - x LPry (k)

= ﬁ(LR(k)+1 -

while our approximated capacity in Proposition 2 is >;* | LP;(k). Their differ-

ence is
m

[LP@+1)-1- 3 LR
=1

=1

i=1

m

In practical attacks, LP;(k) < 1 is natural and reasonable. Denote > .~ | LP;(k)
as A, and A < 1. The above formula can be written as

"l A= ()" - A—1+ZmiA 1-A

Z mAl < iAi < (m—1)A?
=2

Inour case, Ais arandom variable distributed to I"( %, 207) . The expected value
of A, E(A), is mc2. The variance of A, D(A), is m/2 x (2¢2)%. The expected value
of A%, E(A?),is equal to D(A) + [E(A)]?, i.e.,

E(A%) = D(A) + [B(A))?
=m(m+2)(c?)?

(

m

Thus, the expected value of the error is less than (m — 1)m(m + 2)(c2)?, which
is reasonably smaller than the expected value of our approximated capacity, mc2.
As we target towards attacking more and more rounds of the cipher, in average ¢2
tends to be close to the inverse of the message space, for example, 2764, meaning
that the error is negligible in this case.
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