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Abstract. We construct a 3-move public coin special honest verifier
zero-knowledge proof, a so-called Sigma-protocol, for a list of commit-
ments having at least one commitment that opens to 0. It is not required
for the prover to know openings of the other commitments. The proof
system is efficient, in particular in terms of communication requiring only
the transmission of a logarithmic number of commitments.

We use our proof system to instantiate both ring signatures and zero-
coin, a novel mechanism for bitcoin privacy. We use our Sigma-protocol
as a (linkable) ad-hoc group identification scheme where the users have
public keys that are commitments and demonstrate knowledge of an
opening for one of the commitments to unlinkably identify themselves
(once) as belonging to the group. Applying the Fiat-Shamir transform
on the group identification scheme gives rise to ring signatures, applying
it to the linkable group identification scheme gives rise to zerocoin.

Our ring signatures are very small compared to other ring signature
schemes and we only assume the users’ secret keys to be the discrete
logarithms of single group elements so the setup is quite realistic. Sim-
ilarly, compared with the original zerocoin protocol we only rely on a
weak cryptographic assumption and do not require a trusted setup.

A third application of our Sigma protocol is an efficient proof of
membership of a secret committed value belonging to a public list of
values.

Keywords: Sigma-protocol + Zero-knowledge - Disjunctive proof - Ring
signature - Zerocoin - Membership proof

1 Introduction

A large fraction of deployed cryptographic schemes rely either on cryptographic
hash-functions or the discrete logarithm assumption for their security. As a
consequence their underlying mathematical structures, compression functions
and cyclic prime-order groups respectively, has undergone a lot of cryptanalytic
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scrutiny. This makes them attractive building-blocks for peer-to-peer applica-
tions that operate in a world in which no-one is trusted and everyone is poten-
tially malicious. We revisit two such applications, ring signatures and zerocoin,
and show how to construct both of them using a X-protocol that relies only
on the security of a homomorphic commitment scheme. When instantiated with
Pedersen commitments it is computationally sound, relying only on the discrete
logarithm assumption. This results in very efficient instantiations under a weak
cryptographic assumption for both ring signatures and zerocoin and reveals a
striking connection between the two schemes.

X-protocols are 3-move interactive protocols that allow a prover to convince a
verifier that a statement is true. The prover sends an initial message, the verifier
responds with a random challenge, and the prover sends a response. At the end
of the interaction, the verifier looks at the transcript and decides whether to
accept or reject the proof that the statement is true. A X-protocol should be
complete, sound and zero-knowledge in the following sense:

Complete: If the prover knows a witness w for the statement u then she should
be able to convince the verifier.

Special sound: If the prover does not know a witness w for the statement, she
should not be able to convince the verifier. This is formalized as saying that
if the prover can answer several different challenges satisfactorily, then it is
possible to extract a witness from the accepting transcripts.

Special honest verifier zero-knowledge: The Y-protocol should not reveal
anything about the prover’s witness. This is formalized as saying that given
any verifier challenge it is possible to simulate a protocol transcript.

J)-protocols are widely used. When working in cyclic prime-order groups or
RSA-type groups there are very efficient X-protocols such as the identification
schemes of Schnorr [Sch91] and Guillou-Quisquater [GQ88]. An advantage of X-
protocols is that they are easy to make non-interactive by using the Fiat-Shamir
heuristic [FS86] where a cryptographic hash-function is used to compute the
challenge instead of having an online verifier. It can be argued in the random
oracle model [BR93] where the hash-function is modeled as a truly random
function that this gives us secure non-interactive zero-knowledge proofs. This
makes Y-protocols very useful in the construction of digital signature schemes
and encryption schemes, which are non-interactive in nature.

1.1 Our Contribution

It is well-known that there are efficient X-protocols with linear complexity for
NP-complete languages such as circuit satisfiability. We consider statements con-
sisting of N commitments cg, ..., cy—1. The prover’s claim is that she knows an
opening of one of the commitments ¢, to the value 0. Our main contribution is a
new X-protocol for this type of statement that has logarithmic communication
complexity.

Our construction works for any additively homomorphic non-interactive com-
mitment scheme (see Sect. 2.1) over Z,, where ¢ is a large prime. Examples of
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such commitment schemes include Pedersen commitments [Ped91] and variants
of ElGamal encryption [EIG85] where the message is encoded as an exponent.
These commitment schemes specify a commitment key ck, which in the case of
Pedersen commitments specifies a prime-order group G and two group elements
g,h. Given a value m € Z, and perhaps some randomness r € Z, it is then
possible to compute a commitment, which in the case of Pedersen commitments
is computed as ¢ = g""h".

Given a commitment key ck and a statement of the form (cg,...,cny—1) the
prover who knows an opening (0, ) of one of the commitments ¢, = Com,y(m; )
with m = 0 can use our X-protocol to convince the verifier of having this knowl-
edge. Our XY-protocol has perfect completeness, i.e., the verifier can always con-
vince the verifier when she has a witness (0, 7). It has (log N + 1)-special sound-
ness, which means given log N 4 1 accepting transcripts for the statement with
distinct challenges o, ..., Ziog v from the verifier, it is possible to compute an
opening (0,7) of one of the commitments. Finally, it has special honest verifier
zero-knowledge such that for any given challenge x from the verifier it is possible
to simulate a transcript without knowing an opening of any of the commitments.
When instantiated with the Pedersen commitment scheme our X-protocol has
perfect special honest verifier zero-knowledge, since the Pedersen commitment
scheme is perfectly hiding.

Our Y-protocol requires the prover to send 4 log N commitments and 3 log N+
1 elements in Z,. When instantiated with Pedersen commitments the prover has
to compute roughly Nlog N exponentiations and the verifier has to compute
roughly N exponentiations. Multi-exponentiation techniques and batching tech-
niques can be used to reduce the computational cost.

If the prover knows the openings of all the commitments its computation
can be faster and is determined by the cost of approximately 3N log N multi-
plications in Z, and making 4log N commitments. This is a huge improvement
over existing protocols in the literature like those employed by [DMV13] for
rate-limited function evaluation.

Another example where the prover knows the openings is in a membership
proof. Here the prover has a commitment ¢ and wants to prove knowledge of an
opening to a value u that belongs to a list £ = {\g, ..., Ay—1}. This can be done

by forming commitments ¢y = ¢ - Comeg(—Xo),...,cn—1 = ¢+ Comer(—ANn_1)
and proving knowledge of an opening of one of the commitments to 0. Due to
the special structure of the commitments cg,...,cy_1 this only costs 2N log N

multiplications in Z, for the prover and 2N multiplications in Z, for the verifier.
This is an improvement over the membership proofs of Bayer and Groth [BG13]
that use O(N log? N) multiplications for both the prover and verifier.!

1.2 Applications to Ring Signatures and Zerocoin

Ring signatures enable a signer to include herself in an ad-hoc group, a ring,
and sign a message as a user in the ring without disclosing which one of them

! Bayer and Groth’s technique also yields a non-membership proof with the same
complexity. Our techniques do not provide non-membership proofs.
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is the signer. A ring signature scheme can for instance be used by a whistle
blower that wants to assure the recipient that the message has been signed by
a knowledgeable source, e.g., an employee of a company laundering money, yet
at the same time wishes to remain anonymous, such that the company does not
fire her when she tells the world about their misdeeds.

Our Y-protocol gives rise to a natural ad-hoc group identification scheme. All
users have a commitment that they know how to open to 0. When a user wants
to identify herself as a member of an ad-hoc group, she forms the statement
consisting of the commitments cg,...,cy_1 of the users in the group and uses
the X-protocol to prove she knows an opening of one of the commitments.

By applying the Fiat-Shamir heuristic, i.e., by computing the challenge as
a hash of the initial message and the message to be signed, we can convert the
group identification scheme into a ring signature scheme. The ring signature
scheme inherits the properties of the X-protocol. Completeness implies that it
is possible for users in the ring to sign messages since they know an opening of
one of the commitments to 0. Special soundness implies that ring signatures can
only be generated by somebody in the ring, since they imply knowledge of an
opening of at least one of the commitments to 0. Special honest verifier zero-
knowledge implies that one cannot tell which commitment the signer can open,
so the signer remains anonymous within the ring.

