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Abstract. In this paper we propose a new algorithm for solving the
Learning With Errors (LWE) problem based on the steps of the famous
Blum-Kalai-Wasserman (BKW) algorithm. The new idea is to introduce
an additional procedure of mapping subvectors into codewords of a lattice
code, thereby increasing the amount of positions that can be cancelled in
each BKW step. The procedure introduces an additional noise term, but
it is shown that by using a sequence of lattice codes with different rates
the noise can be kept small. Developed theory shows that the new app-
roach compares favorably to previous methods. It performs particularly
well for the binary-LWE case, i.e., when the secret vector is sampled
from {0, 1}∗.
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1 Introduction

Learning with Errors (LWE) is a problem that has received a lot of attention
recently and can be considered as a generalization of the Learning Parity with
Noise (LPN) problem. Regev introduced LWE in [31], and it has proved to be
a very useful tool for constructing cryptographic primitives. Although a great
number of different constructions of cryptographic primitives have been given
since the introduction of the LWE problem, one of the most interesting ones is
the work on constructing fully homomorphic encryption schemes [8,10,19,20].

There are several motivating reasons for the interest in LWE-based cryp-
tography. One is the simplicity of the constructions, sometimes giving rise to
very efficient implementations which run much faster than competing alterna-
tive solutions. Another reason is the well-developed theory on lattice problems,
which gives insights into the hardness of the LWE problem. There are theo-
retical reductions from worst-case lattice problems to average-case LWE [31].
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A third motivating reason is the fact that LWE-based cryptography is one of
the areas where a quantum computer is not known to be able to break the
primitives (contrary to factoring-based and discrete log-based primitives). This
is sometimes referred to as being a tool in post-quantum cryptography.

Let us state the LWE problem.

Definition 1. Let n be a positive integer, q an odd prime, and let X be an error
distribution selected as the discrete Gaussian distribution on Zq. Fix s to be a
secret vector in Z

n
q , chosen according to a uniform distribution. Denote by Ls,X

the probability distribution on Z
n
q × Zq obtained by choosing a ∈ Z

n
q uniformly

at random, choosing an error e ∈ Zq according to X and returning

(a, z) = (a, 〈a, s〉 + e)

in Z
n
q × Zq. The (search) LWE problem is to find the secret vector s given a

fixed number of samples from Ls,X .

The definition above gives the search LWE problem, as the problem description
asks for the recovery of the secret vector s. Another variant is the so-called
decision LWE problem. In this case the problem is to distinguish samples drawn
from Ls,X and samples drawn from a uniform distribution on Z

n
q ×Zq. Typically,

we are then interested in distinguishers with non-negligible advantage.
The parameters of an LWE instance are typically chosen with some internal

relations. The prime q is chosen as a polynomial in n, and the discrete Gaussian
distribution X has mean zero and standard deviation σ = α · q for some small
α. For example, in [31], Regev proposed to use parameters q ≈ n2 and α =
1/(

√
2πn · log22 n).

1.1 Previous Work

A number of algorithms for solving the LWE problem have been given, using dif-
ferent approaches. As there is a strong connection to lattice problems, a direction
for a subset of the algorithms has been to either rewrite the LWE problem as
the problem of finding a short vector in a dual lattice, the Short Integer Solution
(SIS) problem, or to solve the Bounded Distance Decoding (BDD) problem. Lat-
tice reduction algorithms may be applied to solve these problems. Even though
there has been a lot of research devoted to the study of lattice reduction algo-
rithms, there still seems to be quite some uncertainty about the complexity and
performance of such algorithms for higher dimensions.

Another very interesting approach was given by Arora and Ge in [5], where
they proposed a novel algebraic approach to solve the LWE problem. The asymp-
totic complexity of this algorithm is subexponential when σ ≤ √

n, but fully
exponential otherwise. The algorithm is mainly of asymptotic interest as apply-
ing it on specific instances gives higher complexity than other solvers.

Finally, much work has been done on combinatorial algorithms for solving
LWE, all taking the famous Blum-Kalai-Wasserman (BKW) algorithm [7] as
a basis. The BKW algorithm resembles the generalized birthday approach by
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Wagner [34] and was originally given as an algorithm for solving the LPN prob-
lem. These combinatorial algorithms have the advantage that their complex-
ity can be analyzed in a standard way and we can get explicit values on the
complexity for different instantiations of the LWE problem. Even though we
use approximations in the analysis, the deviation between theoretical analysis
and actual performance seems to be small [3,17]. This approach tends to give
algorithms with the best performance for some important parameter choices. A
possible drawback with BKW-based algorithms is that they usually require a
huge amount of memory, often of the same order as the time complexity. Some
recent work in this direction is [1,3,17].

1.2 Motivation and Contributions

We know that the theoretical hardness of the LWE problem is well-established,
through reductions to hard lattice problems [9,30,31]. This can be transferred
to asymptotic statements on the security. In fact, most proposals of LWE-based
cryptographic primitives rely only on asymptotics when arguing about security.

But there is also a huge interest in studying the actual hardness of specific
instances of the LWE problem. How does the choice of parameters (n, q, σ)
influence the complexity of solving LWE? What are the smallest parameters we
can have and still achieve, say, 80-bit security?

