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Abstract. A new method for reducing the internal state size of stream
cipher registers has been proposed in FSE 2015, allowing to reduce the
area in hardware implementations. Along with it, an instantiated pro-
posal of a cipher was also proposed: Sprout. In this paper, we analyze
the security of Sprout, and we propose an attack that recovers the whole
key more than 210 times faster than exhaustive search and has very low
data complexity. The attack can be seen as a divide-and-conquer evolved
technique, that exploits the non-linear influence of the key bits on the
update function. We have implemented the attack on a toy version of
Sprout, that conserves the main properties exploited in the attack. The
attack completely matches the expected complexities predicted by our
theoretical cryptanalysis, which proves its validity. We believe that our
attack shows that a more careful analysis should be done in order to
instantiate the proposed design method.
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1 Introduction

The need of low-cost cryptosystems for several emerging applications like RFID
tags and sensor networks has drawn considerable attention to the area of light-
weight primitives over the last years. Indeed, those new applications have very
limited resources and necessitate specific algorithms that ensure a perfect balance
between security, power consumption, area size and memory needed. The strong
demand from the community (for instance, [5]) and from the industry has led
to the design of an enormous amount of promising such primitives, with differ-
ent implementation features. Some examples are PRESENT [6], CLEFIA [26],
KATAN/KTANTAN [11], LBlock [28], TWINE [27], LED [17], PRINCE [7],
KLEIN [16], Trivium [10] and Grain [18].

The need for clearly recommended lightweight ciphers requires that the large
number of these potential candidates be narrowed down. In this context, the
need for a significant cryptanalysis effort is obvious. This has been proved by
the big number of security analyses of the previous primitives that has appeared
(to cite a few: [1,13,15,19–21,24,25]).
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Stream ciphers are good candidates for lightweight applications. One of the
most important limitations to their lightweight properties is the fact that to
resist time-memory-data trade-off attacks, the size of their internal state must
be at least twice the security parameter.

In FSE 2015, Armknecht et al. proposed [3,4] a new construction for stream
ciphers designed to scale down the area required in hardware. The main intention
of their paper is to revisit the common rule to resist against time-memory-data
trade-off attacks, and reduce the minimal internal state of stream ciphers. To
achieve this goal, the authors decided to involve the secret key not only in the
initialization process but also in the keystream generation phase. To support
this idea, an instance of this new stream cipher design is specified. This instance
is based on the well studied stream cipher Grain128a [2] and as such has been
named Sprout. In this paper we analyze the security of this cipher, and present
an attack on the full version that allows the attacker to recover the whole 80-bit
key with a time complexity of 269.39, that is 210 times faster than exhaustive
search and needs very few bits of keystream. Our attack exploits an evolved
divide-and-conquer idea.

In order to verify our theoretical estimation of the attack, we have imple-
mented it on a toy version of Sprout that maintains all the properties that we
exploit during the attack, and we have corroborated our predicted complexities,
being able then to validate our cryptanalysis.

This paper is organised as follows: we first recall the specifications of the
stream cipher Sprout in Sect. 2, and then describe our attack in Sect. 3. We
provide the details of the implementation that has verified the validity of our
attack in Sect. 4. Section 5 provides a discussion on how the attack affects the
particular instantiation and the general idea.

2 Description of Sprout

In [3] the authors aim at reducing the size of the internal state used in stream
ciphers while resisting to time-data-memory trade-off (TMDTO) attacks. They
propose to this purpose a new design principle for stream ciphers such that the
design paradigm of long states can be avoided. This is done by introducing a state
update function that depends on a fixed secret key. The designers expect a min-
imum time effort equivalent to an exhaustive search of the key for an attacker to
lead an attack, since she has to determine the key prior to realise the TMDTO.

Sprout is the concrete instantiation of this new type of stream ciphers devel-
oped in [3]. It has an IV and a key size of 80 bits. Based on Grain128a, this
keystream generator is composed of two feedback shift registers of 40 bits, one
linear (the LFSR) and one non-linear (the NLFSR), an initialization function
and an update function, both key-dependent, and of an output function that
produces the keystream (see Fig. 1). The maximal keystream length that can be
produced under the same IV is 240.

We first recall some notations that will be used in the following:

– t clock-cycle number
– Lt = (lt0, l

t
1, · · · , lt39) state of the LFSR at clock t
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Fig. 1. Sprout KeyStream generation

– N t = (nt
0, n

t
1, · · · , nt

39) state of the NLFSR at clock t
– iv = (iv0, iv1, · · · , iv69) initialisation vector
– k = (k0, k1, · · · , k79) secret key
– k∗

t round key bit generated during the clock-cycle t
– zt keystream bit generated during the clock-cycle t
– ct round constant at clock t (generated by a counter).

A counter is set to determine the key bit to use at each clock and also to
update the non linear register. More specifically, the counter is made up of 9 bits
that count until 320 in the initialisation phase, and then count in loop from 0 to
79 in the keystream generation phase. The fourth bit (ct

4) is used in the feedback
bit computation of the NLFSR.