Specifying the ring in a ring signature may in the worst case require linear
communication but can be amortized over many ring signatures when the same
ring is used repeatedly or the ring can be specified indirectly, e.g., by saying the
ring is all employees of a particular company. Decreasing the cost of ring signa-
tures has therefore received attention in the cryptographic literature (see related
work in Sect. 1.3). Our construction gives rise to a communication-efficient ring
signature scheme, where the signature size grows logarithmically in the number
of users in the ring. If we use the Pedersen commitment scheme, the ring sig-
nature only relies on the discrete logarithm assumption in the random oracle
model. Furthermore, the users’ keys are just single group elements for which the
users know the discrete logarithms. This makes it easy to make ring signatures
on top of a pre-existing setup in an organization that has a PKI where users
have been assigned public keys consisting of group elements of which they know
the discrete logarithms.

Zerocoin, also known as decentralized e-cash, enables users to generate their
own coins. Coins become valuable once they are accepted on a public bulletin
board. These coins can then be anonymously spent by their respective owners
without disclosing which coin they are spending. To prevent double spending
a secret serial number is revealed during the spending protocol. Zerocoin was
proposed as an add on, or decentralized mix, to provide strong anonymity guar-
antees for bitcoin.

Our X-protocol gives rise to a natural one-time ad-hoc group identification
scheme. Each user has a commitment ¢; to a secret random serial number S that
only she knows the opening of. When a user wants to identify herself as a mem-
ber of an ad-hoc group, she reveals her serial-number S and forms a statement
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for the X-protocol consisting of the commitments cq - Comx(S)™1, ..., en_1 -
Com,(S)~! and proves that she knows an opening to zero for one of these com-
mitments. To enforce the one-time property, the verifier accepts the proof only
if S has not previously been recorded. By applying the Fiat-Shamir heuristic to
this adapted identification scheme one obtains a zerocoin protocol. An important
benefit of our construction is that in contrast to existing zerocoin instantiations
it does not rely on a trusted setup process assuming the commitment param-
eters ck have been generated in a way that is publicly verifiable and excludes
trapdoors, e.g., using hash functions.

1.3 Related Work

There has been a significant amount of research on efficient zero-knowledge
proofs. An important early work in this direction was by Kilian [Kil92] that
used probabilistically checkable proofs and hash-trees to create an interactive
argument for circuit satisfiability with polylogarithmic communication complex-
ity. Kilian’s argument has computational soundness; if we require unconditional
soundness the communication complexity grows linearly in the witness size as is
for instance the case in Ishai et al. [IKOS09]. Using fully homomorphic encryption
it is possible to get unconditionally sound proofs of size |w| + poly(A) [GGI+14],
where w is the witness and A is the security parameter, although this comes at
a huge computational cost. There has also been works targeting specifically the
discrete logarithm setting such as Cramer and Damgard [CD98] getting linear
communication complexity and Groth [Gro09] that gives computationally sound
arguments for circuit satisfiability with communication that is proportional to
the square root of the circuit size. Our X-protocol is much more efficient than
these works since it is fine-tuned for a specific language.

Our X-protocol can be used to prove that one out of many commitments
can be opened to 0, which can be seen as a large disjunctive statement. Cramer,
Damgard and Schoenmakers [CDS94] gave a general method to construct X-
protocols for disjunctive statements. Their technique leads to a X-protocol with
linear communication complexity. There has been works on related types of
statements to the one we consider, i.e., proving something about one out of
N elements [Gro09,CGS07,BDDO07] that could be potentially be used to get a
square root complexity although we are not aware of this actually having been
done.

Bayer and Groth [BG13] give logarithmic size arguments for proving mem-

bership in a list, i.e., having values Ag,...,Any_1 and commitment c to a value
A¢ in the list. This can be seen as a dual to our type of disjunctive statement, we
in contrast have many commitments cg,...,cy_1 but just a single value Ay =0

and want to prove one of the commitments ¢, contains this value. The member-
ship proofs of Bayer and Groth rely on an efficient proof of correct polynomial
evaluation in a a secret committed value.

The strategy both here and in [BG13] is to construct polynomials of degree
log N in a random challenge chosen by the verifier. In both cases, we can see the
constructed polynomials as arising from a weighted sum or product (with weights



258 J. Groth and M. Kohlweiss

depending on the statement) over the vertices of a hypercube of dimension log N
but the papers differ in the weights at the vertices of the hypercube and how
they are used. In [BG13] the weights are the coefficients of the polynomial P
and the vertices in the hypercube contain N powers u’ of a point u where the
polynomial is evaluated. In our paper the weights are the commitments and the
hypercube has a single non-zero vertex corresponding to the commitment (out
of N) that we are interested in. The correct evaluation of the hypercube is built
and verified using polynomials of degree log NV in a challenge .

Ring signatures were introduced by Rivest, Shamir and Tauman [RSTO1]
and Bender, Katz and Morselli [BKMO09] provide rigorous security definitions for
ring signatures and generic constructions based on trapdoor permutations. The
idea of using X-protocol for anonymous identification within a group has been
proposed before, see e.g. [CDS94, Cam97], and has found use in the constructions
of ring signatures based on non-interactive zero-knowledge proofs in the random
oracle model or using pairings. Courtois [Cou01] constructs a ring signature
scheme based on a X-protocol for the MinRank problem. Abe et al. [AOS04]
use disjunctive proofs to demonstrate possession of one out of N secret keys to
construct ring signatures. The instantiation of their scheme based on the discrete
logarithm assumption and using the same group for all users is similar to our
ring signature except their X-protocol based on techniques from [CDS94] give
signatures that grow linearly in the size of the ring. Herranz and Sdez [HS03]
also give a linear size ring signature based on the discrete logarithm problem
in the random oracle model. There are also several pairing-based constructions
of ring signatures including [BGLS03,CWLY06,SW07,Boy07, CGS07]. The most
efficient without random oracles is by Chandran, Groth and Sahai [CGS07] who
exhibit square root size ring signatures using pairing based non-interactive zero-
knowledge proofs.

The smallest ring signatures are by Dodis et al. [DKNS04] who use accu-
mulators based on the strong RSA assumption [CL02] to get ring signatures
consisting of a constant number of group elements in the random oracle model.
Their construction, however, requires a setup that includes an RSA modulus,
which may not be readily available. Furthermore, since RSA moduli have to be
% bits to resist factorization attacks they end up with ring signa-
tures where the size has cubic growth in the security parameter. Nguyen [Ngu05]
also give constant size ring signatures in the random oracle model, but requires a
linear size public key and relies on pairing-based cryptography, which also leads
to a ring signature size of pol;\w bits. In contrast, our construction is based on
the discrete logarithm assumption and if we use elliptic curve groups with group
elements of size O()\) bits, we end up with an asymptotic quasilinear complexity
of O(Alog N) = O(Alog A) bits for our ring signatures when the ring size N is
polynomial in the security parameter.

Zerocoin was introduced by Miers et al. [MGGR13]. Their construction is
in the random oracle model and uses an accumulator based on the strong
RSA assumption together with cut-and-choose techniques to prove group rep-
resentations in the exponent. The cut-and-choose technique results in their

of size
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proofs of spending having quintic growth in the security parameter. Danezis
et al. [DFKP13] show how to efficiently construct zerocoin using succinct argu-
ments of knowledge (SNARKS). Ben-Sasson et al. [BSCG+14] extend zerocoin
with secret balances to build a SNARK-based alternative currency. All known
zerocoin constructions rely on a common reference string with a specific proba-
bility distribution, except for the original zerocoin protocol when used together
with the techniques of Sander [San99] to construct theoretically efficient RSA
UFOs?

While existing constructions are constant in the number of coins on the
bulletin board, RSA accumulator based zerocoin proofs consist of ~ 50,000
bytes, compared with 32(7log N + 1) bytes in our construction using 256-bit
elliptic curve groups. This means that for all practical purposes the logarithmic
size will be preferable. The constant size of SNARK based constructions, usually
below a dozen group elements, is hard to beat, and indeed these constructions
pay for this by having to rely on knowledge of exponent assumptions.

2 Preliminaries

We write y = A(x;r) when the algorithm A on input z and randomness r,
outputs y. We write y < A(x) for the process of picking randomness r at random
and setting y = A(x; 7). We also write y « S for sampling y uniformly at random
from a set S.