In this paper we introduce a new algorithm for the LWE problem which
again uses the BKW algorithm as a basis. The novel idea is to introduce a mod-
ified BKW step, we call it a coded-BKW step, that allows us to cancel out more
positions in the a vectors than a traditional BKW step. The coded-BKW step
involves mapping the considered part of an a vector into a nearest codeword
in a lattice code (a linear code over Zq, where the distance is the Euclidean
norm). The mapping to the nearest codeword introduces some noise, but with

Table 1. Time complexity comparison for solving various LWE instances.

n q σ Complexity (log2 #Zq)

This paper
(Sect. 5)

Duc et al. [17] NTL-BKZ
Lindner-Peikert
model [1,25]

BKZ 2.0
Simulator
Model
[1,11,26]

Regev [31]

128 16,411 11.81 84.5 95.0 61.6 61.9

256 65,537 25.53 145.1 178.7 175.5 174.5

512 262,147 57.06 287.6 357.5 386.8 518.6

Lindner & Peikert [25]

128 2,053 2.70 69.7 83.7 54.5 57.1

256 4,099 3.34 123.8 154.2 156.2 151.2

512 4,099 2.90 209.2 271.8 341.9 424.5
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Table 2. Time complexity comparison for solving various binary-LWE instances.

n q σ Complexity (log2 #Z2)

This paper
(Sect. 7)

Albrecht et al. [3] NTL-BKZ
L-P model
[1,25]

BKZ
2.0 Sim.
model
[1,11,26]

w/o
Unnatural
Selection

Improved
version

Regev [31]

128 16,411 11.81 58.8 78.2 74.2 65.4 65.7

256 65,537 25.53 97.9 142.7 132.5 179.5 178.5

512 262,147 57.06 163.7 251.2 241.8 390.9 522.8

a proper selection of parameters this can be kept bounded and small enough
not to influence the total noise in the BKW procedure too much. Whenever any
pair of a vectors map to the same codeword, they are added together creating
a new sample with a part of the a vector cancelled, as is the usual result of a
BKW step. These samples are the input to the next step in the BKW proce-
dure. The algorithm also contains some additional new steps using the discrete
Fast Fourier Transform (FFT) to provide some additional improvement. The
new ideas have some connection to the recent paper on LPN [22], but in that
paper a binary covering code (see [12] for definition) was used after the BKW
steps. Also the recent work [3] has some connections as it introduces additional
noise in the BKW steps by the so-called lazy modulus switching. Still, the new
algorithm outperforms previous BKW-type algorithms for solving LWE — even
when compared with the most recent work [17], we improve significantly (as
detailed in Table 1).

We also apply the algorithm in a slightly modified form on the binary-
LWE problem. The binary-LWE problem is the LWE problem when the secret
vector s is chosen uniformly from {0, 1}n. In this case we have a huge improve-
ment (see Table 2) in performance compared with other algorithms.

Tables 1 and 2 show comparisons of different algorithms for solving various
LWE and binary-LWE instances, respectively. We compare the performance of
the new algorithm with the previous best BKW variant (i.e., Duc et al. [17] for
LWE or Albrecht et al. [3] for binary-LWE) and the estimates (under certain
models [11,25,26,29]) for distinguishing LWE (or binary-LWE) samples from
uniform using lattice reduction algorithms, when LWE is reduced to SIS. The
results consolidate the understanding that BKW is asymptotically efficient. For
the toy LWE instances with n = 128, the SIS approach still beats all the BKW
variants, including ours; but the recent variant has greatly narrowed the gap.
The situation alters when the parameter n increases.

We also obtain a significant improvement (i.e., with a factor of more than
211 in time) on solving an LWE (136, 2003, 5.19)-instance, which first appeared
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in [29] and was then adopted as an example in [25], compared with the estimates
in [1] that use the BDD approach.

Thus, we are close to a conclusion that, when choosing LWE instances for
today’s cryptosystems (e.g., achieving an 80-bit or higher security level), thwart-
ing of BKW-type attacks must be taken into consideration.

The remainder of the paper is organized as follows. In Sect. 2 we describe the
basic theory around the LWE problem. We give a short description of the BKW
algorithm in Sect. 3, and then present the novel modification in the next section.
We detail the algorithm in Sect. 5, analyze its complexity in Sect. 6, and then
propose a variant for binary-LWE in Sect. 7. This is followed by the sections
of implementation and results. We finally concludes this paper in Sect. 10.

2 Background

On an n-dimensional Euclidean space R
n, the intuitive notion of length of a

vector x = (x1, x2, . . . , xn) is captured by the L2-norm; ||x|| =
√

x2
1 + · · · + x2

n.
The Euclidean distance between two vectors x and y in R

n is defined as ||x−y||.
For a given set of vectors L, the minimum mean square error (MMSE) estimator
assigns each vector in R

n to the vector l ∈ L such that ||x − l|| is minimized.
Let us shortly introduce the discrete Gaussian distribution.

2.1 Discrete Gaussian Distribution

Let x ∈ Z. The discrete Gaussian distribution on Z with mean 0 and variance σ2,
denoted DZ,σ, is the probability distribution obtained by assigning a probability
proportional to exp(−x2/2σ2) to each x ∈ Z. The X distribution1 with variance
σ2 is the distribution on Zq obtained by folding DZ,σ mod q, i.e., accumulating the
value of the probability mass function over all integers in each residue class modq.
Similarly, we define the discrete Gaussian over Z

n with variance σ2, denoted
DZn,σ, as the product distribution of n independent copies of DZ,σ.