The 40-bit LFSR uses the following retroaction function, that ensures max-
imal period: lt+1

39 = f(Lt) = lt0 + lt5 + lt15 + lt20 + lt25 + lt34.
The remaining state is updated as lt+1

i = lti+1 for i from 0 to 38.
The NLFSR is also 40-bit long and uses a feedback computed by:

nt+1
39 = g(N t) + k∗

t + lt0 + ct

= k∗
t + lt0 + ct + nt

0 + nt
13 + nt

19 + nt
35 + nt

39 + nt
2n

t
25 + nt

3n
t
5 + nt

7n
t
8 + nt

14n
t
21

+ nt
16n

t
18 + nt

22n
t
24 + nt

26n
t
32 + nt

33n
t
36n

t
37n

t
38 + nt

10n
t
11n

t
12 + nt

27n
t
30n

t
31,

where k∗
t is defined as:

k∗
t = kt, 0 ≤ t ≤ 79

k∗
t = (kt mod 80)×(lt4 + lt21 + lt37 + nt

9 + nt
20 + nt

29), t ≥ 80

The remaining state is updated as nt+1
i = nt

i+1 for i from 0 to 38.
In the following, we name by

∑
l the sum of the LFSR bits that intervene in

k∗
t when t ≥ 80 (i.e.

∑
l � lt4 + lt21 + lt37) and by

∑
n � nt

9 +nt
20 +nt

29 it NLFSR
counterpart, leading to the following equivalent definition of k∗

t when t ≥ 80:

k∗
t = (kt mod 80) × (

∑
l +

∑
n)
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Update and Output Function.- The output of the stream cipher is a boolean
function computed from bits of the LFSR and of the NLFSR. The nonlinear part
of it is defined as:

h(x) = nt
4l

t
6 + lt8l

t
10 + lt32l

t
17 + lt19l

t
23 + nt

4n
t
38l

t
32

And the output bit is given by:

zt = nt
4l

t
6 + lt8l

t
10 + lt32l

t
17 + lt19l

t
23 + nt

4n
t
38l

t
32 + lt30 +

∑

j∈B

nt
j

with B = {1, 6, 15, 17, 23, 28, 34}. Each time a keystream bit is generated, both
feedback registers are updated by their retroaction functions.

Initialization.- The IV is loaded in the initial state in the following way:
n0

i = ivi, 0 ≤ i ≤ 39, li = ivi+40, 0 ≤ i ≤ 29 and l0i = 1, 30 ≤ i ≤ 38, l039 = 0.
The cipher is then clocked 320 times; instead of outputting the keystream bits,
these bits are used as feedback in the FSRs:

lt+1
39 = zt + f(Lt)

nt+1
39 = zt + k∗

t + lt + ct
4 + g(N t)

Keystream Generation.- After the 320 initialisation clocks, the keystream
starts being generated according to the previously defined output function; one
keystream bit per state update.

3 Key-Recovery Attack on Full Sprout

The attack described in this section and that has allowed us to attack the full
version of Sprout, exploits the short sizes of the registers, the little dependency
between them when generating the keystream and the non-linear influence of the
keybits in the update function. We use an evolved divide-and-conquer attack,
combined with a guess-and-determine technique for recovering the key bits, that
resembles the analysis applied to the hash function Shabal from [9,22]. It recovers
the whole key much faster than an exhaustive search and needs very little data.

Our attack is composed of three steps: in the first one, the attacker builds
and arranges two independent lists of possible internal states for the LFSR and
for the NLFSR at an instant r′ = 320 + r. For now on, we will refer to time
with respect to the state after initialization, being t = 0 the instant where the
first keystream bit is output. During the second step, we merge the previous
lists with the help of some bits from the keystream that will allow to perform a
sieving in order to exclusively keep as candidates the pairs of states that could
have generated the known keystream bits. Finally, once a reduced set of possible
internal states is kept, we will recover the whole key by using some additional
keystream bits. Through all the attack, we consider r + �z keystream bits as
known (z0, . . . , zr+�z−1). The last 1 + �z bits are used in the second step of the
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attack, for reducing the number of state candidates. The first r−1 bits are used in
the last step of the attack, for recovering the only one correct state and the whole
key. We will use these bits in our attack, and therefore they represent the data
complexity. As we show in the following, the parameters r and �z are the ones we
adapt to optimize the attack, and in order to mount the best possible attacks,
we always have �z ≥ 6 and r ≥ 1.

We first describe some useful preliminary remarks. Next we describe the three
steps of the attack, and finally we provide a summary of the full attack along
with the detailed complexities of each step.

3.1 Preliminary Remarks

We present in this subsection some observations on Sprout, that we use in the
following sections for mounting our attack.

Let us consider the internal state of the cipher at time t. If we guessed1 both
registers at time t, how could we discard some incorrect guesses by using some
known keystream bits?

Linear Register.- First of all, let us remark that the linear register state is totally
independent from the rest during the keystream generation phase. Then, once
its 40-bit value at time t are guessed, we can compute all of its future and past
states during the keystream generation, including all its bits involved in the
keystream generation.

We describe now the four sievings that can be performed in order to reduce
the set of possible states with the help of the conditions imposed by the
keystream bits.