All algorithms in our schemes get a security parameter A € N as input written
in unary 1. The intuition is that the higher the security parameter, the greater
security we get.

Given two functions f,g: N — [0,1] we write f(A\) = g(A) if |[f(A) —g(N)| =
A=) We say f is negligible if f(\) ~ 0 and that f is overwhelming if f(\) ~ 1.

2.1 Homomorphic Commitment Schemes

A non-interactive commitment scheme allows a sender to construct a commit-
ment to a value. The sender may later open the commitment and reveal the
value. The receiver of the commitment can then verify the opening and check
that indeed it was this particular value that was committed in the first place. A
commitment scheme must be hiding and binding. Hiding means that the com-
mitment does not reveal the committed value. Binding means that the sender
cannot open the commitment to two different values.

Formally, a non-interactive commitment scheme is a pair of probabilistic poly-
nomial time algorithms (G, Com). The setup algorithm ck « G(1*) generates a

2 An RSA UFO is a large integer generated in a specific way from a source of uniformly
random bits such that there is overwhelming probability that there are two large
random primes that cannot be split from each other in a factorization of the integer.
Known constructions of RSA UFOs yield integers much larger than standard RSA
moduli, so in practice protocols built on RSA UFOs are inefficient.
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commitment key ck. The commitment key specifies a message space M, a ran-
domness space R.; and a commitment space Cq,. The commitment algorithm
combined with the commitment key specifies a function Comeg : Mep X Rep —
Cer. Given a message m € M, the sender picks uniformly at random r « R
and computes the commitment ¢ = Comey(m; 7).

Definition 1 (Hiding). A non-interactive commitment scheme (G,Com) is
hiding if a commitment does not reveal the value. For all probabilistic polynomial
time stateful adversaries A

1
Pr [ck «— G(1Y); (mo, my) «— A(ck); b« {0,1}; ¢ « Comeg(my) : A(c) = b| ~ 3
where A outputs mg,my € M. If the probability is exactly % we say the com-

mitment scheme is perfectly hiding.

Definition 2 (Binding). A non-interactive commitment scheme (G,Com) is
binding if a commitment can only be opened to one value. For all probabilistic
polynomial time adversaries A

ck — G(1*) mo # mi

Pr (mg,ro, my,r1) — A(ck) : Com,y(mg; o) = Come(mq;r1)

=~ 0,
where A outputs mg,my € M and ro,r1 € Rek- If the probability is exactly 0
we say the commitment scheme is perfectly binding.

Definition 3 (Strongly binding). A non-interactive commitment scheme
(G,Com) is strongly binding if a commitment can only be opened in one way,
i.e., not even the randomness can change. For all probabilistic polynomial time
adversaries A

MR (mo,ro) # (m1,71)

P :
(mg,ro,m1,7r1) — A(ck) ~ Comeg(mo; o) = Comeg (mq;r1)

~ 0,

where A outputs mg,mi; € Mg and rq, 171 € Rek.

We will focus on the case where the message and randomness spaces are Z,
for a prime ¢ > 2* specified in the commitment key ck. Furthermore, we require
the commitment scheme to be homomorphic, which means that the commitment
space is also a group (written multiplicatively) and we have for all well-formed
commitment keys ck and mg, m; € M, and rg, 71 € Rep that

Comeg (mo; ro) - Comeg(my;r1) = Comeg(mo + my;ro + 71).

Pedersen commitments. The Pedersen commitment scheme [Ped91] is a natural
example of a homomorphic commitment scheme with the desired properties. The
key generation algorithm G outputs a description of a cyclic group G of prime
order ¢ and random generators g, h. The commitment key is ck = (G, q, g, h).
To commit to m € Z, the committer picks randomness r € Z; and computes
Comei(m;r) = g™h". The commitment scheme is perfectly hiding and compu-
tationally strongly binding under the discrete logarithm assumption.
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2.2 XY -Protocols

A XY-protocol is a special type of 3-move interactive proof system that allows a
prover to convince a verifier that a statement is true. The prover sends an initial
message to the verifier, the verifier picks a random public coin challenge x «—
{0,1}*, and the prover responds to the challenge. Finally the verifier checks the
transcript of the interaction and decides whether the proof should be accepted
or rejected.

We assume the existence of a probabilistic polynomial time setup algorithm
G that generates a common reference string ck that is available to all parties. In
this paper the common reference string will be a public key ck for a homomorphic
non-interactive commitment scheme. It is worth noting that such keys may be
set up using prime order groups based on the discrete logarithm problem, which
makes it possible to sample them from uniformly random bits. So at the cost of
a small overhead stemming from the use of uniformly random bits, we could set
our schemes up in the common random string model.

Let R be a polynomial time decidable ternary relation, we call w a witness
for a statement u if (ck,u,w) € R. We define the CRS-dependent language

L ={u| 3w : (ck,u,w) € R}

as the set of statements u that have a witness w in the relation R.

A XY-protocol for R is a triple of probabilistic polynomial time stateful inter-
active algorithms (G,P,V). The following run of a X-protocol describes the
interaction of the algorithms

ck «+ G(1*): Generates the common reference string.

a — P(ck,u,w): Given (ck,u,w) € R the prover generates an initial message a.

x « {0,1}*: The verifier’s challenge x is chosen uniformly at random.

z < P(x): The prover responds to the challenge x.

b« V(ck,u,a,x,z): The verifier algorithm, which will always be deterministic
in this paper, returns 1 if accepting the proof and 0 if rejecting the proof.

The triple (G, P, V) is called a X-protocol for R if it is complete, special sound
and special honest verifier zero-knowledge as defined below.

Definition 4 (Perfect completeness). (G, P,V) is perfectly complete if for
all A € N, ck «+ G(1*) and (u,w) such that (ck,u,w) € R

Pr|a « P(ck,u,w);z «— {0,1}*; 2 «— P(z) : V(ck,u,a,z,2) = 1| = 1.

A XY-protocol should be a proof of knowledge; a prover should only be able to
respond to a random challenge if the prover “knows” a witness for the statement
u. We define this in the form of special soundness, which says that given responses
to a number of different challenges it is possible to compute a witness for the
statement.
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Definition 5 (n-special soundness). (G, P,V) is n-special sound if there is an
efficient extraction algorithm X that can compute the witness given n accepting
transcripts with the same initial message. Formally, for all probabilistic polyno-
mial time adversaries A

ck — g(lk)7 (’U,, Ay L1y 215005 Ty, Z’ﬂ) — A(Ck)

Pr
w — X(ck,u,a, 21,21, ..., Tny2n)

s (ck,u,w) € R| = 1,

where A outputs distinct xy,...,z, € {0,1}* and for all i € {1,...,n} the
transcript is accepting, i.e., V(ck,u, a,z;,z;) = 1.
We say the proof is perfect n-special sound if the probability is exactly 1.

A non-standard requirement that many X-protocols satisfy is that responses
are unique, or at least quasi unique, i.e. given an accepting proof an adver-
sary cannot find a new valid response for the challenge in the proof. This
non-malleability property is important to achieve simulation soundness [Fis05,
FKMV12].

Definition 6 (Quasi unique response). (G, P,V) has quasi unique responses
if for all probabilistic polynomial time adversaries A

ck — G(1*) z#£7

Pr (u,a,2,z,2") — A(ck) : V(ck,u,a,x,2) = V(ck,u,a,z,2') =1

~ 1.

A XY-protocol is zero-knowledge if it does not leak information about the
witness beyond what can be inferred from the truth of the statement. We will
present X-protocols that are special honest verifier zero-knowledge in the sense
that if the verifier’s challenge is known in advance, then it is possible to simulate
the entire argument without knowing the witness.

Definition 7 (Special honest verifier zero-knowledge (SHVZK)).
(G, P,V) is special honest verifier zero knowledge if there exists a probabilistic
polynomial time simulator S such that for all interactive probabilistic polynomial
time adversaries A

Pr [ckz — G(1%); (u,w, z) — A(ck);a «— P(ck,u,w); z «— P(x) : Ala,z) = 1}

~ Pr [ck — G(1%); (u,w, z) — A(ck); (a, 2) — S(ck,u, ) : Ala, z) = 1},

where A outputs (u,w,z) such that (ck,u,w) € R and = € {0,1}*.
The X -protocol is said to be perfect special honest verifier zero-knowledge if
the two probabilities are exactly equal to each other.

