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Abstract. Designing an efficient cipher was always a delicate balance
between linear and non-linear operations. This goes back to the design
of DES, and in fact all the way back to the seminal work of Shannon.

Here we focus, for the first time, on an extreme corner of the design
space and initiate a study of symmetric-key primitives that minimize the
multiplicative size and depth of their descriptions. This is motivated by
recent progress in practical instantiations of secure multi-party computa-
tion (MPC), fully homomorphic encryption (FHE), and zero-knowledge
proofs (ZK) where linear computations are, compared to non-linear oper-
ations, essentially “free”.

We focus on the case of a block cipher, and propose the family of
block ciphers “LowMC”, beating all existing proposals with respect to
these metrics by far. We sketch several applications for such ciphers and
give implementation comparisons suggesting that when encrypting larger
amounts of data the new design strategy translates into improvements
in computation and communication complexity by up to a factor of 5
compared to AES-128, which incidentally is one of the most competitive
classical designs. Furthermore, we identify cases where “free XORs” can
no longer be regarded as such but represent a bottleneck, hence refuting
this commonly held belief with a practical example.

Keywords: Block cipher · Multiplicative complexity · Multiplicative
depth · Secure multiparty computation · Fully homomorphic encryption

1 Introduction

Modern cryptography developed many techniques that go well beyond solving
traditional confidentiality and authenticity problems in two-party communica-
tion. Secure multi-party computation (MPC), zero-knowledge proofs (ZK) and
fully homomorphic encryption (FHE) are some of the most striking examples.

In recent years, especially the area of secure multi-party computation has
moved from a science that largely concerned itself with the mere existence of
solutions towards considerations of a more practical nature, such as costs of
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actual implementations for proposed protocols in terms of computational time,
memory, and communication.

Despite important progress and existing proof-of-concept implementations,
e.g. [MNPS04,PSSW09,HEKM11,NNOB12,KSS12,FN13,SS13], there exists a
huge cost gap between employing cryptographic primitives in a traditional way
and using them in the more versatile MPC context. As an example, consider
implementations of the AES block cipher, a global standard for the bulk encryp-
tion of data. Modern processors achieve a single execution of the block cipher
within a few hundred clock cycles (or even less than 100 clock cycles using
AES-NI). However, realizing the same cipher execution in the context of an
MPC protocol takes many billions of clock cycles and high communication vol-
umes between the participating parties, e.g. several hundreds of Megabytes for
two-party AES with security against malicious adversaries [PSSW09,NNOB12,
KSS12,FN13,SS13,DZ13,LOS14,DLT14].

While our design approach is not specific to block ciphers but can be equally
applied to e.g. hash functions, in this work, we propose block ciphers that are
specifically designed for application in MPC and similar contexts. Tradition-
ally, ciphers are built from linear and non-linear building blocks. These two have
roughly similar costs in hardware and software implementations. In CMOS hard-
ware, the smallest linear gate (XOR) is about 2-3 times larger than the smallest
non-linear gate (typically, NAND). When implemented in an MPC protocol or
a homomorphic encryption scheme, however, the situation is radically different:
linear operations come almost for free, since they only incur local computation
(resp. do not increase the noise much), whereas the bottleneck are non-linear
operations that involve symmetric cryptographic operations and communication
between parties (resp. increase the noise considerably). Our motivation hence
comes from implementations of ciphers in the context of MPC, ZK, or FHE
schemes where linear parts are much cheaper than non-linear parts.

This cost metric suggests a new way of designing a cipher where most of the
cryptographically relevant work would be performed as linear operations and the
use of non-linear operations is minimized. This design philosophy is related to
the fundamental theoretical question of the minimal multiplicative complexity
(MC) [BPP00] of certain tasks. Such extreme trade-offs were not studied before,
as all earlier designs – due to their target platforms – faired better with obtaining
a balance between linear and non-linear operations.

