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Abstract. In this mini-survey we discuss time complexity and program
size results for universal Turing machines, tag systems, cellular automata,
and other simple models of computation. We discuss results that show
that many of the simplest known models of computation including the
smallest known universal Turing machines and the elementary cellular
automaton Rule 110 are efficient simulators of Turing machines. We also
recall a recent result where the halting problem for tag systems with only
2 symbols (the minimum possible) is proved undecidable. This result
has already yielded applications including a significant improvement on
previous undecidability bounds for the Post correspondence problem and
the matrix mortality problem.

1 Introduction

This brief survey is concerned with time complexity and program size results
for universal Turing machines, tag systems, cellular automata and other simple
models of computation. We pay particular attention to tag systems as they are
at the center of many of the results we discuss. Here we provide only a brief
glimpse at the above mentioned topics and we direct the reader who wishes to
learn more to other related surveys [17,27].

2 Program Size of Small Universal Machines

In 1956 Shannon [35] considered the question of finding the smallest possible uni-
versal Turing machine, where size is the number of states and symbols. Figure 1
summarises the state of the art for the smallest known standard, weakly and
semi-weakly universal Turing machines. Here we say a machine is standard if it
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: universal, direct simulation, O(t2), [23]
�� : universal, 2-tag simulation, O(t4 log2 t), [1,14,32]
� : universal, bi-tag simulation, O(t6), [26]
�� : semi-weakly universal, direct simulation, O(t2), [38]
� : semi-weakly universal, cyclic-tag simulation, O(t4 log2 t), [41]
� : weakly universal, Rule 110 simulation, O(t4 log2 t), [25]
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Fig. 1. State-symbol plot of small universal Turing machines. The type of simulation is
given for each group of machines. For example, each machine plotted as a hollow circle
simulates 2-tag systems, a technique introduced by Minsky [20]. The technique of Rule
110 simulation was devised by Cook [4] and later improved upon in [26] to give the
weakly universal machines plotted as solid squares. Direct simulation indicates that
a machine was proved universal by simulating Turing machines directly rather than
via some other system. Simulation time overheads are given in terms of simulating a
single-tape deterministic Turing machine that runs in time t.

is deterministic and has a single-tape. Semi-weakly universal machines generalise
the standard model by allowing an infinitely repeated word on one side of the
input, and the (standard) infinitely repeated blank symbol on the other. Weakly
universal machines are a further generalisation on the standard model as they
allow an infinitely repeated word to the left of the input, and another infinitely
repeated word to the right. It is often the case that generalising the model allows
us to find smaller universal programs. This notion is borne out when we compare
the standard, weak and semi-weak machines in Figure 1.

In Figure 1 the machines with the state-symbol pairs (2, 18), (3, 9), (4, 6),
(5, 5), (6, 4), (9, 3), and (15, 2) are the smallest known standard machines and
these machines define the universal curve (dashed line). Figure 1 also gives a
non-universal curve. This curve is a lower bound that gives the state-symbol
pairs for which it is known that the halting problem is decidable [11,13,28,
29]. It is currently unknown whether all of the lower bounds in Figure 1 hold
for weak and semi-weak machines. For example, the non-universality results of
Pavlotskaya [28,29] were proven under the assumption that the (standard) blank
symbol is infinitely repeated to the left and right of the input.
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3 Time Efficiency of Small Universal Machines

Cocke and Minsky [3] proved 2-tag systems universal via an exponentially slow
simulation of Turing machines. So for many years the smallest known uni-
versal Turing machines were also exponentially slow. However, following the
introduction of a new efficient 2-tag system algorithm for simulating Turing
machines [40], the smallest known universal machines were found to be efficient
simulators of Turing machines. To be more exact, given a single tape Turing
machine M that runs in time t the small machines given by hollow circles in
Figure 1 simulate M in time O(t8 log4 t) (this overhead was later improved [21]
to O(t4 log2 t)). Another consequence of this result is that many other sys-
tems [10,12,15,16,33,34,36] that simulate 2-tag systems, either directly or via
a chain of simulations, are polynomial (instead of exponential) time simulators
of Turing machines.

Rule 110 was proved universal by Matthew Cook via an impressive and intri-
cate simulation of cyclic tag systems, the result is described in [39] and a full
proof is given in [4]. Unfortunately, cyclic tag systems simulated Turing machines
via Cocke and Minsky’s exponentially slow 2-tag algorithm and so Rule 110 and
the small weakly universal machines mentioned earlier were exponentially slow
simulator of Turing machines. However, in [22] it was shown that cyclic tag sys-
tems simulate Turing machines in polynomial time. As a result, the following
problem is now P-complete for Rule 110: Given a number t in unary, an initial
configuration of Rule 110 and a cell ci, predict the state of ci after t timesteps.
Rule 110 is the simplest (one-dimensional, nearest neighbour) cellular automaton
that has been shown to have a P-complete prediction problem.

4 Universality of Binary Tag Systems

Tag systems are a type of rewriting system that use a very simple form of rule.
A tag system acts on a dataword, which is a string of symbols taken from a finite
alphabet Σ. There is a fixed set of rules R : Σ → Σ∗ and a deletion number
β ∈ N. In a single timestep, the leftmost symbol σj of the dataword is read,
if there is a rule σj → αj then the string αj is appended to the right of the
dataword and the leftmost β symbols are deleted. As an example we give the
first 4 steps of Post’s [31] binary tag system with deletion number 3 and the
rules 0 → 00 and 1 → 1101 on the input 0101110.