In real life applications, special honest verifier zero-knowledge may not suffice
since a malicious verifier may give non-random challenges. However, it is easy
to convert an SHVZK argument into a full zero-knowledge argument secure
against arbitrary verifiers in the common reference string model using standard
techniques (see e.g. [Dam00]). The conversion can be very efficient and only incur
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a small additive overhead, so we will in the paper without loss of generality just
focus on building efficient SHVZK arguments.

For our application to ring signatures and zerocoin we do not need full zero-
knowledge. It suffices to have have witness-indistinguishability, which is implied
by perfect special honest verifier zero-knowledge. A X-protocol is witness indis-
tinguishable if it is infeasible to distinguish which of several possible witnesses
the prover uses.

Definition 8 (Witness-indistinguishability). (G, P,V) is witness indistin-
guishable if for all interactive polynomial time adversaries A

Pr ck — g(lA)7 (ua wOawl) — A(Ck)7b — {Oa 1} - A 1

a — P(ck,u,wp);z — Ala); z — P(x) (Z):b ~ 3

where A outputs (u,wg,wr) such that (ck,u,wy) € R and (ck,u,w;) € R and
x € {0, 1}

The X -protocol is perfectly witness-indistinguishable if the probability is
ezxactly half.

Theorem 1 ([CDS94]). A perfect SHVZK X-protocol is perfectly witness-
indistinguishable.

Proof. Perfect special honest verifier zero-knowledge implies the existence of a
simulator that for any x € {0,1}* simulates (a, z) that is perfectly indistinguish-
able from a real proof. This means that conditioned on any particular z € {0, 1}*,
two different witnesses wg and w; both lead to proofs with the same probability
distribution as the simulation. This implies that conditioned on a, x we get the
same probability distribution of the response z regardless of which witness was
used. Moreover, the perfect special honest verifier zero-knowledge property also
guarantees that the initial messages a are distributed identically regardless of
the witness used. O

2.3 X -Protocol for Commitment to 0 or 1

We will now give a well-known example of a Y-protocol for knowledge of a
committed value being 0 or 1, which will be useful later. Let ck be a commitment
key for a homomorphic commitment scheme as described in Sect. 2.1 and let R
be the relation consisting of commitments to 0 or 1, with the witnesses being
openings of the commitment, i.e.,

R = {(ck,c,(m,r)) | ¢ = Come,(m;r) and m € {0,1} and r € Z,} .

Fig. 1 gives a X-protocol (G, P, V) for R, where G is the key generation algorithm
for the commitment scheme, and where P,V are running on ck « G(1*), m €
{0,1} and r € Z,.

Theorem 2. The X-protocol in Fig. 1 for commitment tom € {0, 1} is perfectly
complete, perfect 2-special sound and perfect SHVZK.
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P(ck,c,(m,r)) V(ck, c)
a,$,t «— Zg Ca, Ch .

¢q = Com(a; s)

cy = Comeg(amst) z — {0,1}*

Accept if and only if

f:mx-l-a f,za7zb . Ca7chCCk‘7f7Za7ZbEZq
Zq =TXx+ S Czca = Comck(f; Za)
=r(z—f)+t ¢ ey = Comey,(0; 2)

Fig. 1. X-protocol for commitment to m € {0, 1}

Proof. By the homomorphic property of the commitment scheme ¢~ ¢, is a
commitment to m(z — f) + am = m(1 — m)x — ma + am = (1 — m)m, which
is 0 if m € {0,1}. With this in mind, it is straightforward to verify that the
J)-protocol is perfectly complete.

We will now show that the X-protocol is perfect 2-special sound. Given
responses f, zq, zp and f’, 2}, z; to two different challenges « and 2’ on the same
initial commitments c,, ¢, we get by combining the verification equations that
T = Comer(f — f'524 — 2,) and o=+ = Com,x(0; 2z, — 7). Defining
f=f

rz—z’
more, since @~ ' =f = cA=m)@=2") — Com(m(1 —m)(z —2'); (1 —m)(z —
z')) = Com,x(0; 2z, — 2;) we either get a breach of the binding property of the
commitment scheme (in which case the opening of ¢ can be modified into an
opening to m € {0,1}) or we have m(1 — m) = 0, which implies m € {0,1}.
Finally, let us prove that the protocol is perfect special honest verifier zero-
knowledge. The simulator given ck, c and x first chooses f, 24, 2y +— Zg. 1t then
computes ¢, = ¢~ *Comey(f; 24) and ¢, = ¢/ ~*Com,y,(0; z3). Both in a real proof
and in the simulation this gives independent and uniformly random f, z,, 25 € Z,.
Conditioned on these values and x the verification equations uniquely determine
Ca, Cp in both real proofs and simulated proofs. This shows that real proofs and
simulated proofs have identical probability distributions. a

’
and r = Z;f;;’ we extract an opening of ¢ = Comgg(m;r). Further-

m =

3 3-Protocol for One Out of N Commitments
Containing 0

We will now give a X-protocol for knowledge of one out of N commitments
co,---,CN—1 being a commitment to 0. More precisely, we will give a X-protocol
for the relation

B €oy---,cN—1 € Cep and £ € {0,...,N — 1}
R= {(Ck’ (o, en—1), (6,7)) ‘ and r € Z, and ¢ = Comx(0;7) ’
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To explain the idea behind the X-protocol let us for simplicity assume the
commitment scheme is perfectly binding such that each commitment has a
unique committed value. Saying that one of the commitments contains 0 is
equivalent to saying there exists an index £ such that va 01 C‘S”’ is a commitment
to 0, where d;¢ is Kronecker’s delta, i.e., oy = 1 and ;¢ = 0 for ¢ # £. We can
always copy some commitments in the statement, so let us without loss of gen-
erality assume N = 2". Writing ¢ = ¢1 ...%, and £ = {1 ... ¢, in binary, we have
Si0 = H?Zl d;,¢, so we can reformulate what we want to prove as Hl 01 {[’ !
being a commltment to 0.

The prover will start by making commitments co,...,c,, to the bits
ly,...,0,. She then engages in n parallel X-protocols as described in Sect. 2.3 to
demonstrate knowledge of openings of these commitments to values ¢; € {0, 1}.
In the X-protocols for ¢; € {0,1} the prover reveals fi,..., f, of the form
fj = ij + a;. Let fj,l = fj = éj.’]? +a; = (Slgjl‘ + a; and fj,O =T — fj =
(1 —¢;)x —a; = dog;x — aj. Then we have for each i that the product [T}_, f;,
is a polynomial of the form

n n—1 n—1
pi(w) = H(5ijej$) + sz‘,kxk = Ojpx" + Zpi,kxk- (1)
j=1 k=0 k=0

The idea is now that the prover in the initial message will send commit-
ments cq,,...,¢d,_, that will be used to cancel out the low order coefficients
corresponding to 2V, ...,2"!. Meanwhile the high order coefficient for =™ will
guarantee the commitment ¢, can be opened to 0. More precisely, the verifier
will at the end check that

N-1

145 T

=0

is a commitment to 0, which by the Schwartz-Zippel lemma has negligible prob-
ability of being true unless indeed ¢, is a commitment to 0.

Fig. 2 gives the full XY-protocol (G,P,V) for R with G being the key gener-
ation algorithm for the commitment scheme and P,V running on ck « G(1*),
€os--,cN—1 € Ce, £ € {0,...,N — 1} and r € Z, such that ¢, = Comc(0;7).
Without loss of generality we assume N = 2™,

Theorem 3. The X-protocol in Fig. 2 for knowledge of one out of N commit-
ments opening to 0 is perfectly complete. It is (perfect) (n + 1)-special sound
if the commitment scheme is (perfectly) binding. It is (perfect) special honest
verifier zero-knowledge if the commitment scheme is (perfectly) hiding.