Type I: Direct Sieving of 2 Bits.- From Sect. 2 we know that the keystream
bit at clock cycle t is given by:

zt = nt
4l

t
6 + lt8l

t
10 + lt32l

t
17 + lt19l

t
23 + nt

4n
t
38l

t
32 + lt30 +

∑

j∈B

nt
j

with B = {1, 6, 15, 17, 23, 28, 34}. We can see that 9 bits of the NLFSR intervene
in the keystream bit computation, 7 linearly and 2 as part of terms of degree 2
and 3, as depicted on Fig. 2 (in this figure, instant r corresponds to the generic
instant t that we consider in this section). The first observation we can make is
that if we know the 80 bits of the internal state at clock t, then we can directly
compute the impact of the LFSR and of the NLFSR in the value of zt and of zt+1

(see r and r +1 on Fig. 2), which will potentially give us a sieving of two bits: as
zt and zt+1 are known, the computed values should collide with the known ones.
The number of state candidates will then be reduced by a factor of 2−2. For
instants positioned after t + 1, the bit nt

38 turns unknown so we cannot exploit
the same direct sieving. In the full version of the attack, this sieving involves
keystream bits zr and zr+1.

1 Which cannot be done as it contains 280 possible values and therefore exceeds the
exhaustive search complexity.
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Fig. 2. Representation of the full attack. Each line represents the internal values at a
certain instant, and the keystream generated at this same instant is represented in the
rightmost column.

Type II: Previous Round for Sieving.- We consider a situation in which
we have guessed a state not at instant 0, but at an instant t > 0. This nice idea
has the advantage of allowing to additionally exploit the previously generated
keystream bits to filter out the wrong states. We can therefore have for free an
additional bit of sieving, provided by round t−1: indeed, as can be seen in Fig. 2,
for each possible pair of states (NLFSR, LFSR) at round (t − 1) we know all
the bits from the NLFSR having an influence on zt−1, as well as all the bits
needed from the LFSR, that are also needed to compute zt−1. As this keystream
bit is known, we can compare it with the computed value: a match occurs with
probability 1/2, and therefore the number of possible states is reduced by a
factor of 2−1. In the full version of the attack, this sieving involves keystream
bit zr−1.

Type III: Guessing for Sieving.- To obtain a better sieving, we consider one
by one the keystream bits generated at time t + i for i > 1. On average, one
time out of two, nt+i

38 won’t be known, as it would depend on the value of k∗
t+i−2.

We know that, on average, k∗
t+i−2 is null one time out of two with no additional

guess. In these cases, we have an additional bit sieving, as we can directly check if
zt+i is the correct one. Moreover, each time the bit nt+i

38 is unknown, we can guess
the corresponding k∗

t+i−2, and keep as possible candidate the one that verifies
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the relation with zt+i. In this case not only we reduce the number of possible
states, but we also recover some associated key bit candidates 2 out of 3 times,
as we show in details in Sect. 3.3. For each bit that we need to guess (×2) we
obtain a sieving of 2−1, which compensate. The total number of state candidates,
when considering the positions that need a bit guessing and the ones that do
not, is reduced by a factor of (3/4) ≈ 2−0.415 per keystream bit considered with
the type III conditions. For our full attack this gives 2−0.415×(�z−2−4), as �z is
the number of bits considered during conditions of type I, III and IV (the one
bit used during type 2 is not included in �z). As sieving of type I always uses 2
bits, and conditions of type IV, as we see next, always use 4 bits, sieving of type
III remains with �z − 2 − 4 keystream bits. In the full version of the attack, this
sieving involves keystream bits zt+i for i from 2 to (�z − 5).

Type IV: Probabilistic Sieving.- In the full version of the attack, this sieving
involves keystream bits zt+i for i from �z − 4 to (�z − 1). Now, we do not guess
bits anymore, but instead we analyse what more we can say about the states,
i.e. whether we can reduce the amount of candidates any further. We point out
that nt+i

38 only appears in one term from h. What happens if we consider also the
next 4 keystream bits? What information can the next keystream bits provide?
In fact, as represented in Fig. 2, the next four keystream bits could be computed
without any additional guesses with each considered pair of states, but for the bit
nt+i
38 , that is not known. But if we have a look carefully, this bit only affects the

corresponding keystream bit one time out of three. Indeed, the partial expression
given by h:

nt+i
4 nt+i

38 lt+i
32

is only affected by nt+i
38 for 3/4 of the values the other two related variables,

nt+i
4 and lt+i

32 , can take. Therefore, even without knowing nt+i
38 , we can perform

a sieving of one bit 3/4 of the times. On average, as this can be done up to
considering four more keystream bits, marked in Fig. 2 with 3/4, we will obtain
an additional sieving of 4×3/4 = 3 bits, i.e. the number of state candidates will
be additionally reduced by 2−3.

We can now start describing our attack.

3.2 Building the Lists LL and LN

We pointed out in the previous section that guessing the whole internal state at
once (80 bits) would already be as expensive as the exhaustive key search. There-
fore, we start our attack by guessing separately the states of both the NLSFR
and the LFSR registers at instant r. For each register we build a list, obtaining
two independent lists LL and LN , which contain respectively the possible state
bit values of the internal states of the LFSR, and respectively of the NLFSR, at
a certain clock-cycle r′ = 320 + r, i.e. r rounds after the first keystream bit is
generated.