In this work we propose to start studying symmetric cryptography prim-
itives with low multiplicative complexity in earnest. Earlier tender steps in
this direction [GGNPS13,PRC12,GLSV14] were aimed at good cost and per-
formance when implemented with side-channel attack countermeasures, and are
not extreme enough for our purpose. Our question hence is: what is the minimum
number of multiplications for building a secure block cipher? We limit ourselves
to multiplications in GF(2) and motivate this as follows:

– By using Boolean circuits we decouple the underlying protocol / primitive
(MPC protocol / ZK protocol / FHE scheme) from that of the cipher. Hence,
the same cipher can be used for multiple applications.
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– GF(2) is a natural choice for MPC protocols based on Yao or GMW (in the
semi-honest setting, but also for their extensions to stronger adversaries), ZK
protocols, as well as for fully or somewhat homomorphic encryption schemes
(cf. Section 2 for details).

By nature of the problem, we are interested in two different metrics. One met-
ric refers to what is commonly called multiplicative complexity (MC), which is
simply the number of multiplications (AND gates) in a circuit, see e.g. [BPP00].
The second metric refers to the multiplicative depth of the circuit, which we
will subsequently call ANDdepth. We note that already in [DSES14] it was
observed that using ciphers with low ANDdepth is of central importance for
efficient evaluations within homomorphic encryption schemes. Therefore, the
authors of [DSES14] suggest to study block cipher designs that are optimized
for low ANDdepth, a task to which we provide a first answer. Our work is some-
how orthogonal to Applebaum et. al [AIK06], where the question of what can in
principle be achieved in cryptography with shallow circuits was addressed.

This all motivates the following guiding hypothesis which we will test in
this paper: “When implemented in practice, a block cipher design with lower
MC and lower ANDdepth will result in lower executing times”. We note that
the relatively low execution times often reported in the literature are amortized
times, i.e. averaged over many calls of a cipher (in parallel). This, however,
neglects the often important latency. Hence, another design goal in this work is
to reduce this latency.

Outline and Contribution. In Section 2 we describe several schemes with
“free XORs”. Then, in Section 3, we focus on an extreme corner of the design
space of block ciphers and propose a new block-cipher design strategy that min-
imizes the multiplicative size and depth of the circuit describing it, beating all
existing candidates by far with respect to these metrics. In terms of ANDdepth,
the closest competitor is PRINCE. In terms of MC, the closest competitor turns
out to be Simon. We give a high-level overview over a larger field of competing
designs in Section 4. We analyse the security of our constructions in Section 5 and
provide experimental evidence for the soundness of our approach in Section 6.
In particular, our implementations outperform previously reported results in the
literature, often by more than a factor 5 in MPC and FHE implementation set-
tings. They also indicate that in the design space we consider, “free XORs” can
no longer be regarded as free but significantly contribute to the overall cost,
hence refuting this commonly held belief with a practical example. Finally, we
describe our optimisation strategies for implementing our designs in the MPC
and FHE case, which might be of independent interest.

Main Features and Advantages of LowMC

– Low ANDdepth, and low MC, which positively impacts the latency and
throughput of the FHE, MPC, or ZK evaluation of the cipher.
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– Partial Sbox layer.
– Security arguments against large classes of statistical attacks like differen-

tial attacks, similar to other state-of-the-art designs are given in Section 5.
Zorro [GGNPS13] is the first SPN cipher in the literature that uses a non-
full Sbox layer and is related to LowMC in this respect. However, recent
attacks on Zorro that exploit this particular property [WWGY13,RASA14,
GNPW13,BODD+14], highlight the need to be very careful with this design
strategy. In our analysis of LowMC in Section 5 we are able to take these
into account.

– In contrast to other constructions, it is easy to obtain tight bounds on the
MC and ANDdepth.

– The design is very flexible and allows for a unified description regardless of
the blocksize.

– We explicitly de-couple the security claim of a block cipher from the block
size.

2 Schemes

In this section we list several schemesfor MPC, FHE, and ZK that benefit from
evaluating our cipher. We give a list of example applications for LowMC in the
full version of the paper.