Proof. To see that the X-protocol is complete observe that H;L:1 fj.i; 1s a poly-

nomial in the challenge = of the form p;(z) = §;px™ + Z:;é piyk:rk. When ¢, is a

commitment to 0 we therefore get that cglj =1 fit; in the verification equation is

a commitment to 0, while the other commitments ¢; get raised to polynomials
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P(Ck7 (007 s 7CN—1)7 (f’ 7”)) V(Ckv (607 AR CN—I)))

Forj=1,....n
Ty, Sjsti, pr < Ly
co; = Comey(£y575)

Ca; = Comey(ay; s5) Coy3CaysChysCyy- -+ s
cb = Comck(ﬁ a;;t;) Co. 1 Can s Ch. s Cq. . Accept if and only if
Hz Cf Comck((); pk.) Clyye-+5Cd, 4 € Cek
usingk:j—l fi,o..,2q € Zyg
and p; x from (1) B z —{0,1}* Forall j € {1,...,n}
cé Ca; = Comck(fj,za )
Forj=1,...,n 1y Zays Zbys - s fJ .—Comck(O zb)
Hn f 1 1 —
fJ:£]I+aJ fnazanvzbnazd . Hz 1,] t HZ 0 d:
Za; =TT + s = Comck(O, Zd)
2, = 1j(T — fj)1+ t; using fj1 = f;
2g =ra" — ZZ:O pr® and fjo =2 —f;
Fig. 2. Y-protocol for commitment to m = 0 in list cop,...,cn—1

of degree n — 1 in x as cl_IJ 1 i in the verification equation. With this in mind

straightforward Verlﬁcatlon shows that the X-protocol is perfectly complete.

We will now show how to convert an adversary with probability € of breaking
(n 4+ 1)-soundness, into an adversary with approximately the same runtime that
has probability e of breaking the binding property of the commitment scheme.

Suppose the adversary creates n + 1 accepting responses

1(0), e 20)7 o 1("), . Zl(in) to n + 1 different challenges (9, ... z(™
on the same initial message cy,,..., ¢4, _,-

The 2-special soundness of the YX-protocol from Sect. 2.3 gives us openings of
Ceys- - cp, of the form ¢g, = Comeg (€5;7;) with £; € {0,1}. From the verification
equatlons it is then easy to get openings of ¢,; = Comcx(ay;s;). Unless the
adversary breaks the binding property of the commitment scheme, it must hold
for all challenges that fj(o) = ij(o)—i-aj, cee f;") = ij(”)—i-aj forallj=1,...,n

The form of the f;’s gives us that f; 1 = {;z 4+ a; and fjo = (1 — {;)z — a;.
For i # £ we therefore get that H _1 [, isa degree n—1 polynomlal pz( ) and
for i = £ it is a polynomial of the form pe(x) = ™ + .... This means we can
rewrite the last verification as

n—1

n k
g - H cy, = Come(0; 24)
k=0
for some fixed cy,,...,cs, , that can be computed from commitments in the

statement and the initial message.
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Observe that the vectors (1,2(¢), ..., (2(9))") can be viewed as rows in a Van-
dermonde matrix and since (¥, ..., (" are all different the matrix is invertible
and we can therefore find a linear combination (ay, .. ., «;,) of the rows that gives
us the vector (0, ...,0,1). Combining the n + 1 accepting verification equations
we therefore get

n n—1 Qe n
:E(e) n z(e) k .
o= H (cﬁ " HC’(“k ) ) ZComck(O;Zaezé)).

e=0 k=0 e=0

This gives us an extracted opening of ¢, to 0 with randomness r = ZZ:O aezée).

Finally, let us describe a special honest verifier zero-knowledge simula-
tor that is given a challenge x € {0,1}*. It starts by picking the elements
of the response uniformly at random as fi,...,2q « Z4. It then chooses
CyyeyClysCdyy---sCd,_, — Comek(0) as random commitments to 0. Finally,
it computes ¢,; = c[j”“'Comck (fjs 2a;) and cp; = cZ_fComck(O; 2p,) to finish the

simulation of the proofs that ¢, , ..., ¢, contain 0 and ¢g, = [[rg" clHj:l Tisi |

Z;; c;:“k -Com,, (0; —z4) to satisfy the last verification equation. It returns the
simulated initial message and response (ce,,...,Cd, ;s f1s---,2d)-

We will now argue that an adversary that distinguishes the simulation from
a real argument with € advantage can be turned into an adversary that breaks
the hiding property of the commitment scheme with 5=+ advantage. First,
we observe that in both real proofs and simulated proofs fi,...,z4 are uni-
formly random in Z,. Furthermore, the verification equations uniquely deter-
mine ¢4, Cys - - -5 Ca,,Ch, a0d cq, conditioned on fi,...,zq and cey,...,cq, ,
both in real and in simulated proofs. The adversary’s advantage of ¢ must
therefore come from being able to distinguish real and simulated commitments
Coyse+3Cly s Cdyy- v Cd,_, - A standard hybrid argument gives us a 5= advan-
tage in breaking the hiding property of the commitment scheme. O

We state in the following two lemmas a couple of additional properties that
will be useful later.

Lemma 1. If the commitment scheme is strongly binding, the X -protocol in
Fig. 2 has quasi unique responses.

Lemma 2. For each possible initial message in the X -protocol in Fig. 2 there
1s negligible probability that it will be chosen by the SHVZK simulator.

Proof. The simulator picks ¢y, as a random commitment to 0. We will now argue
that cg, has negligible probability of matching a fixed value c¢. We have by the
hiding and binding properties

Pr [ck — G(1?); ¢ < Comer(0); ¢, « Comey(0) : ¢y = c}

~Pr [ck‘ — g(ﬂ); ¢ — Comg(0); ¢p, — Comeg(1) : oy = c} ~ 0.
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Efficiency. The prover sends 4log N commitments and 3log N +1 field elements.
With N being polynomial in the security parameter the prover therefore only
sends O(log A) commitments and field elements. If we use the Pedersen commit-
ment scheme in an elliptic curve based group where the group elements are of
size O(A) bits the total communication cost is just O(Alog \) bits.

If we are using the Pedersen commitment scheme the prover’s cost is
dominated by n multi-exponentiations of N group elements when computing
Cdys - - -+ Cd,,_, - Using multi-exponentiation techniques [Lim00] we can reduce the
cost of computing cq,, . . ., cq, , to roughly N single exponentiations. Computing
the commitments is more efficient than this once pre-computation techniques are
factored in; and the polynomial coefficients p; ; can be computed by fast poly-
nomial multiplication techniques, which will have significantly smaller cost than
the exponentiations because they are done over Z,.

The Xeriﬁer’s computation is dominated by the multi-exponentiation
It c{lj:lfj’ij . If we are using Pedersen commitments this can be done at

Tog N single exponentiations.

a cost that is not much higher than

When prover knows openings of all commitments. If the prover knows open-
ings of all commitments cg,...,cy_1 she can reduce her computation signifi-
cantly. Observe that if ¢; = Comcg(m;; ;) then cq, = H?:Jl " Comer, (0; pr) =
Comy(dg, ¢x + pr) where do,¢o,...,dp—1,¢,—1 are coefficients in the two

polynomials

n—1 N-1 n—1 N-1
d(z) = Z dpa® = Z mipi(z)  $(x) = Z@cxk = Z Yipi(x) — Yo",
k=0 i=0 k=0 i=0

where the latter holds because p;(x) = §; 2™ + Zz;é pi k", 50 pe(z) is the only
polynomial with a non-zero coefficient for z™.

The two polynomials d(z) and ¢(z) can be efficiently computed using
Lagrange interpolation. Picks n distinct elements wy,...,w, € Z; and evaluate
d(wr), p(w1),- .., d(wn), d(wy) from which the coeflicients dy, ¢o, ..., dn—1, Pn-1
can be computed in time depending only on n = log N.

We will now show that given w € Z, it is possible to compute both d(w) and
¢(w) using 3N multiplications in Z,. Each f;¢ and f;: is a degree 1 polyno-
mial in z and we can compute all f;o(w), fj1(w) for j = 1,...,n using a few
modular additions for each of them. Now, p;(w) = [[}_, fj,,(w), so we can view
po(w),...,pn—1(w) as leaves on a binary tree, where the root is H?Zl fio(w) and
for each parent at level 7 — 1 we let the left chil(d)be the same as the parent and

fia(w

the right child be the parent multiplied by o) The leaves can be computed
Js

using roughly N = 2™ multiplications, which gives us po(w),...,pn—1(w). Com-
puting the sums d(w) = ZlN:_Ol m;p;(w) and ¢(w) = Zivzgl vipi(w) — Yew™ costs
an additional 2N multiplications, for a total of 3N + o(N) multiplications to
compute d(w), ¢(w). Doing this for n distinct elements wy, ..., w, costs roughly
3N log N multiplications. Once we have the evaluations in the n elements, we can

at moderate cost compute dy, ¢g, ..., dn_1,Pp—1 using Lagrange interpolation.
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The prover’s computation when she knows the openings of all the commitments
is therefore determined by the cost of approximately 3V log N multiplications
in Z4 and making 4log N commitments.