More precisely, LL is filled with the 240 possibilities for the 40 bits of the
LFSR at time r (which we denoted by l0 to l39). LN is a bigger list that contains



670 V. Lallemand and M. Naya-Plasencia

n 4 n 38tn t l l 6 l 32
∑ l

LN LL
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r+1
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r+2 r+3
∑ n
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α
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Fig. 3. Lists LL and LN before starting the attack. All the values used for the sorting
can be computed from the original states, and the αr+i in the case of LN

240+�z−2−4 = 234+�z elements2, corresponding to the 40-bit state of the NLFSR
(denoted by n0 to n39), each coupled to the 2�z−2−4 possible values for αr =
k∗

r + lr0 + cr
4 to αr+�z−6 = k∗

r+�z−6 + lr+�z−6
0 + cr+�z−6

4 . See Fig. 4 for a better
description of α.

As detailed next, we also store additional bits deduced from the previous
ones to speed up the attack. In LN , we store for certain instants of time the
bits n4, n38, tn �

∑
j∈B nj (the linear contribution of the NLFSR to the output

bit z) and
∑

n = n9 +n20 +n29 (the sum of the NLFSR bits that appear in the
key selection process) while in LL it is l6, l32, tl � l30 + l8l10 + l19l23 + l17l32 + zt

and
∑

l = l4 + l21 + l37. These bits are arranged as shown in Fig. 3.

3.3 Reducing the Set of Possible States

The main aim of this step is to use the precomputed lists LL and LN to combine
them and keep only the subset of the crossproduct that corresponds to a full inter-
nal state for the registers and that could generate the keystream bits considered. It
is easy to see that this problem perfectly corresponds to merging lists with respect
to a relation, introduced in [23]. Therefore, we will use the algorithms proposed
to solve it in [12,14,23] in order to efficiently find the remaining candidate pairs.
Let us point out here that in the complexities we take into account for applying
these algorithms, we not only take into account the candidates kept on the lists,
but also the cost of sorting and comparing the lists.

Of course, our aim is to make the number of remaining state candidates
shorter than the trivial amount of 280 (the total number of possible internal
states for the registers). To achieve this, we use the sieves described in Sect. 3.1
as the relations to consider during the merging of the lists. The sieves were
deduced from relations that the known keystream bits and the state bits at time
r must satisfy.
2 In the next section we describe how to reduce the state candidates step by step, so

if only conditions of type I and II are considered, no guesses are needed and LN is of
size 240. When sieving conditions of type III are considered, but not of type IV, as
in Table 2, the size of LN is 240+�z−2 instead, i.e. the size of the list is 240+�z−2−�IV ,
where �IV are the conditions of type IV considered.
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Fig. 4. Position of the additional guesses stored in list LN

For the sake of simplicity, we start by presenting an attack that only uses the
sievings of type I and II. Next we will show how to also take into consideration
the sieving of type III, and finally we will show how to also take into account the
sieving of type IV, and therefore the 4 sievings at once for obtaining a reduced
set of possible initial states.

Sievings of Type I and II with zr−1, zr and zr+1.- Exceptionally, in this
simplified version of the attack we consider �z = 2, and t is at least one. We
therefore know at least three keystream bits: zt−1, zt and zt+1, that we use for
reducing the size of the set of possible internal states at instant t.

We consider the previously built lists LL and LN both of size 240 (no guesses
are performed for this sievings) and are sorted as follows (see the three first
columns of lists in Fig. 3):

– LL is sorted according to ttl = lt30 + lt8l
t
10 + lt19l

t
23 + lt17l

t
32 + zt, lt6 and lt32 at

instants r − 1, r and r + 1.
– LN is sorted according to nt

4, nt
38 and finally ttn =

∑
j∈B nt

j at time r − 1, r
and r + 1.

Given our new notations, we can rewrite the equation expressing zt, as:

ttl + ttn + nt
4(n

t
38l

t
32 + lt6) = 0

We will use it for t from r − 1 to r + 1. The idea is then to use the relations
implied by these three equations to deduce the possible initial state values of the
LFSR and of the NLFSR in a guess and determine way.

For instance, if we first consider the situations in which the bits nt
4 and nt

38

are null, we know that the relation ttl + ttn = 0 must be satisfied so that we can
only combine one eighth of LN (nt

4 = 0, nt
38 = 0 and ttn = 0, or respectively

n4 = 0, n38 = 0 and tn = 1) with one half of LL (in which tl = 0, respectively
tl = 1). The same way, fixing other values for n4, n38 and tn we obtain other
restricted number of possibilities for the values of ttl , lt6 and lt32. We reduce the
total number of candidate states by 2−1 per keystream bit considered. When
considering the equations from the three keystream bits zt−1, zt and zt+1, we
therefore obtain 277 possible combinations instead of 280.
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This is a direct application of the gradual matching algorithm from [23], and
we provide a detailed description of how the algorithm works and should be
implemented in Sect. 4.2.

Additional Sieving of Type III with zr+2, . . . , zr+�z−1.-3 We can easily
improve the previous result by taking into account the sieving of type III pre-
sented in the previous section. List LN will have, in this case, a size of 240+�z−2,
where �z − 2 is the number of keystream bits that will be treated with sieving of
type III, and therefore, the number of αt+i bits that will be guessed (for i from 0
to �z−2−1). The attacker is given (1+�z) bits of keystream (zr−1, . . . , zr+�z−1),
and she can directly exploit zr−1, zr and zr+1 with sieving conditions of type I
and II. Next arranging the table as showed in Fig. 3 will help exploiting the
conditions derived from keystream bits zr+2, . . . , zr+�z−1.