In general, the discrete Gaussian distribution does not exactly inherit the
usual properties from the continuous case, but in our considered cases it will be
close enough and we will use properties from the continuous case, as they are
approximately correct. For example, if X is drawn from Xσ1 and Y is drawn
from Xσ2 , then we consider X + Y to be drawn from X√

σ2
1+σ2

2
. This follows the

path of previous work [1].
A central point in cryptanalysis is to estimate the number of samples required

to distinguish between two distributions, in our case the uniform distribution on
Zq and Xσ. The solution to this distinguishing problem leads to an efficient key
recovery: we assume that for a right guess, the observed symbol is Xσ distributed;
otherwise, it is uniformly random. Thus, we need to distinguish the secret from
Q candidates. We follow the theory from linear cryptanalysis [6] (also similar to
that in correlation attacks [15]), that the number M of required samples to test

1 It is also denoted Xσ, and we omit σ if there is no ambiguity.
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is about O
(

ln(Q)
Δ(Xσ‖U)

)
, where Δ(Xσ‖U) is the divergence2 between Xσ and the

uniform distribution U in Zq.

2.2 LWE Problem Description

We already gave the definition of the search LWE problem in Definition 1. As
we will focus on this problem, we skip giving a more formal definition of the
decision version of LWE. Instead we reformulate the search LWE problem a bit.
Assume that we ask for m samples from the LWE distribution Ls,X and the
response is denoted as

(a1, z1), (a2, z2), . . . , (am, zm),

where ai ∈ Z
n
q , zi ∈ Zq. We introduce z = (z1, z2, . . . , zm) and y =

(y1, y2, . . . , ym) = sA. We can then write A =
[
aT1 aT2 · · · aTn

]
and z = sA + e,

where zi = yi + ei = 〈s,ai〉 + ei and ei
$← X is the noise. We see that the prob-

lem has been reformulated as a decoding problem. The matrix A serves as the
generator matrix for a linear code over Zq and z is the received word. Finding
the codeword y = sA such that the distance ||y − z|| is minimum will give the
secret vector s.

If the secret vector s is drawn from the uniform distribution, there is a simple
transformation [4,23] that can be applied, namely, we may through Gaussian
elimination transform A into systematic form. Assume that the first n columns
are linearly independent and form the matrix A0. Define D = A0

−1. With a
change of variables ŝ = sD−1 − (z1, z2, . . . , zn) we get an equivalent problem
described by Â = (I, âTn+1, â

T
n+2, · · · , âTm), where Â = DA. We compute

ẑ = z − (z1, z2, . . . , zn)Â = (0, ẑn+1, ẑn+2, . . . , ẑm).

After this initial step, each entry in the secret vector ŝ is now distributed accord-
ing to X .

2.3 Lattice Codes and Construction A

A lattice Λ is a discrete additive subgroup of Rn. Reformulated, Λ is a lattice
iff there are linearly independent vectors v1, . . . ,vm ∈ R

n, such that any y ∈ Λ
can be written as y =

∑m
i=1 αivi, where αi ∈ Z. The set v1, . . . ,vm is called a

basis for Λ. A matrix whose columns are these vectors is said to be a generator
matrix for Λ.

Furthermore, let V ol(·) denote the volume of a closed set in R
n and let V be

the fundamental Voronoi region of Λ, i.e.,

V = {x ∈ R
n : ||x|| ≤ ||x − w||,∀w ∈ Λ}.

2 Divergence has a couple of aliases in literature: relative entropy, information diver-
gence, Kullback-Leibler divergence, etc. We refer the interested reader to [15] for
the rigorous definition. In this paper, the divergence Δ(Xσ‖U) will be computed
numerically.
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We will be interested in a more narrow class of lattices based on q-ary linear
codes. If C is a linear [N, k] code over the alphabet of size q, where q is a prime,
then a lattice over this code is

Λ(C) = {λ ∈ R
n : λ = (cmod q), c ∈ C}.

The mapping from the code to the lattice is often referred to as Construction
A [14]. The lattice Λ(C) is called the q-ary lattice associated with C.

A typical application is to use the lattice Λ(C) as a codebook for quantization
of sequences x ∈ R

n. Let Q(x) be the lattice point closest to x if the squared
error is used as a fidelity criterion. We call Q(x) an MSE quantizer. The second
moment of Λ, denoted by σ2 = σ2(Λ), is defined as the second moment per
dimension of a uniform distribution over its fundamental region V, i.e.,

σ2 =
1
n

·
∫

V
||x||2 1

V ol(V)
dx. (1)

From the literature [13,14] of lattice codes, we know that the value σ2 can
be represented as

σ2 = G(Λ) · V ol(V)
2
n , (2)

where G(Λ) is called the normalized second moment, which represents a figure
of merit of a lattice quantizer with respect to the MSE distortion measure. We
denote the minimum possible value of G(Λ) over all lattices in R

n by G(Λn) and
it is known that

1
2πe

< G(Λn) ≤ 1
12

, (3)

where the upper bound is achieved when the lattice is generated by Z
n, and the

lower one is achieved asymptotically by lattices generated by Construction A
from q-ary random linear codes [18,27,35].

3 The BKW Algorithm

The BKW algorithm was proposed by Blum et al. [7] and was originally targeting
the LPN problem. However, it is trivially adopted also to the LWE problem.