Membership proof. The X-protocol in Fig. 2 can be used to construct a mem-
bership proof. We are given a commitment ¢ and a set of values Ag,..., An_1
and want to prove that we know an opening of the commitment ¢ to one of
the values A\y. This can be done using our l-out-of-N X-protocol by defining
co = ¢ Comep(—Ap;0),...,cny—1 = ¢+ Comer(—An_1;0) and proving there is a
c¢ with an opening to 0.

From the prover’s perspective this is a case where all the commitments have
known openings (A¢—A\;,v¢) of commitment ¢;. Observe that all the commitments
have the same randomness, which implies ¢(z) = 0 and reduces the computation
to 2N log N multiplications for the prover. To see that ¢(x) = 0 recall that

d(x) = v N pi(z) — yex™ and

N—-1 N—-1 n n n
Zpi(x):ZHf]zj Hij +fj1 H
i=0 i=0 j=1 j=1 j=1
The verifier is also very efficient, he can compute the product
N-1 T £, N-1
[T "% =TI (e Coman(=Ais 0"
i=0 i=0

— o Zito' pi( - Comgy ( — Z Aipi(); 0

=" Comgy, ( — Z Aipi(2);0

using 2N multiplications, which dominates the computation for large N.

This efficiency compares favorably with the membership proof in Bayer and
Groth [BG13]. They prove membership by demonstrating the committed value is
a root in the polynomial P(u) = Hfigl(u— A;), but the initial step of computing
the coefficients of the polynomial requires O(N log® N') multiplications (and only
if the modulus ¢ is of a form suitable for using the Fast Fourier Transform).

Bayer and Groth’s method also gives rise to a non-membership proof: prove
that the polynomial P(u) does not evaluate to 0 to show the committed value
u does not belong to the list. Our X-protocol does not appear to yield a non-
membership proof.

4 Ring Signature

Ring signatures allow users to sign messages on behalf of ad-hoc groups that
include themselves. The ad-hoc groups are called rings and contain public keys
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for the signer and the other users that the signer has chosen to include to include.
We formally define ring-signatures in the following section.

Our Y-protocol for one out of N commitments containing 0 can be used as
an ad-hoc group identification scheme. Each user has a commitment to 0 with
the private key being the randomness used. To identify yourself as a member of a
group you prove that you know the opening of one of the commitments to 0. We
can use the Fiat-Shamir heuristic to transform the ad-hoc group identification
scheme into a ring signature scheme.

4.1 Definitions

A ring signature scheme consists of a quadruple of PPT algorithms
(Setup, KGen, Sign, Vfy) for generating a common key available to all users, gen-
erating keys for users, signing messages and verifying ring signatures.

pp — Setup(l)‘): Generates and outputs public parameters pp available to all
users.

(vk, sk) «— KGen(pp): Generates a public verification key vk and a private sign-
ing key sk.

o « Sign,, (M, R): Outputs a signature ¢ on the message M € {0,1}* with
respect to the ring R = (vky,...,vky). We require that there is a vk € R
such that (vk, sk) is a valid key pair output by KGen(pp).

b« Viy,,(M, R,0): Verifies a purported ring signature o on a message M with
respect to the ring of public keys R. It outputs 1 if accepting and 0 if rejecting
the ring signature.

The quadruple (Setup, KGen, Sign, Vfy) is a ring signature scheme with per-
fect anonymity if it is correct, unforgeable and anonymous as defined below.

Definition 9 (Perfect correctness). We require that a user can sign any
message on behalf of a ring where she is a member. A ring signature scheme
(Setup, KGen, Sign, Vfy) has perfect correctness if for all adversaries A

pr | PP Setup(1*); (vk, sk) < KGen(pp)  Viy,,(M,R,0) =1 _
(M, R) < A(pp, vk, sk); o « Sign,, (M, R) or vk ¢ R ’
Definition 10 (Unforgeability). A ring signature scheme (Setup, KGen,
Sign, VIy) is unforgeable (with respect to insider corruption) if it is infeasible
to forge a ring signature on a message without controlling one of the members
i the ring. Formally, it is unforgeable when for all probabilistic polynomial time
adversaries A

Pr [pp — Setup(l’\); (M,R,0) +— AVKGen,Sign,Corrupt (pp) : Viy,,(M,R,0) = 1] ~ 0,

— VKGen on the ith query picks randomness r;, runs (vk;, sk;) «— KGen(pp;r;)
and returns vk;.
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- Sign(i, M, R) returns o « Sign,,, .. (M, R), provided (vk;, sk;) has been gen-
erated by VKGen and vk; € R.

— Corrupt(z) returns r; (from which sk; can be computed) provided (vk;, sk;)
has been generated by VKGen.

— A outputs (M, R, o) such that Sign has not been queried with (x, M, R) and R

only contains keys vk; generated by VKGen where ¢ has not been corrupted.

Definition 11 (Perfect anonymity). A ring signature  scheme
(Setup, KGen, Sign, Vfy) has perfect anonymity, if a signature on a mes-
sage M under a ring R and key vk;, looks exactly the same as a signature on
the message M wunder the ring R and key vk;,. This means that the signer’s
key is hidden among all the honestly generated keys in the ring. Formally, we
require that for any adversary A

pp — Setup(1*); (M, ig, i1, R) — AKGe(®P) (pp) 1

Pr b—{0,1};0 « Sign, (M, R) :A(o) =10 =3

P,skiy,
where A chooses ig, i1 such that (vk;,, ski,), (Vki,, ski,) have been generated by
the key generation oracle KGen(pp) and vk;,, vk;, € R.

We remark that perfect anonymity implies anonymity against full key exposure,
which is the strongest definition of anonymity of ring signatures in [BKMO09].

4.2 Construction

An additively homomorphic commitment perfectly hiding scheme (G, Com) as
defined in Sect. 2.1 and the X-protocol (G,P,V) in Fig. 2 for one out of N
commitments being a commitment to 0 can be combined to build an ad-hoc
group identification scheme. We generate a commitment key as setup and let
the users’ verification keys be commitments to 0. In order to identify herself as
a member of an ad-hoc group with N members, the user uses the X-protocol
to prove that she knows an opening of one of the commitments. If her com-
mitment is among the commitments in the ad-hoc group the correctness of the
X-protocol guarantees that she manages to identify herself as a member. If on
the other hand her commitment is not among the commitments in the group,
then the ([log N + 1)-special soundness of the X-protocol guarantees that she
has negligible chance of answering a challenge and being accepted. Finally, the
special honest verifier zero-knowledge property of the X-protocol implies that
it is witness-indistinguishable, i.e., even a malicious verifier cannot tell which
commitment opening it is that she knows how to open.

We will use the Fiat-Shamir heuristic to make the ad-hoc group identification
scheme non-interactive. Let H be a hash-function generator such that H «
H(1*) returns a hash-function H : {0,1}* — {0, 1}*. By computing the challenge
z in the Y-protocol using the hash function on the initial message in the X-
protocol and the message to be signed, we get a transformation of the ad-hoc
group identification protocol to a ring signature scheme. Modeling the hash-
function H as a random oracle allows us to give a heuristic proof that the ring
signature scheme is unforgeable. The ring signature scheme is described in Fig. 3
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Setup(1*) Sign,,, o (M, R) Viy,,(M, R, o)
ck — G(1%) Parse R = (cp,...,cn—1) | Parse R = (co,...,cN-1)
H «— H(1") with ¢y = Com,(0; sk) |Parse o = (a, 2)

Return pp = (ck, H)
a — P(ck, R, (£, sk))

KGen(pp) x = H(ck,M,R,a) x = H(ck,M,R,a)
r— Zq z — P(x)

¢ = Comeg(0;7)

Return (vk, sk) = (c,r) | Return o = (a, 2) Return V(ck, R, a, x, 2)

Fig. 3. Ring signature based on X-protocol (G, P, V) for 1-out-of-N commitments con-
taining 0

Theorem 4. The scheme (Setup, KGen, Sign, VIy) is a ring signature scheme
with perfect correctness. It has perfect anonymity if the commitment scheme is
perfectly hiding. It is unforgeable in the random oracle model if the commitment
scheme is perfectly hiding and computationally binding.