To explain in more detail the sieving probability deduced in Sect. 3.1 with
respect to one condition of type III, we refer to Table 1 where in 1 case out of 4 the
cohabitation of a fixed value of bits of LL and LN is impossible, which indicates
to the attacker that the internal state is not possible, retaining a proportion of
3/4 of the considered states.

We recall that, so far (as we have not discussed yet the application of sieving
conditions of type IV), the number of keystream bits treated by type III of
conditions is �z−2. We have one additional sieving condition of type III per each
one of these �z−2 bits of the keystream. Each additional condition to test reduces
the number of possible combinations of sublists by a factor of 3

4 = 2−0.4150, as we
have just seen. By repeating this process �z−2 times, we finally obtain a number
280−3−0.415∗(�z−2) of possible internal states. Let us detail the cost of obtaining
this reduced set of possible states. The process of the attack considering sievings
of type I, II and III simultaneously, which is done using a gradual matching
technique as described in [23], can be broadly summarized as follows and can be
visualized in Table 2.

1. Consider the two precomputed lists LN and LL of respective sizes 240+�z−2

and 240, containing all the possibilities for the 40-bit long internal states of
the NLFSR and the �z −2 additional guesses and respectively the 40-bit long
possible internal states of the LFSR.

2. For i from 0 to �z, consider keystream bit zr+i, and:
(a) if i ≤ 2, divide the current (sub)list from LN in 23 sublists according

to the values of n4, n38 and tn at time r + i − 1 and divide the current
(sub)list from LL into 23 sublists according to the values of tl, l6 and
l32 also at time r + i − 1. According to the previous discussion, we know
that only 23+3−1 = 25 combinations of sublists are possible (for sievings
of type I and II). For each one of the 25 possible combinations, consider
the next value for i.

3 In the full attack, the last keystream bit considered here is zr+�z−1−4, as �z is four
units bigger when considering sieving conditions of type IV.
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Table 1. Restrictions obtained from the additional guess, deduced from the formula
of nt+1

39

guess
∑

n l0
∑

l information

0 none
0 1 k = 0

0 0 impossible
1 1 k = 1

0 0 k = 0
0 1 none

1 0 k = 1
1 1 impossible

0 impossible
0 1 k = 1

0 0 none
1 1 k = 0

1 0 k = 1
0 1 impossible

1 0 k = 0
1 1 none

(b) if i > 2, divide further the current sublist from LN in 25 sublists according
to the values of the 5 bits n4, n38, tn,

∑
n and αr+i−1−2 = (k∗

r+i−1−2 +
lr+i−1−2) (the additional guess) at time r + i − 1 and divide the current
sublist from LL in 25 sublists according to the values of the 5 bits tl, l6,
l32,

∑
l and l0 at time r + i− 1. According to the previous discussion, we

know that only 25+5−1−0.415 = 28.585 combinations of those sublists are
possible. For each one of the 28.585 possible combinations, consider the
next value for i.

For a given value of �z, the log of the complexity of recursively obtaining the
reduced possibilities for the internal state by this method could be computed as
the sum of the right most column of Table 2, as this represents the total number
of possible sublist combinations to take into account plus the sum of this column
and the log of the relative sizes in both remaining sublists, which are given in the
last line considered, as, for each possible combination of the sublists, we have to
try all the elements remaining in one list with all the elements in the other. In
the cases where the log is negative (−h), we only check the combinations with
the other sublists when we find a non empty one, which happens with probability
2−h, and this also corresponds to the described complexity.

Let us consider �z = 8. The total time complexity4 will be

23∗5+6∗8.585 + 23∗5+6∗8.585+8−1+1 ≈ 274.51

4 We are not giving here the complexity yet in number of encryptions, which will
reduce it when comparing with an exhaustive search.
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Table 2. .

i LN sublists size LL sublists size matching pairs
(log) (log) at this step (log)

40+�z − 2 40

0 35+ �z 37 5

1 32+ �z 34 5

2 29+ �z 31 5

3 24+ �z 26 8.585

4 19+ �z 21 8.585

5 14+ �z 16 8.585

6 9+ �z 11 8.585

7 4+ �z 6 8.585

8 �z-1 1 8.585

9 �z-6 ’-4’ 8.585

10 �z-11 ’-9’ 8.585

If we considered for instance �z = 9, we obtain for i = 9 a number of possible
combinations of 23∗5+7∗8.585 ≈ 275.095 for checking if the corresponding sublist is
empty or not, and so the attack will be more expensive than when considering
�z = 8, which seems optimal (without including conditions of type IV).

To compare with exhaustive search (so to give the time complexity on encryp-
tion functions), we have to multiply 274.51 by 8

(320) , where 8
(320) = 2−5.32 is the

term comparing our computations with one encryption, i.e. 320 initialization
rounds, and we do not take into account the following 80 rounds for recovering
one unique key, as with early abort techniques one or two rounds should be
enough. This gives 269.19 as time complexity, for recovering 274.5 possible states.

We can still improve this, by using the sieving of type 4, as we show in the
next section.