As with Wagner’s generalized birthday algorithm, the BKW approach uses
an iterative collision procedure on the columns in the generator matrix A, which
step by step reduces the dimension of A. Summing together columns that collide
in some subset of positions and keeping them as columns in a new matrix reduces
the dimension but increases the size of the noise.

A brief description inspired by the notation in [22] follows. Initially, one
searches for all combinations of two columns in A with the same last b entries.
Assume that one finds two columns aTi1 ,a

T
i2

such that

ai1 − ai2 = (∗ ∗ · · · ∗ 0 0 · · · 0
︸ ︷︷ ︸
b symbols

),
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where ∗ means any value. Then a new vector a(2)1 = ai1 − ai2 is formed. An
“observed symbol” is also formed, corresponding to this new column by forming
z
(2)
1 = zi1 − zi2 . If y

(2)
1 =

〈
s,a(2)1

〉
, then z

(2)
1 = y

(2)
1 + e

(2)
1 , where now e

(2)
1 =

ei1 −ei2 . Recall that noise like ei1 follows the Gaussian distribution with variance
σ2, so e

(2)
1 = ei1 −ei2 is considered to be Gaussian distributed with variance 2σ2.

There is also a second obvious way of getting collisions, namely, combining any
two vectors where the sum of the collision sets is zero. The procedure is analog
to the above, just replacing subtraction with addition.

There are different approaches to realizing the above merging procedure. We
consider the approach called LF1 in [24], which computes the difference between
one fixed column and any other column with the same last b entries (in absolute
value), and forwards this to the next BKW step.

Put all such new columns in a matrix A2,

A2 = (a(2)T1 a(2)T2 . . . a(2)Tm2
).

If m is the number of columns in A, then we have the number of columns in A2

to be m2 = m − qb−1
2 . Hence, using the LF1 approach, the number of samples

(columns) forwarded to the next step of BKW is slowly decreasing (by qb−1
2

for each step). It is known from simulation, that the LF2 approach [24] which
gives more surviving samples, performs well and could be chosen in an actual
implementation.

Now the last b entries of columns in A2 are all zero. In connection to this
matrix, the vector of observed symbols is

z2 = (z(2)1 z
(2)
2 · · · z(2)

m− qb−1
2

),

where z
(2)
i −y

(2)
i are assumed Gaussian with variance 2σ2, for 1 ≤ i ≤ m− qb−1

2 .
This completes one step of the BKW algorithm.

We then iterate the same for i = 2, 3, . . . , t, picking a new collision set of size
qb−1
2 and finding colliding columns in Ai, giving new vectors with an additional

b entries being zero, forming the columns of Ai+1. Repeating the same procedure
an additional t−2 times will reduce the number of unknowns in the secret vector
s to n − bt in the remaining problem.

For each iteration the noise is increased. After t BKW steps the noise con-
nected to each column is of the form

e =
2t

∑

j=1

eij
,

and the total noise is approximately Gaussian with variance 2t · σ2.
Altogether we have reduced the LWE instance to a smaller instance, where

now the length of the secret vector is n′ = n − tb, but the noise has variance
2t · σ2. The remaining unknown part of the secret vector s is guessed (a total
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of qn−tb) and for each guess we check through a hypothesis test whether the
remaining samples follow the Gaussian distribution. The number of remaining
samples is at least m − t · qb−1

2 .
Note that there is an improved version of BKW using lazy modulus reduc-

tion [3] and the very recent improvement in [17].

4 A Modified BKW Algorithm for the LWE Problem

The new algorithm we propose uses the same structure as the BKW algorithm.
The new idea involves changing the BKW step to a more advanced step that
can remove more positions in the treated vectors at the expense of leaving an
additional noise term.

We introduce some additional notation. For the index set I, we make use of
vI to denote the vector with entries indexed by I. Alternatively, we utilize the
symbol v[1,...,n] to denote the vector containing the first n entries of v, etc.

4.1 A New BKW Step

Recall the BKW step, taking a large number of vectors ai and trying to collide
them in a set of positions determined by an index set I. This part of the vector
a is written as aI . The size of the collision set ( qb−1

2 ) and the number of vectors
have to be of the same order, which essentially determines the complexity of the
BKW algorithm, as the number of steps we can perform is determined by the
variance of the noise.

We propose to do the BKW step in a different manner. Assuming that we
are considering step i in the BKW process, we fix a q-ary linear code with
parameters (Ni, b), called Ci. The code gives rise to a lattice code. Now, for any
given vector aI as input to this BKW step, we approximate the vector by one
of the codewords in the code Ci.

We rewrite aI into two parts, the codeword part cI ∈ Ci and an error part
eI ∈ Z

Ni
q , i.e.,

aI = cI + eI . (4)

Clearly, we desire the error part to be as small as possible, so we adopt a decoding
procedure to find the nearest codeword in the chosen code Ci using the Euclidean
metric. Here, we utilize syndrome decoding by maintaining a large syndrome
table, and details will be discussed thoroughly later.

Each vector aI is then sorted according to which codeword it was mapped
to. Altogether, there are qb possible codewords. Finally, generate new vectors for
the next BKW step by subtracting vectors mapped to the same codeword (or
adding to the zero codeword).

The inner product 〈sI ,aI〉 is equal to

〈sI ,aI〉 = 〈sI , cI〉 + 〈sI , eI〉 .