Proof. Perfect correctness follows from the perfect completeness of the
X-protocol. Perfect anonymity follows from the perfect witness indistinguisha-
bility of the X-protocol, which guarantees that it is impossible to distinguish
which secret key has been used to generate the ring signature.

To see that the ring signature scheme is unforgeable we will rely on the (n+1)-
special soundness of the Y-protocol in Fig. 2 and model the hash-function H as
a random oracle. Consider a polynomial time adversary A that makes at most
qv (), qs(N) and gg () queries to VKGen, Sign and the random oracle, respec-
tively, and for infinitely many A € N has at least ﬁ probability of breaking
the unforgeability property for a positive polynomial p. We will show that it can
be used to construct a polynomial time attack that breaks the binding property
of the commitment scheme with approximately m chance on infinitely
many A € N. We will without loss of generality assume the adversary checks that
it has made a successful forgery, which simplifies the proof since it guarantees
the adversary does at some point call the random oracle on a query (ck, M, R, a)
corresponding to the forged ring signature.

Given the public parameters we first pick at random j € {1,...,qy} and set
vkj = Comey(1;7;) for r; « Zg. Our goal is to run A using this key for user j
and hoping to use rewinding to get n + 1 forgeries with a ring R that includes
vk;. The (n+1)-soundness of the SHVZK argument may permit extraction of an
opening of some vk; to (0,r;). By the perfect hiding property of the commitment
scheme, with probability q%/ we have ¢ = j giving us a breach of the commitment
scheme’s binding property.

Let us now give more details of how the attack works. Whenever A queries
VKGen we run as in a real ring signature scheme, except on the jth query



One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin 273

where we return vk;. If A ever queries Corrupt(j) we abort (type I). If A queries
Sign(j, M, R) we pick z « {0,1}* at random and use the special honest verifier
zero-knowledge simulator to simulate the proof (a, z). We then program the ran-
dom oracle H(-) to have H(ck, M, R, a) = x, except if (ck, M, R, a) has already
been queried before in which case we abort (type II).

In the end, A tries to create a forged ring signature with uncorrupted users
in the ring and where the signature does not come from the signing oracle. If
A fails to create a forgery we halt. Otherwise, we get a successful forged ring
signature ¢ = (a,z) on M using ring R coming from a random oracle query
H(ck, M, R,a) used to get a challenge z(© . We now rewind the adversary to the
point where it made the query H(ck, M, R, a) used in the forged signature and
give it random answers to the oracle query until it has produced n additional
forged ring signatures with challenges z(!),... ("™ using the same query. As
above, in each rewinding, if the simulation of a signature leads to reuse of a
query to the oracle we abort (type II). Furthermore, if the number of rewindings
exceed 2p(A)n we halt.

If the adversary after rewinding gave us answers to a total of n 4+ 1 distinct
challenges, we can now use the (n+1)-special soundness property to either break
the binding property of the commitment scheme or to get an opening (0,r;) of
some vk; = Comgg(0;7;). With probability q% we have vk; = vk;, giving us a
breach of the binding property of the commitment scheme.

Let us analyze the attack described above. A useful starting point is running
the real unforgeability experiment, i.e., instead of picking vk; = Comcx(1;7;)
we pick vk; = Comey(0;7;) as a correctly generated key and answer all queries
honestly (so we do not have type I or II aborts). Let us consider some A € N
where A has at least ﬁ chance of creating a successful forgery. Observe that
an adversary that has probability v of using a specific random oracle query
in a successful forgery will be rewound n = v - 2 times on average on this
query to sample n additional forgeries. The probability of the attack entering
the rewinding stage and exceeding 2p(A)n rewindings will therefore be at most

1

0 since otherwise we would exceed the expected number of rewindings. This
_1 1 1

means we have at least 0 T Y 30y
forgeries using a specific oracle query (ck, M, R, a).

Switching to simulation of ring signatures instead of giving real ring signa-
tures may result in type II aborts when the simulation accidentally results in
an oracle query H(ck, M, R, a) that has been used before, but with a different
challenge. However, Lemma 2 tells us that the simulator has negligible probabil-
ity of colliding with another oracle query: the probability of a single simulation
hitting a specific oracle query is a negligible function v(\) and with a maximum
of gs(\) signing queries in each run of the adversary, and a total of gg () +gs ()
random oracle queries in each run of the adversary we get an upper bound of
2p(M)n 4+ 1)gs(AN) (g (N) + gs(A\)v(A) for the probability of running into a type
IT abort.

Another problem that can arise is a collision in the n 4+ 1 challenges we get
after rewinding. With a maximum of gs(A) + ¢ (M) queries to the random oracle

chance of getting n 4+ 1 successful
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in each run of A we get a total risk of 2((1+2p(’\)”)(§f()‘)HH(A)))Z of having a colli-

sion in any random oracle outputs. Avoiding type II aborts and collisions leaves

n 2
us with 55k — (2p(\)n-+1)gs () gz (3) +5 (A(X) - 2L0F2QIm ) an )

#(A) chance of being able to use (n + 1)-special soundness to break the com-

mitment scheme or extract an opening (0,7;) of some vk; in the ring of a ring
signature forgery.

If we extract an opening (0,7;) of some vk; in the ring of a ring signature
forgery there is q%(/\) chance that ¢ = j. If i = j we observe as a part of this being
a successful forgery, the adversary never queried Corrupt(j), so we do not have
any type I aborts. Since the commitment scheme is perfectly hiding, the switch to
using vk; = Comcy(1; 7“;) does not change the success probability of the attack.
But now an opening of vk; = vk; to vk; = Come(0; ;) corresponds to a breach
of the binding property of the commitment scheme. So for infinitely many A € N
our attack has close to or higher than m chance of breaking the binding
property of the commitment scheme. The attack runs in polynomial time since
it will make at most 1 + 2p(A)n runs of the polynomial time adversary A. O

Instantiation with Pedersen commitments. The Pedersen commitment scheme
is a natural candidate for the commitment scheme. When our ring signature
scheme is instantiated with the Pedersen commitment scheme, the public keys
are of the form ¢ = h", i.e., they are single group elements and the corresponding
secret keys are the discrete logarithms.

The instantiation with Pedersen commitments requires a simple setup that is
realistic in many settings. Consider any organization where a standard group G
is used for all users and their secret keys are discrete logarithms of public group
elements. The ring signature easily fits on top of this setup.

The ring signature scheme yields small signatures. The signature size is log-
arithmic in the number of ring members and instantiated over a compact group
where elements have size O()\) it is O(Alog N) = O(Alog \) bits. This compares
favorably with all previous ring signature schemes.

The signer computes log N multi-exponentiations of N elements to generate
a ring signature and the verifier uses a multi-exponentiation of N elements to
verify a ring signature. However, when the same ring is used many times or
there is significant overlap between different rings, the cost of verification can
be reduced to O(N) multiplications in Z, by batching the verification of many
signatures.

5 Zerocoin

Zerocoin enables users to generate their own coins which become valuable by
public consensus by being included on a bulletin board. These coins can then
be spent anonymously with double spending being prevented by a secret serial
number encoded in each coin which is revealed during the spend protocol.
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5.1 Definition

A zerocoin scheme consists of a quadruple of PPT algorithms
(Setup, Mint, Spend, Vfy) for generating a common setup available to all
users, generating coins, generating proofs that a coin was spend to pay for a
transaction and verifying proofs of spending.

— pp « Setup(1*). Generates public parameters available to all users.

— (¢, skc¢) «+ Mint(pp). Mints a coin ¢ together with a key skc used to authorize
its spending.

— (m,8) « Spend,,, .(M, ¢, C). On input some transaction string M € {0, 1}*
and an arbitrary set of coins C containing ¢, the algorithm outputs a proof
m and a serial number S. We require that skc is a valid key for coin ¢ as
produced by Mint(pp) and that ¢ € C.

— b« nypp(M, S, C, 7). Verifies a purported proof m of a spend transaction
with string M of a coin with serial number S from the set of coins C.

The transaction string M in the call to Spend is intended, e.g., for the identity
of the transaction recipient, or the terms of a contract.