2.1 Multi-Party Computation (MPC)

There are two classes of practically efficient secure multi-party computation
(MPC) protocols for securely evaluating Boolean circuits where XOR gates are
considerably cheaper (no communication and less computation) than AND gates.

The first class of MPC protocols has a constant number of rounds and
their total amount of communication depends on the MC of the circuit (each
AND gate requires communication). Examples are protocols based on Yao’s gar-
bled circuits [Yao86] with the free XOR technique [KS08]. To achieve secu-
rity against stronger (i.e., malicious or covert) adversaries, garbled circuit-
based protocols apply the cut-and-choose technique where multiple garbled
circuits are evaluated, e.g., [LP07,AL07,LPS08,PSSW09,LP11,SS11,KSS12,
FN13,Lin13,HKE13,SS13,FJN14,HKK+14,LR14]; also MiniLEGO [FJN+13]
falls into this class.

The second class of MPC protocols has a round complexity that is linear in
the ANDdepth of the evaluated circuit (each AND gate requires interaction) and
hence the performance depends on both, the MC and ANDdepth of the circuit.
Examples are the semi-honest secure version of the GMW protocol [GMW87]
implemented in [CHK+12,SZ13], and tiny-OT [NNOB12] with security against
malicious adversaries.



434 M.R. Albrecht et al.

2.2 Fully Homomorphic Encryption (FHE)

In all somewhat and fully homomorphic encryption schemes known so far XOR
(addition) gates are considerably cheaper than AND (multiplication) gates. More-
over, XOR gates do not increase the noise much, whereas AND gates increase the
noise considerably (cf. [HS14]). Hence, as in somewhat homomorphic encryption
schemes the parameters must be chosen such that the noise of the result is low
enough to permit decryption, the overall complexity depends on the ANDdepth.

2.3 Zero-Knowledge Proof of Knowledge (ZK)

In several zero-knowledge proof protocols XOR relations can be proven for free
and the complexity essentially depends on the number of AND gates of the
relation to be proven. Examples for such protocols are [BC86,BDP00] and the
recently proposed highly efficient protocol of [JKO13] that requires only one eval-
uation of a garbled circuit [Yao86] and can make use of the free XOR technique
[KS08].

3 Description of LowMC

LowMC is a flexible block cipher based on an SPN structure where the block
size n, the key size k, the number of Sboxes m in the substitution layer and
the allowed data complexity d of attacks can independently be chosen1. The
number of rounds needed to reach the security claims is then derived from these
parameters.

To reduce the MC, the number of Sboxes applied in parallel can be reduced,
leaving part of the substitution layer as the identity mapping. Despite concerns
raised regarding this strategy [WWGY13], we will show that security is viable. To
reach security in spite of a low MC, pseudorandomly generated binary matrices
are used in the linear layer to introduce a very high degree of diffusion. A method
to accountably instantiate LowMC is given in Section 3.3.

Encryption with LowMC starts with a key whitening, followed by several
rounds of encryption where the exact number of rounds depends on the chosen
parameter set. A single round is composed as follows:

LowMCRound(i) =
KeyAddition(i) ◦ ConstantAddition(i) ◦ LinearLayer(i) ◦ SboxLayer

In the following we give a detailed description of the individual steps.

SboxLayer is an m-fold parallel application of the same 3-bit Sbox on the first
3m bits of the state. If n > 3m then for the remaining n−3m bits, the SboxLayer
is the identity. The selection criteria for the Sbox were as follows:
1 The number of Sboxes is limited though by the block size as the Sboxes need to fit

into a block.
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Fig. 1. Depiction of one round of encryption with LowMC

– Maximum differential probability: 2−2

– Maximum linear probability: 2−2

– Simple circuit description involving MC = 3 AND gates, with ANDdepth=1
– Each of the 8 non-zero component functions has algebraic degree 2

The Sbox is specified in 2, and coincides with the Sbox used for PRINTci-
pher [KLPR10]. Other representations of the Sbox can be found in the full
version of this paper.