By subtracting two vectors mapped to the same codeword we cancel out the
first part of the right hand side and we are left with the noise. The latter term
is referred to as the error term introduced by coding.
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Let us examine the samples we have received after t BKW steps of this
kind. In step i we have removed Ni positions, so in total we have now removed∑t

i=1 Ni positions (Ni ≥ b). The received samples are created from summing 2t

original samples, so after guessing the remaining symbols in the secret vector
and adjusting for its contribution, a received symbol z can be written as a sum
of noise variables,

z =
2t

∑

j=1

eij
+

n∑

i=1

si(E
(1)
i + E

(2)
i + · · · + E

(t)
i ), (5)

where E
(h)
i =

∑2t−h+1

j=1 ê
(h)
ij

and ê
(h)
ij

is the coding noise introduced in step h of
the modified BKW algorithm. Note that on one position i, at most one error
term E

(h)
i is non-zero.

We observe that noise introduced in early steps is increased exponentially in
the remaining steps, so the procedure will use a sequence of codes with decreasing
rate. In this way the error introduced in early steps will be small and then it
will eventually increase.

4.2 Analyzing the Error Distribution

There are many approaches to estimating the error distribution introduced by
coding. The simplest way is just assuming that the value is a summation of sev-
eral independent discrete Gaussian random variables. This estimation is easily
performed and fairly accurate. A second approach is to compute the error dis-
tribution accurately (to sufficient precision) by computer. We should note that
the error distribution is determined from the linear code employed. We now rely
on some known result on lattice codes to provide a good estimate on the size of
the noise introduced by coding.

We assume that the error vector e introduced by the coding technique
remains discrete Gaussian, and their summation is discrete Gaussian as well,
just as in previous research. As the error is distributed symmetrically we should
estimate the value E[||e||2] to bound the effect of the error, where e is the error
vector distributed uniformly on the integer points inside the fundamental region
V of the lattice generated by Construction A.

Thus, the problem of decoding transforms to an MMSE quantizing problem
over the corresponding lattice. For simplicity of analysis, we change the hypoth-
esis and assume that the error vector e is distributed uniformly and continuously
on V. Thus we can utilize the theory on lattice codes to give a fairly accurate esti-
mation of the value 1

N E[||e||2], which exactly corresponds to the second moment
of the lattice σ2. As given in Eq. (2), we can write it as,

σ2 = G(Λ) · V ol(V)
2
N .

In our scheme, although we employ several different linear codes with different
rates, we also try to make the contribution of every dimension equal. We generate
a lattice Λ by Construction A, given a linear code. We denote the minimum
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possible value of G(Λ) over all lattices Λ in Z
n generated by Construction A

from an [N, k] linear code as G(ΛN,k).
Definitely G(ΛN,k) is no less than G(ΛN ); thus it is lower bounded by the

value 1
2πe and this bound can be achieved asymptotically. For the lattice gen-

erated by Z
N , i.e., employing a trivial linear code without redundancy, its nor-

malized second moment is 1
12 . Therefore, the value G(ΛN,k) satisfies

1
2πe

< G(ΛN,k) ≤ 1
12

.

We set G(ΛN,k) to be 1
12 and surely this is a pessimistic estimation. Since the

lattice is built from a linear code by Construction A, the volume of V is qN−k.
Thus, we can approximate σ by

σ ≈ q1−k/N ·
√

G(ΛN,k) =
q1−k/N

√
12

. (6)

We have numerically tested the smallest possible variance of errors introduced
by coding, given several small sizes of N, k and q, (e.g., [N, k] is [3, 1] or [2, 1], q
is 631, 2053 or 16411) and verified that the above estimation works (see Table 3,
where 1/G is bounding 1/G(ΛN,k)). We choose [N, 1] codes since for the covering
or MMSE property, lower rate means worse performance.

It is folklore that the value G will decrease when the dimension and length
becomes larger, and all the cases listed in Table 3 fully obey the rule. Thus
we believe that we may have even better performance when employing a more
complicated code for a larger problem. Actually, the values without a † sign in
Table 3 is computed using randomly chosen linear codes, and they still outper-
form our estimation greatly. This observation fits the theory well that when the
dimension n is large, a random linear code may act nearly optimally.

From Eq. (6) we know the variance of the error term from the coding part.
Combining this with Eq. (5), we get an estimation of the variance of the total
noise for the samples that we create after t modified BKW steps.

4.3 Decoding Method and Constraint

Here we discuss details of syndrome decoding and show that the additional cost
is under control. Generally, we characterize the employed [N, k] linear code by a
systematic generator matrix M =

[
IF′]

k×N
. Thus, a corresponding parity-check

matrix H =
[
F′T I

]
(N−k)×N

is directly obtained.

Table 3. Numerical evaluations on 1/G

q 631 2053 16411

code [2,1] [3,1] [4,1] [2,1] [3,1] [4,1] [2,1] [3,1]

E[||e||2] 101.26† 1277.31 4951.53 329.24† 6185.67 29107.73 2631.99† 99166.25

1/G 12.46 12.71 12.80 12.47 12.65 12.78 12.47 12.62

The value with a † sign means that it is optimal.
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The syndrome decoding procedure is described as follows. (1) We construct
a constant-time query table containing qN−k items, in each of which we store
the syndrome and its corresponding error vector with minimum Euclidean dis-
tance. (2) When the syndrome is computed, by checking the table, we locate its
corresponding error vector and add them together, thereby yielding the desired
nearest codeword.