Additional Sieving of Type IV with zr+2, . . . , zr+�z−1.- Applying the type
IV sieving is quite straight forward, as no additional guesses are needed: It just
means that on average, we have an additional extra sieving of 2−3 per possible
state found after the sievings of type I, II and III. In the end, when considering all
the sievings, we recover 271.5 possible states with a time complexity determined
by the previous step (applying sieving of type III which is the bottleneck) of
269.19 encryption calls.

As previously we have determined that the optimal value for �z when consid-
ering sieving conditions of type I, II and III is 8, now, as we consider 4 additional
keystream bits, the optimal value is �z = 8 + 4 = 12.

The question now is: how to determine, from the 271.5 possible states, which
one is correct, and whether it is possible or not to recover the whole key. We will
see how both things are possible with negligible additional cost.
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3.4 Full Key Recovery Attack: Guessing a Middle State

The main idea that allows us to recover the whole master key with a negligible
extra complexity is considering the guessed states of the registers as not the first
initial one, obtained right after initialization and generation of z0, but instead,
guessing the state after having generated r keystream bits, with r > 0 (for
instance, values of r that we will consider are around 100). The data needs will
be r + �z keystream bits, which is more than reasonably low (the keystream
generation limit provided by the authors is 240 bits). We recall here that the
optimal value for �z is 12.

With a complexity equivalent to 269.19 encryptions, we have recovered 271.5

possible internal states at time r using �z + 1 = 13 keystream bits, reducing the
initial total amount by 28.5. The question now is: how to find the only correct
one, out of these 271.5 possible states? And can we recover the 80-bit master key?
We recall that, on average, we have already recovered (�z−2−4)∗2/3 = 4 keybits
during the type III procedure described in Sect. 3.3. For the sake of simplicity,
and as the final complexity won’t be modified (it might be slightly better for the
attacker if we consider them in some cases), we will forget about these 4 keybits.

Inverting one Round for Free.- Using Fig. 2, we will describe how to recover
the whole key and the correct internal state with a negligible cost. This can be
done with a technique inspired by the one for inverting the round function of
the Shabal [8] hash function, proposed in [9,22]. The keystream bit from col-
umn z, marked with a 1 (at round (r − 2)) represents zr−2, and implies the value
of nr−2

1 at this same round5, which implies the value of nr−1
0 , one round later.

This last value also completely determines the value of the guessed bit in round
r − 1 (αr−1), which determines the value of this same round k∗

r−1, which, with
a probability of 1/2, will determine the corresponding key bit and with proba-
bility of 1/4 won’t be a valid state, corresponding to the case of k∗

r−1 = 1 and
(lr−1
4 + lr−1

21 + lr−1
37 + nr−1

9 + nr−1
20 + nr−1

29 ) = 0, producing a sieving of 3/4 (we
only keep 3/4 of the states on average).

Inverting Many Rounds for Free.- We can repeat the exact same procedure con-
sidering also the keystream bits marqued with 2 and 3 (zr−3 and zr−4 respec-
tively). When we arrive backwards at round (r − 5), we are considering the
keystream bit marked with 4, that is actually zr−5, and the bit nr−5

4 needed
for checking the output equations that wasn’t known before, is now known as
it is nr−2

1 , that was determined when considering the keystream bit zr−2. We
can therefore repeat the procedure for keystream bits 4,5,6. . . and so on. Indeed,
in the same way, we can repeat this for as many rounds as we want, with a
negligible cost (but for the constant represented by the number of rounds).

Choosing the Optimal Value for r.- As we have seen, going backwards r rounds
(so up to the initialisation state) will determine on average r/2 key bits, and for

5 This result comes from the expression of zr−2 that linearly involves nr−2
1 while all the

other involved terms are known.
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each keystream bit considered we have a probability of 3/4 of keeping the state
as candidate, so we will keep a proportion of (3/4)r−1 state candidates.

Additionally, if r > 80, because of the definition of k∗, the master key involved
bits will start repeating6. For the kept state candidates, we have an additional
probability of around 2/3×2/3 = 2−2 of having determined the bit at one round
as well as exactly 80 rounds before. The 2/3 comes from the fact that, for having
one key bit at an instant t determined we need (lt4+lt21+lt37+nt

9+nt
20+nt

29) = 1,
and as the case (lt4 + lt21 + lt37 + nt

9 + nt
20 + nt

29) = 0 with k∗
t = 1 has been

eliminated by discarding states, we have that 2 out of the three remaining cases
will determine a key bit. Therefore, when this happens, we need the bits to
collide in order to keep the tested state as a candidate. This happens with an
additional probability of 1/2 per bit.

We first provide here the equations considering r ≤80. Given 271.5 possible
states obtained during the second step, the average number of states that we
will keep as candidates after inverting r rounds (�s) is �s = 271.5 × (3/4)r. Each
one has �K = r × 2/3 determined key bits on average.

For 160 > r > 80, the average number of states that we will keep as candi-
dates is

�s = 271.5 × (3/4)r × 2−(r−80)×(2/3)2 .

Each one has �K = r × 2/3 − (r − 80) × (2/3)2 determined key bits on average.
For any r, as we can gradually eliminate the candidate states on the fly, we

do not need to compute backwards all the 100 bits but for very few of them. The
complexity of testing the kept states in encryption function calls in the worst
case will be

271.5 × 1
320

+ 271.5−1∗0.41 × 2
320

+ . . . + 271.5−(r−1)∗0.41 × r

320
,

we can upper bound this complexity by 10 × 271.5 × 1
320 ≈ 266.5, which is lower

than the complexity to perform the previous step, described in Sect. 3.3, so won’t
be the bottleneck.