LinearLayer(i) is the multiplication in GF(2) of the state with the binary
n×n matrix Lmatrix[i]. The matrices are chosen independently and uniformly
at random from all invertible binary n × n matrices.

ConstantAddition(i) is the addition in GF(2) of roundconstant[i] to the
state. The constants are chosen independently and uniformly at random from
all binary vectors of length n.

KeyAddition(i) is the addition in GF(2) of roundkey[i] to the state. To gen-
erate roundkey[i], the master key key is multiplied in GF(2) with the binary
n×k matrix Kmatrix[i]. The matrices are chosen independently and uniformly
at random from all binary n × k matrices of rank min(n, k).

Decryption is done in the straightforward manner by an inversion of these
steps.

S(a, b, c) = (a ⊕ bc, a ⊕ b ⊕ ac, a ⊕ b ⊕ c ⊕ ab)

Fig. 2. Specification of the 3-bit Sbox

3.1 Pseudocode

plaintext and state are n-bit quantities. key is a k-bit quantity, which can
both be larger or smaller than n. r is the number of rounds.
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ciphertext = encrypt (plaintext,key)
//initial whitening
state = plaintext + MultiplyWithGF2Matrix(KMatrix(0),key)

for (i = 1 to r)
//m computations of 3-bit sbox,
//remaining n-3m bits remain the same
state = Sboxlayer (state)

//affine layer
state = MultiplyWithGF2Matrix(LMatrix(i),state)
state = state + Constants(i)

//generate round key and add to the state
state = state + MultiplyWithGF2Matrix(KMatrix(i),state)

end
ciphertext = state

3.2 Parameters

Our security analysis against differential, linear, higher-order, meet-in-the-
middle, algebraic, and slide attacks suggests that, except with negligible proba-
bility, any uniformly randomly chosen set of matrices leads to a secure construc-
tion for the parameters given in Table 1. For a larger selection of parameters
bundled with security bounds, see the full version of this paper.

Table 1. Parameter sets of LowMC instantiations. One first set has PRESENT-like
security parameters, the second set has AES-like security parameters.

blocksize sboxes keysize data rounds ANDdepth ANDs
n m k d r per bit

256 49 80 64 11 11 6.3
256 63 128 128 12 12 8.86

3.3 Instantiation of LowMC

To maximize the amount of diffusion done by the linear layer, we rely on ran-
domly generated, invertible binary matrices. As there exist no binary matrices of
size larger than 1×1 that are MDS, and as it is generally an NP-complete prob-
lem to determine the branching number of a binary matrix [BMvT78], there is
no obviously better method to reach this goal. The problem in the instantiation
of LowMC is to find an accountable way of constructing the random matrices
and vectors that leaves no room for the designer to plant backdoors.
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Our recommended instantiation is a compromise between randomness,
accountability and ease of implementation. It uses the Grain LSFR as a self-
shrinking generator (see [HJMM08] and [MS94]) as a source of random bits.
The exact procedure can be found in the full version of this paper.

It must be mentioned though that it is principally possible to use any suf-
ficiently random source to generate the matrices and constants. It is also not
necessary that the source is cryptographically secure.

4 Comparison with Other Ciphers

In the following we survey a larger number of existing cipher designs and study
their ANDdepth and MC per encrypted bit which we summarize in Table 2. We
both choose representative candidates from various design strategies, as well as
the designs that are most competitive in terms of our metrics. We do this in
two distinct categories: AES-like security (with key sizes of 128-bits and more
and data security and block size of 128-bits and more), and lightweight security
(data security and block size of 96 bits or below). Note that data security refers
to the log2 of the allowable data complexity up to which a cipher is expected
to give the claimed securtiy against shortcut attacks. For LowMC we explicitly
de-couple the data security from the block size of the cipher as the proposed
design strategy favour larger block sizes but we don’t see a new for larger data
security than 128. For size-optimized variants we instantiate �-bit adders using
a ripple-carry adder which has � − 1 ANDs and ANDdepth � − 1; for depth-
optimized variants we instantiate them with a Ladner-Fischer adder that has
� + 1.25� log2 � ANDs and ANDdepth 1 + 2 log2 �, cf. [SZ13].