0101110 � 111000 � 0001101 � 110100 � 1001101 � · · ·

A tag system computation halts if its dataword is shorter than its deletion num-
ber. Surprisingly, the halting problem for the simple tag system given above
(which Post discovered in the 1920s) remains open to this day [6]. Another
remarkably simple tag system with an open halting problem was found by De
Mol [5] when she reduced the well known Collatz problem to the halting problem
for a tag system with only 3 rules and deletion number 2.
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Tag systems were introduced by Post [30,31] and proved universal by Min-
sky [19]. Soon after this Cocke and Minksy [3] proved 2-tag systems (tag sys-
tems with deletion number 2) universal. As mentioned earlier, 2-tag systems
have been used to prove universality for many of the smallest known univer-
sal Turing machines [1,14,20,32] and are central to many other universality
results [10,12,15,16,33,34,36]. Given that tag systems have been so useful in
the search for new simple universal systems, it is surprising that there have been
no attempts to simplify tag systems since the 1960s. All known universal tag sys-
tems [3,4,37] have a large number of symbols and thus a large number of rules.
Recently [24] it was shown that tag systems with only 2 symbols (the minimum
possible) are universal by showing that the simulate cyclic tag systems. Applica-
tions have already been found for this result. The undecidable halting problem
for binary tag systems reduces to the Post correspondence problem for 5 pairs
of words. The previous bound for undecidability in this problem, which is due to
Matiyasevich and Sénizergues [18], was 7 pairs. Following this new result, only
the cases for 3 and 4 pairs of words remain open, as the problem is known to be
decidable for 2 pairs [7]. Applying the reductions of Halava and Harju [8], and
Cassaigne and Karhumäki [2] to the Post correspondence problem for 5 pairs
of words shows that the matrix mortality problem is undecidable for sets with
six 3 × 3 matrices and for sets with two 18 × 18 matrices. The previous bounds
for the undecidability in this problem was seven 3 × 3 matrices and two 21 × 21
matrices [9].

Looking to the future, we expect that binary tag systems will have an impor-
tant role in proving further undecidability results and in the search for new
simple models of computation.
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7. Ehrenfeucht, A., Karhumäki, J., Rozenberg, G.: The (generalized) Post correspon-
dence problem with lists consisting of two words is decidable. Theoretical Computer
Science 21(2), 119–144 (1982)

8. Halava, V., Harju, T.: Mortality in matrix semigroups. American Mathematical
Monthly 108(7), 649–653 (2001)



Tag Systems and the Complexity of Simple Programs 15

9. Halava, V., Harju, T., Hirvensalo, M.: Undecidability bounds for integer matrices
using Claus instances. International Journal of Foundations of Computer Science
18(5), 931–948 (2007)

10. Harju, T., Margenstern, M.: Splicing systems for universal Turing machines. In:
Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 149–
158. Springer, Heidelberg (2005)

11. Hermann, G.T.: The uniform halting problem for generalized one state Turing
machines. In: Proceedings of the Ninth Annual Symposium on Switching and
Automata Theory (FOCS), pp. 368–372, IEEE Computer Society Press, Schenec-
tady, New York, Oct. 1968

12. Hooper, P.: Some small, multitape universal Turing machines. Information Sciences
1(2), 205–215 (1969)

13. Kudlek, M.: Small deterministic Turing machines. Theoretical Computer Science
168(2), 241–255 (1996)

14. Kudlek, M., Rogozhin, Y.: A universal turing machine with 3 states and 9 symbols.
In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp.
149–158. Springer, Heidelberg (2002)

15. Lindgren, K., Nordahl, M.G.: Universal computation in simple one-dimensional
cellular automata. Complex Systems 4(3), 299–318 (1990)

16. Margenstern, M.: Non-erasing Turing machines: A new frontier between a decidable
halting problem and universality. In: Baeza-Yates, R.A., Poblete, P.V., Goles, E.
(eds.) LATIN. LNCS, vol. 911, pp. 386–397. Springer, Heidelberg (1995)

17. Margenstern, M.: Frontier between decidability and undecidability: a survey. The-
oretical Computer Science 231(2), 217–251 (2000)

18. Matiyasevich, Y., Sénizergues, G.: Decision problems for semi-Thue systems with
a few rules. Theoretical Computer Science 330(1), 145–169 (2005)

19. Minsky, M.: Recursive unsolvability of Post’s problem of “tag” and other topics in
theory of Turing machines. Annals of Mathematics 74(3), 437–455 (1961)

20. Minsky, M.: Size and structure of universal Turing machines using tag systems. In:
Recursive Function Theory: Proceedings, Symposium in Pure Mathematics, vol. 5,
pp. 229–238, AMS, Provelence (1962)

21. Neary, T.: Small universal Turing machines. Ph.D thesis, National University of
Ireland, Maynooth (2008)

22. Neary, T., Woods, D.: P-completeness of Cellular Automaton Rule 110. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp.
132–143. Springer, Heidelberg (2006)

23. Neary, T., Woods, D.: Small fast universal Turing machines. Theoretical Computer
Science 362(1–3), 171–195 (2006)

24. Neary, T.: Undecidability in binary tag systems and the Post correspondence prob-
lem for five pairs of words. In: Mayr, Ernst W., Ollinger, Nicolas (eds.) 32nd Inter-
national Symposium on Theoretical Aspects of Computer Science, (STACS 2015),
vol. 30 of LIPIcs, pp. 649–661 (2015)

25. Neary, T., Woods, D.: Small weakly universal turing machines. In: Kuty�lowski,
M., Charatonik, W., G ↪ebala, M. (eds.) FCT 2009. LNCS, vol. 5699, pp. 262–273.
Springer, Heidelberg (2009)

26. Neary, T., Woods, D.: Four small universal Turing machines. Fundamenta Infor-
maticae 91(1), 123–144 (2009)

27. Neary, T., Woods, D.: The complexity of small universal turing machines: a survey.
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