We generalize the method in [22] to the non-binary case Zq for computing
the syndrome efficiently. Starting by sorting the vectors aI by the first k entries,
we then partition them accordingly; thus there are qk partitions denoted Pj , for
1 ≤ j ≤ qk. We can read the syndrome from its last N − k entries directly if
the vector aI belongs to the partition with the first k entries all zero. Then we
operate inductively. If we know one syndrome, we can compute another one in
the same partition within 2(N − k) Zq operations, or compute one in a different
partition whose first k entries with distance 1 from that in the known partition
within 3(N − k) Zq operations. Suppose we have mdec vectors to decode here
(generally, the value mdec is larger than qk), then the complexity of this part
is bounded by (N − k)(2mdec + qk) < 3mdec(N − k). Since the cost of adding
error vectors for the codewords is mdecN , we can give an upper bound for the
decoding cost, which is roughly 4mdecN .

Concatenated Constructions. The drawback of the previous decoding strat-
egy is that a large table is required to be stored with size exponential in N − k.
On the other hand, there is an inherent memory constraint, i.e., O (

qb
)
, when

the size b is fixed, which dominates the complexity of the BKW-type algorithm.
We make use of a narrow sense concatenated code defined by direct sum-

ming several smaller linear codes to simplify the decoding procedure, when the
decoding table is too large. This technique is not favored in coding theory since
it diminishes the decoding capability, but it works well for our purpose.

5 Algorithm Description

We present a detailed description of the new algorithm in this section, containing
five steps. This is illustrated in Algorithm 1 below.

5.1 Gaussian Elimination

The goal of this step is to transform the distribution of secret vector s to be that
of the error (c.f. [4,23] for similar ideas). We refer to the full version for details
on deriving the complexity of this step.

The complexity of this step is as follows,

C0 = (m − n′) · (n + 1) · 
 n′

b − 1
� < m(n + 1) · 
 n′

b − 1
�, (7)

where n′ = n − t1b.
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Algorithm 1. New LWE solving algorithm (main steps)

5.2 Standard BKW Reductions

The previously described coded-BKW in Sect. 4 introduces noise that grows with
each iteration, so it makes sense to start with a number of pure BKW reductions.
We start by performing t1 standard BKW steps to balance the two noise parts,
i.e., the noise increased by merging and the noise introduced by coding. This
step zeros out the bottom t1 · b bits. We now explain the details.

Given the output of the Gaussian elimination, i.e., ẑ and Â = (IL0), we
process only on the non-systematic part of Â, denoted by L0. Similar as the other
BKW procedures [7], in each step we sort the vector by the last b unprocessed
entries and thus divide the total samples into at most qb−1

2 classes. Then, we
merge (adding or subtracting) those in the same class to zero the considered b
entries, forming new samples as the input to the next BKW step, L1,L2, etc.

The output of this step is a matrix (ILt), where all t1b last entries in each
column of Lt are zero. Collecting the first n − t1b rows of the matrix Lt and
appending the identity matrix in front, we have a series of new LWE samples
with dimension n − t1b. The complexity of this step is

C1 =
t1∑

i=1

(n + 1 − ib)(m − i(qb − 1)
2

). (8)

5.3 Coded-BKW Reductions

We next continue to perform t2 coded-BKW steps, in each of which an [Ni, b]
q-ary linear code is utilized. Here various rates are employed to equalize the error
contribution per dimension. The code length Ni in the (t2− i+1)th coded-BKW
step is a function of a preset variance value σ2

set which is determined by the error
level introduced by the codes utilized in the last phase — subspace hypothesis
testing. We know that in the final error expression there are 2t2−i+1 error terms
from the i-th coded BKW step. Thus, we have the following equation,

σ2
set =

2iq
2(1− b

Ni
)

12
.
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Thus, the code length Ni is chosen as,

Ni =

⌊
b

1 − 1
2 logq(12 · σ2

set

2i )

⌋

.

By ncod we denote the total number of positions canceled by the coded-
BKW steps, i.e., ncod =

∑t2
i=1 Ni. We denote the number of samples after the

last coded-BKW step by M . Following Sect. 4.3, the decoding cost is upper
bounded by

C ′
2 =

t2∑

i=1

4(M +
i(qb − 1)

2
)Ni,

where (M + i(qb−1)
2 ) is the number of samples processed in the (t2 − i + 1)-th

step. Thus, the overall complexity of this step is

C2 = C ′
2 +

t2∑

i=1

(ntop + ntest +
i∑

j=1

Nj)(M +
(i − 1)(qb − 1)

2
). (9)

5.4 Partial Guessing

The previous step outputs samples with smaller dimension but higher noise
variance. In order to deal with the remaining unknowns in the secret ŝ vector, we
use a combination of testing all values by guessing and performing a hypothesis
test using an FFT.

In this step we perform a simple partial guessing technique, which balances
the complexity of the previous steps and the later FFT testing phase. We exhaust
the top ntop entries of ŝ with the absolute value less than d; thus there are
(2d+1)ntop candidates. Thus, the complexity of this step is just that of updating
the observed symbol, i.e.,

C3 = Mntop(2d + 1)ntop . (10)

The upcoming last step is performed for each such guess.

5.5 Subspace Hypothesis Testing

Here we generalize the subspace hypothesis testing technique first proposed in
[22] to Zq case, and then combine with Fast Fourier Transform to calculate the
occurrences of different symbols in Zq efficiently. This information would yield
an optimal distinguisher with a small additional cost.