As for each final kept state, we have to try all the possibilities for the remain-
ing 80 − �K key bits, we can conclude that the final complexity of this last part
of the attack in number of encryptions is

�s × 280−�K , (1)

Which will be negligible most of the times (as a small increase in r means a big
reduction of this complexity).

The optimal case is obtained for values of r close to 100, so we won’t provide
the equations when r > 160.

For our attack, it would seem enough to choose r = 80 in order to have this
last step less expensive than the previous one, and therefore, in order not to
6 As previously said, for the sake of simplicity we do not take into account the �z bits

computed from r forward, and we discuss in the next section on implementation,
the very little this changes in the final complexity (any way, it could only help the
attacker, so the attack is as least as “good” as explained in our analysis).
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increase the time complexity. We can choose r = 100 so that we are sure that
things will behave correctly and the remaining possible key candidates can be
very efficiently tested. We recall that the optimal value for �z was 8 + 4, which
means that the data complexity of our attack is r + �z = 112 bits of keystream,
which is very small. We have �s = 221.11 and �K = 57.2. The complexity of
this step is therefore 221.11 × 280−57.2 = 243.91, which is much lower than the
complexity of the previous steps.

3.5 Full Attack Summary

We consider r = 100 and �z = 12. The data complexity of the attack is therefore
112 bits.

First, we have precomputed and carefully arranged the two lists LL and LN ,
of size 240 and 240+12−4−2 = 246, and 246 will be the memory needed to perform
the attack, as all the remaining steps can be performed on the fly. Next, we
merged both lists with respect to the sieving conditions of type I, II, III and
IV, obtaining 271.5 state candidates with a complexity of 269.19 encryptions. For
each candidate state, we compute some clocks backwards, in order to perform
an additional sieving and to recover some key bits. This can be done with a com-
plexity of 266.5. The kept states and associated key bits are tested by completing
the remaining key bits, and we only keep the correct one. This is done with a cost
of 243.91. We recover then the whole master key with a time complexity of 269.39

encryptions, i.e. around 210 times faster than an exhaustive key search. In the
next section we implement the attack on a reduced version of the cipher, being
able to proof the validity of our theoretical analysis, and verifying the attack.

4 Implementation and Verification of the Attack

To prove the validity of our attack, we experimentally test it on a shrinked cipher
with similar structure and properties. More specifically, we built a small stream
cipher according to the design principles used for Sprout but with a key of 22
bits and two states of 11 bits. We then implemented our attack and checked the
returned complexities.

4.1 Toy Cipher Used

The toy cipher we built is the one represented in Fig. 5. It follows the same
structure as Sprout but its registers are around 4 times smaller. We have chosen
the functions so that the sieving conditions behaved similarly as in our full
round attack. We keep the same initialisation principle and set the number of
initialisation rounds to 22×4 = 88 (in Sprout there are 80×4 = 320 initialisation
rounds).
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k

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

k∗ = kt mod 22 ∗ (l2 + l4 + l8 + n2 + n4 + n6)

h n4l1 + n9l3 + n4n9l7

z

0 1 2 3 4 5 6 7 8 9 10 11121314151617181920 21

Fig. 5. Toy cipher

4.2 Algorithm Implemented

Steps 1 and 2 of the Attack.-

1. Ask for r+#z = r+3 keystream bits generated from time t = 0 to t = r+3−1,
that we denote by z0, z1, · · · zr+2

2. Build a list LL of size 211 containing all the possible values for the 11 bits of
the linear register at time t = r, sorted according to:
– lr1, lr3 and lr7 at time t = r,
– lr+1

1 , lr+1
3 and lr+1

7 at time t = r + 1,
– lr+2

3 and lr+2
7 at time t = r + 2 and finally

– lr0, lr2 + lr4 + lr8 at time t = r
3. Build a list LN of size 211+1 = 212 that contains all the possible state values

of the non-linear register at time t = r plus the value of an additional guess
and sort it according to:
– nr

0 + zr, nr
4 and nr

9 at time t = r,
– nr+1

0 + zr+1, nr+1
4 and nr+1

9 at time t = r + 1,
– nr+2

0 + zr+2, nr+2
4 and nr+2

9 at time t = r + 2 and finally
– αr (the guessed bit) at time t = r

4. Create a new list M containing the possible value of LL and LN together:
(a) Consider the states of LL and LN for which the first indexes (lr1, lr3 and

lr7 in LL and nr
0 + zr, nr

4 and nr
9 in LN ) verify the equation given by the

keystream bit at time t = r:

zr = nr
4l

r
1 + nr

9l
r
3 + nr

4n
r
9l

r
7 + nr

0

i. Apply a second filter given by the second indexes (lr+1
1 , lr+1

3 and lr+1
7

in L and nr+1
0 +zr+1, nr+1

4 and nr+1
9 in G) by checking if the equation

given by the keystream bit at time t = r + 1 holds:

zr+1 = nr+1
4 lr+1

1 + nr+1
9 lr+1

3 + nr+1
4 nr+1

9 lr+1
7 + nr+1

0
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A. Similarly, apply a sieving according to the third indexes. Remark
here that l1 at time t = r+2 is equal to the already fixed bit l3 at
time t = r. Finally, use the additional information deduced from
α at time t = r that must verify

αr = kr · (lr2 + lr4 + lr8 + nr
2 + nr

4 + nr
6)

so that it implies a contradiction if lr2 + lr4 + lr8 = nr
2 +nr

4 +nr
6 and

αr �= l0 at the same time.