The quadruple (Setup, Mint, Spend, Vfy) is a zerocoin scheme with perfect
anonymity if it is correct, balanced and anonymous as defined next.

Definition 12 (Perfect correctness). We require that a user can spend any
coin with respect to any set of coins. A zerocoin scheme (Setup, Mint, Spend, Viy)
has perfect correctness if for all adversaries A

pp « Setup(1*); (¢, skc) « Mint(pp)
Pr | (M,C) «— A(pp, c, skc) : Viy,, (M, S,CU{c},m)=1] =1.

(7T7 S) — Spendpp,skc (M7 ¢, cu {C})

Our balance definition is a strengthening of the original zero-coin definition.
As for ring signature unforgeability, we allow for Corrupt queries that give the
adversary access to the randomness of coins.

Definition 13 (Balance). A zerocoin scheme (Setup, Mint, Spend, V{y) is bal-
anced (with respect to insider corruption) if an adversary cannot spend more
coins than he controls. Formally, it is balanced when for all probabilistic polyno-
mial time adversaries A

P[5 A gy 80 1] 0

— CoinGen on query number i selects randomness r;, runs (c;,ske;) «—
Mint(pp; r;) and returns ¢; after adding c; to a set C.

- Spend(i, M, C) returns (m,S) « Spend,,, .. (M,c;,C), provided (c;, skc;)
has been generated by CoinGen and was not leaked using Corrupt(i). The
oracle records (M, S,C,7) in a set T.

— Corrupt(z) provided (c;, skc;) has been generated by CoinGen runs (m,S) «—
Spend,,, ., (“ 7 cis {ci}) to determine the serial number of the coin and then
returns r; (from which skc; can be computed). The oracle removes any tuple
matching the pattern (x, S, %, %) from T and records (x,S,*,*) in T.
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— A outputs ¢1,...,6m,S1,- ., Sm,Smt1 such that S; = (M;, S;,Cy,m;), C; C
CU{é,...,Cm}, no S; matches a pattern in T, and all S; are distinct.

Definition 14 (Perfect anonymity). (Setup, Mint,Spend, Viy) has perfect
anonymity if a proof of spending with transaction string M for a set of coins
C and coin c;, looks exactly the same as a proof of spending with transaction
string M for the set C and coin c;,. This means that the spender’s coin is hidden
among all the honestly generated coins in the set. Formally, we require that for
any adversary A

p — Setup(l)‘); (M, ig,i1,C) — AMint(mD)(pp)

Pr b {0,1}; (m, S) < Spend M,c,C)

A, S) =b :%,

pp,skcq, (

where A chooses ig, i1 such that (c;,, skci,), (¢iy, skei,) have been generated by
the minting oracle Mint(pp) and ¢;y,c;, € C.

5.2 Construction

While a ring-signature scheme can be constructed from an ad-hoc group identifi-
cation scheme using the Fiat-Shamir heuristic, a zerocoin scheme can be obtained
from a linkable ad-hoc group identification scheme. In particular, almost the same
construction can be used to construct zerocoin schemes from a X-protocol for
l-out-of-N commitments containing 0. Instead of public keys that are commit-
ments to 0 we now employ coins that are commitments to serial numbers. We
homomorphically subtract a serial number S from all coins used in a statement
by multiplying them with Com,(S;0)~! before computing the proof, such that
the commitment with this serial number turns into a commitment to 0. The
zerocoin scheme is described in Fig. 4.

Setup(1*) Spend,,, (M, ¢, C) Viy,,(M, S, C, )
ck — G(1%) Parse C' = (co,...,cN-1) Parse C' = (co,...,cN-1)
H — H(1Y) and skc = (r, S) Parse m = (a, z)

Return pp = (ck, H)

Mint (pp)

T Zq

S — Zq4

¢ «— Comck(S;r)
ske «— (r, S)
Return (c, skc)

with ¢, = ¢ = Comer (S;7)

c; « c; - Come(S;0)~*

a «— P(ck, (chy- -, cnn), (1))
z=H(ck,M,S,C,a)

z — P(x)

Return m = (a, z) and S

c; « ¢; - Comer(S;0)*
x = H(ck,M,S,C,a)

Return

V(Ck7 (667 BRI C/IV71)7 a,zx, Z)

Fig. 4. Zerocoin protocol based on X-protocol (G, P,V) for 1-out-of-N commitments

containing 0
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Theorem 5. The scheme (Setup, Mint, Spend, Viy) is a zerocoin scheme with
perfect correctness. It has perfect anonymity if the commitment scheme is per-
fectly hiding. It is balanced in the random oracle model if the commitment scheme
1s perfectly hiding and strongly binding.

Proof. Perfect correctness follows from the perfect completeness of the
Y)-protocol. Perfect anonymity follows from the perfect witness indistinguisha-
bility of the X-protocol, which guarantees that it is impossible to distinguish
which coin has been used to generate a proof of spending.

To see that the zerocoin scheme is balanced we will rely on the (n+1)-special
soundness of the Y-protocol and model the hash-function H as a random oracle.
We will show that a zerocoin adversary .4, which for a positive polynomial p and
an infinite number of A € N has more than ﬁ chance of forging more spending
proofs than controlled coins can be used to construct an attack on the strong
binding property of the commitment scheme.

Given the public parameters pp we start by forwarding them to A. We simu-
late the random oracle and the CoinGen, and Corrupt oracles honestly. We use
the SHVZK simulator and the random oracle programmability to answer Spend
queries with fresh random serial numbers. If this fails because the pre-image is
already in the oracle list we abort with “Error 1”. Finally A outputs m coins
(¢1,...,6m) and m + 1 valid spending proofs (Si,...,Sm,Sm+1). We will for
simplicity assume in the proof that A checks that all its spendings are valid such
that for each spent coin the random oracle has been queried on H(ck, M, S, C, a).

For each 1 < i < m + 1 we do the following. We find the first entry on
the oracle list where A asked (ck, M;, S;,C;i,a;) to the random oracle; if we
created the entry ourselves during the simulation of a Spend query we abort
with “Error 2”7. We then simulate a fresh copy of A identically up to the point
where the above query was asked and answer with a different uniformly random
value from the oracle. We repeat this process until we obtain n; = [log |C;|] + 1
proofs with the same a;. If the total number of rewindings exceeds 2p(A) >~,"7 " n;
we halt. Since the expected number of rewindings for each query is n;, we have
at least #(A) chance of getting the desired number of proofs for each ¢ before
running out of time.

If we end up with a collision in the oracle answers such that for any query
i there are two rewindings that yield the same uniformly random challenge x
we abort. However, since we run in polynomial time such collisions happen with
negligible probability, so let us analyze the case where we have n; + 1 distinct
challenges for each proof. We can now use the (n; + 1)-special soundness prop-
erty to break the binding property of the commitment scheme or to get an
opening Com(0;r) for one of the commitments in the statement, which trans-
lates into an opening Com, g (S;;r) for one of the commitments in C;.

Let us now consider the probability of “Error 1”7 and “Error 2”. “Error 1”
occurs if A already queried (ck, M, S, C, a) before the simulation of a spend query
but this happens with negligible probability. “Error 2” occurs if the adversary
finds a different answer to a challenge than we used in the simulation, since a
successful attack on the balance property implies one of the spending proofs S;
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does not match with a pattern in 7. By Lemma 1 this happens with negligible
probability. We will now proceed under the assumption that such errors did not
happen.

Consider the serial numbers of coins in C. As commitments are perfectly hid-
ing and as we revealed freshly sampled random serial numbers in the simulation
of Spend an attacker that uses an honest coin to win the game will with high
probability also use a different serial number. In case of corrupted coins he is
forced by the rules of the security game to always use a different serial number.
This yields a break of the binding property of the commitment scheme.

From now on we assume that A did not use an honest coin. Then there are m
different adversary controlled coins and thus commitments but m + 1 verifying
proofs with distinct serial numbers. By extracting from all m + 1 proofs we are
guaranteed that one commitment is opened twice to different serial numbers,
which yields a break of the binding property of the commitment scheme. O

Further applications. One-out-of-many proofs are compatible with extended
Pedersen commitments, where there is one commitment for a vector of values.
They can thus also be employed in the construction of decentralized anonymous
credentials [GGM14] and zero-cash protocols [BSCG+14].
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