We use a polynomial in the quotient ring Z[X]/(Xq −1) to record the occur-
rences. The modulus (Xq − 1) is determined by the group property of Zq. We
employ an [ntest, l] systematic linear code, group the samples (â′

i, ẑ
′
i) from the

previous steps in sets L(ci) according to their nearest codewords and define the
function fci

L (X) as
fci

L (X) =
∑

(a′
i,z

′
i)∈L(ci)

X ẑ′
i(mod q).
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Due to the systematic feature of the code utilized, we rewrite fci

L (X) as a
function of the information part u of the codeword ci, denoted by hu(X) =
fci

L (X), and later we exhaust all the ql possible values of the vector u. Define

Hy(X) =
∑

u∈Zl
q

hu(X) · X−〈y,u〉.

Here we exhaust all candidates of y ∈ Z
l
q. Then, there exits a unique vector y ∈

Z
l
q, s.t., 〈y,u〉 = 〈ŝ, ci〉 . For the right guess, the polynomial Hy(X) will record

the occurrences of the error symbols which are discrete Gaussian distributed;
otherwise, it should be uniformly distributed.

The calculation of the polynomial Hy(X) can be accelerated by Fast Fourier
Transform. Let ω be a primitive q-th root of unity in the complex field C. We can
interpolate the polynomial Hy(X) if we know its q values at the q different points
(1, ω, ω2, . . . , ωq−1) with complexity about O (q log2(q)). Thus, the problem is
transformed to a polynomial evaluation problem.

We first evaluate ql polynomials hu(X) on q different points (1, ω, ω2, . . . ,
ωq−1) with the complexity O (

ql · q log2 q
)
. Then with these values stored, we can

evaluate the polynomial Hy(X) using q FFTs, each of which costs O (
ql log2(ql)

)
.

If the symbol occurrences are known, then we obtain the belief levels of all
the candidates using a Neyman-Pearson test [15]. We choose the one with the
highest rank and output it. This testing adds O (

ql+1
)
Zq-operations. Similar

to that in the LPN case [22], recovering the remaining information can be done
by iteratively employing this procedure to solve smaller LWE instances whose
complexity is negligible compared to that of knowing the first part.

The employed [ntest, l] linear code brings in an error with variance per dimen-
sion q2(1−l/ntest)

12 . We denote it by σ2
set, which is manipulated as a preset parame-

ter in the previous coded-BKW phase to control the code sizes. As before, the
decoding cost in this step is upper bounded by

C ′
4 = 4Mntest.

We introduce a new notation ntot = ncod + ntest to denote the total length of
the subvectors affected by coding. The overall complexity of this step is given as

C4 = C ′
4 + (2d + 1)ntop(CFFT · ql+1(l + 1) log2 q + ql+1). (11)

Here CFFT is the constant before the complexity order of an FFT.

6 Analysis of the New Approach for BKW

We denote by P (d) the probability that the absolute value of one guessed symbol

ŝi is smaller than d, where ŝi
$← Xσ. Here we obtain a lower bound of P (d) by

ignoring the folding feature of the distribution as P (d) > erf( d√
2σ

), where erf is

the error function erf(x) = 2√
π

∫ x

0
e−t2dt.
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In the testing step, we preset a noise level γ2σ2σ2
setntot to be the variance

of the noise introduced by coding, and then compute the required number of
samples to perform a successful distinguishing. The process may fail if the size of
the information subvector to be tested, denoted ŝtest, is too large to distinguish.
Thus we need a new notion, Ptest, to denote the probability that the Euclidean
length of ŝtest is less than a preset value γ

√
ntotσ. Using the following lemma

from [28], which is a tail bound on discrete Gaussians, we can upper bound the

failure probability by (γe
1−γ2

2 )ntot .

Lemma 1. For any γ ≥ 1, Pr[||v|| > γσ
√

n;v $← DZn,σ] < (γe
(1−γ2)

2 )n.

Later we set the value γ to be 1.2. Then, the estimated success probability is
larger than 97.5% in most of the applications. We summarize our findings in the
following theorem.

Theorem 1 (The Complexity of Algorithm 1). Let (n, q, σ) be the parame-
ters of the chosen LWE instance. Let d, t1, t2, b, l, ntest be algorithm parameters.
The number of Zq operations required for a successful run of the new attack is

C =
C0 + C1 + C2 + C3 + C4

(P (d))ntop · Ptest
, (12)

with C0, . . . , C4 as in Eqs. (7)–(11).
The required number of samples M for testing is set to be3

M =
4 ln((2d + 1)ntopql)

Δ(Xσfinal
‖U)

,

where U is the uniform distribution in Zq and σ2
final = 2t1+t2σ2 + γ2σ2σ2

setntot.
Thus, the number of calls to the LWE oracle is

m =
(t1 + t2)(qb − 1)

2
+ M.

Proof. The cost for one iteration is C0 + C1 + C2 + C3 + C4, which should be
divided by its expected success probability (P (d))ntop · Ptest.