As discussed in Sect. 3.3, the resulting filter on the cardinal product of the list
is of 2−1−1−1−0.415 so 223−3.415 = 219.585 possible states remain at this point.

Step 3 of the Attack.-

1. For each of the 219.585 possible states at time t = r, create a vector of 22 bits
K̃ for the possible value of the key associated to it:
(a) For time t = r − 1 to t = 0:

i. Deduce the values of nt
i, i = 1 · · · 10 and of lti , i = 1 · · · 10 from the

state at time t + 1
ii. Compute the value of nt

0 given by the keystream bit equation as:

nt
0 = zt + nt

4l
t
1 + nt

9l
t
3 + nt

4n
t
9l

t
7

and of lt0 given by the LFSR retroaction equation as:

lt0 = lt2 + lt5 + lt+1
10

and deduce from it the value of

k∗t = nt
0 + nt

3n
t
5 + nt

7n
t
9 + nt

10 + l0 + nt+1
10

(given by the NLFSR retroaction equation)
iii. Compute the value of lt2 + lt4 + lt8 + nt

2 + nt
4 + nt

6 and combine it with
the value of k∗t obtained in the previous step:
A. If lt2+lt4+lt8+nt

2+nt
4+nt

6 = 0 and k∗t = 1, there is a contradiction
so discard the state and try another one by going back to Step 1.

B. If lt2 + lt4 + lt8 + nt
2 + nt

4 + nt
6 = 1 and k∗t = 0 check if the bit

has already been set in K̃. If no, set it to 0. Else, if there is
a contradiction, discard the state and try another one by going
back to Step 1.

C. If lt2 + lt4 + lt8 + nt
2 + nt

4 + nt
6 = 1 and k∗t = 1 check if the bit

has already been set in K̃. If no, set it to 1. Else, if there is
a contradiction, discard the state and try another one by going
back to Step 1.
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4.3 Results

The previous algorithm has been implemented and tested for various values of r.
At the end of step 2 we recovered indeed 219.5 state candidates. In all the cases,
the pair formed by the correct internal state and the partial right key were
included amongst the candidates at the end of step 3. The results are displayed
in Table 3, together with the values predicted by theory. We recall here that the
expected number of states at the end of the key recovery is given by the formula
in Sect. 3.4 which in this case can be simplified by:

219.5 × (3/4)r = 219.5−0.415r when r < |k| and by

219.5 × (3/4)r × 2−(r−|k|)×(2/3)2 = 229.35−0.859r when r ≥ |k|.

In the same way, we expect the following amount of bits to be determined:

r × (2/3) when r < |k| and

r × (2/3) − (r − |k|) × (2/3)2 when r ≥ |k|.

This leads to the comparison given in Table 3 in which we can remark that theory
and practice meet quite well.

Note that given the implementation results, a sensible choice would be to
consider a value of r around 26. Indeed, r = 26 means that the attacker has to
consider all the 27.32 states at the end of the key recovery part and for each of
them has to exhaust on average the 6.67 unknown bits, leading to an additional
complexity of 213.99. This number has to be compared to the time complexity of
the previous operation. The time complexity for recovering the 219.585 candidates
at the end of step 2 is the bottleneck of the time complexity. According to
Sect. 3.3, this term can be approximated by 219.585 × 3

88 � 214.71 encryptions.
So recovering the full key is of negligible complexity in comparison, and r = 26
leads to an attack of time complexity smaller than 215 encryptions, coinciding
with our theoretical complexity.

Table 3. Experimental results obtained on average on 300 random states and keys

r 20 21 22 23 24 25 26 27 28 29 30

log of number of states
remaining at the end 11.28 10.85 10.47 9.68 8.95 8.01 7.32 6.63 5.75 5.17 4.42
of the key recovery

theory 11.3 10.9 10.5 9.6 8.8 7.9 7.0 6.2 5.3 4.4 3.6

unknown bits 8.68 8.02 7.30 7.12 6.96 6.77 6.67 6.32 6.29 6.03 5.94

theory 8.7 8.0 7.3 7.1 6.9 6.7 6.4 6.2 6.0 5.8 5.6
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5 Conclusion

In this paper we present a key-recovery attack on the stream cipher Sprout, pro-
posed at FSE 2015, that allows to recover the whole key more than 210 times faster
than exhaustive search. We have implemented our attack on a toy version of the
cipher. This implemented attack behaves as predicted, and, therefore, we have
been able to verify the correctness of our approach. Our attack exploits the small
size of the registers and the non-linear influence of the key in the update func-
tion. It shows a security issue on Sprout and suggests that a more careful analysis
should be done in order to instantiate the proposed design method.

An interesting direction to look at for repairing this weakness would be to
consider the key influence on the update function as linear.
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