7 A Variant of Coded-BKW for Binary-LWE

We can derive an efficient algorithm for binary-LWE by modifying certain steps
accordingly. First, the distribution of the information vector is already of small
size in Zq; therefore we skip the Gaussian elimination step. In addition, since
the prime q is a relatively large symbol, it is beneficial to replace the step of
the FFT hypothesis testing by a simple step exhausting all the combinations of
the top ntop entries, which are uniformly chosen from the binary set {0, 1}ntop .
The variant is similar to Algorithm 1, so we omit it here and refer the interested
reader to the full version for details.
3 The constant factor in the formula is chosen as 4. According to some estimates on

linear and differential cryptanalysis (e.g., [6,33]), its failure probability is fairly low.
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Fig. 1. Number of eliminated rows vs. log2 of error variance.Number of eliminated rows
vs. log2 of error variance.

8 Simulation

We have performed simulations to support our theoretical results. A simulation
with parameters (q, σ, #samples) =

(
2053, 2.70, 225

)
is shown in Fig. 1, plotting

the number of eliminated rows vs. log2 of the variance of the samples errors. Four
standard 2-row BKW steps were used initially, followed by three iterations each
of [3,2]-, [4,2]-, [5,2]- and [6,2]-coding steps. The dashed horizontal line shows the
variance of the corresponding uniform distribution (variance roof) of the errors,
setting an upper bound for variance in simulations. The four curves show the
performances of 2-step BKW (theoretical), theoretical coded-BKW (according
to Sect. 6), coded-BKW simulation, and coded-BKW simulation when employing
the unnatural selection heuristic (see [3]).

It is clear that coded-BKW significantly outperforms plain BKW. Further-
more, it can be seen that the developed theoretical estimations for coded-BKW
very closely match actual simulation performance.

Last but not least, the unnatural selection heuristic can be employed by
producing more samples, but retaining only the ones with the smallest coding
errors. Instead of producing 225 samples, 227 were produced at each step. There
is a clear gain in variance performance, and that gain is even larger when the
sample factor is increased. These results will be detailed in the full version.

9 Summary of Results

We now present numerical results, as shown in Tables 1 and 2, using the new
algorithms to solve the LWE and binary-LWE problems for various parameter
settings, including instances from Regev’s cryptosystem [31] or from Lindner
and Peikert’s paper [25]. As in [17], we consider operations over C to have the
same complexity as the operation in Zq, and set CFFT to be 1, which is the best
we can obtain for an FFT. We also set γ = 1.2 and d = 3σ.

As in [1], we apply the new method to the instances proposed in a somewhat
homomorphic encryption scheme [2], which can be considered as LWE instances
using linearization. Our method yields substantial improvements in all cases
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and especially solves an instance with the number of variables in the linearized
system n = 153 (targeting 128-bit security [1]), in about 2119 bit operations,
thereby breaking the claimed security level.

We present here additional information about the comparisons in Tables 1
and 2. Firstly, only the new algorithms and the algorithm proposed in [17] are
key-recovery attacks; all the others belong to the class of distinguishing attacks.
Secondly, the counterpart proposed by Albrecht et al. [3] is the version without
unnatural selection, since we can also improve our algorithm by this heuristic.
Thus, we accelerate the BKW-type binary-LWE solver by a factor of almost
220, for the toy instance n = 128 in Regev’s parameter setting. Last, we adopt
the estimating model in [1,3] using data from the implementations in [11,25,26]
to evaluate the performance of the lattice reduction distinguisher, when LWE is
reduced to SIS. We refer the interested readers to these two papers for details.

When reducing LWE to BDD, also named “Decode” in [25], Lindner and
Peikert reported the running time of this attack on two LWE instances. Albrecht
et al. [1] multiplied the time by the clock speed of the CPU used, compared with
their BKW variant, and finally reached the conclusion that the BDD approach
would yield substantially lower complexity. Specifically, their estimation about
this “Decode” approach on one (with parameter (136, 2003, 5.19)) of the two
instances is about 291.4

Zq operations. We obtain a much better time complexity
of about 280.6 operations over Zq, when applying Algorithm 1 to this instance.

As Ring-LWE is a sub-problem of LWE, the new algorithm can be employed
to attack some recent Ring-LWE-based cryptosystems [16,21,32]. We solve
the underlying Ring-LWE (256, 7681, 4.51) and Ring-LWE (512, 12289, 4.86)
instantiations in 2123 and 2225 bit-operations, respectively, thereby breaking the
claimed 128-bit and 256-bit security levels.

10 Conclusion

We have proposed a new algorithm to solve the LWE problem by modifying
the steps of the BKW algorithm using lattice codes. Our algorithm outperforms
the previous BKW variants for all instantiations we considered and also all the
lattice reduction approaches from some size of instances and onwards. To the
best of our knowledge, it is the best LWE solver when the dimension n is large
enough and it seems to cover the choices of today’s and future security levels.
Another application is that it outperforms all the other approaches drastically
on the binary-LWE problem.
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24. Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006)

25. Lindner, R., Peikert, C.: Better key sizes (and Attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

26. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013)

27. Loeliger, H.A.: Averaging bounds for lattices and linear codes. IEEE Trans. Inf.
Theory 43(6), 1767–1773 (1997)

28. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012)

29. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J.,
Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191.
Springer, Berlin Heidelberg (2009)

30. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: Proceedings of the Forty-first Annual ACM Symposium on Theory of Comput-
ing, pp. 333–342. ACM (2009)

31. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1–34:40 (2009)

32. Roy, S.S., Vercauteren, F., Mentens, N., Chen, D.D., Verbauwhede, I.: Compact
Ring-LWE cryptoprocessor. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS,
vol. 8731, pp. 371–391. Springer, Heidelberg (2014)
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