We first survey AES versions and then ciphers with related security proper-
ties. The Sbox construction of [BP12] has 34 AND gates and ANDdepth 4 (the
size optimized Sbox construction of [BMP13] has only 32 AND gates, but higher
ANDdepth 6). See also Canright [Can05]. To encrypt a 128-bit block, AES-128
has 10 rounds and uses 160 calls to the Sbox (40 for key schedule), hence 5 440
AND gates, or 42.5 AND gates per encrypted bit. To encrypt a 128-bit block,
AES-192 has 12 rounds and uses 192 calls to the Sbox (32 for key schedule),
hence 6 528 AND gates, or 51 AND gates per encrypted bit. To encrypt a 128-
bit block, AES-256 has 14 rounds and uses 224 calls to the Sbox (56 for key
schedule), hence 7 616 AND gates, or 59.5 AND gates per encrypted bit.

AES is actually comparatively efficient. Other ciphers with a different design
strategy can have very different properties. Threefish [FLS+10] is a cipher with
large block size. Threefish with its 512-bit block size has 72 rounds with 4 addi-
tions modulo 264 each resulting in 35.438 AND gates per encrypted bit and
ANDdepth=4 536 (63 per round). Threefish with its 1 024-bit block size has 80
rounds with 8 additions each resulting in 39.375 AND gates per bit and AND-
depth=5 040 (63 per round). The recently proposed NSA cipher Simon [BSS+13]
is also a good candidate to be of low multiplicative complexity. If b is the block
size, it does b/2 AND gates per round, and ANDdepth is equal to the number
of rounds. For a key size of 128 bit (comparable to AES) and block size 128 bit,
it needs 68 rounds. This means, 4 352 AND gates, or 34 AND gates per bit.
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In the lightweight category, we consider Present, but also Simon. The Present
Sbox can be implemented with as little as 4 AND gates which is optimal [CHM11]
and has ANDdepth 3. With 16 · 31 = 496 Sbox applications per 64 bit block we
arrive at 31 AND gates per bit. A depth-optimized version of the Present Sbox
with ANDdepth 2 and 8 ANDs is given in the full version of this paper. The
128bit secure version of Present differs only in the key schedule. Simon-64/96 has
a 96 bit key, block size 64 bit and 42 rounds and Simon-32/64 has a 64 bit key,
block size 32 bit and 32 rounds; see above for MC and ANDdepth. As another
data point, the DES circuit of [TS] has 18 175 AND gates and ANDdepth 261.
KATAN [CDK09] has 254 rounds. In KATAN32, the ANDdepth increases by two
every 8 rounds resulting in an ANDdepth of 64; with 3 AND gates per round
and a block size of 32 bit this results in 23.81 ANDs per bit, but similar to
Simon-32/64 applications are limited due to the small block size. In KATAN48
and KATAN64 the ANDdepth increases by 2 every 7 rounds resulting in an
ANDdepth of 74. KATAN48 has 6 ANDs per round and a block size of 48 bit
resulting in 31.75 ANDs per bit. KATAN64 has 9 ANDs per round and a block
size of 64 bit resulting in 35.72 ANDs per bit. Prince [BCG+12] has 12 rounds
and each round can be implemented with 10 AND gates and ANDdepth 2, cf.
[DSES14]. NOEKEON [DPVAR00] is a competitive block cipher with 16 rounds
and each round applies 32 S-boxes consisting of 4 AND gates with ANDdepth 2
each.

LowMC is easily parameterizable to all these settings, see also Table 1 in
Section 3. It has at most (if 3m = n) one AND gate per bit per round which
results, together with a moderate number of rounds to make it secure, in the
lowest ANDdepth and lowest MC per encrypted bit, cf. Table 2.

5 Resistance Against Cryptanalytic Attacks

The number of rounds r equals ANDdepth, and is hence a crucial factor to
minimize. For this we evaluate the security of the construction against an array
of known attack vectors. Below we especially discuss differential, linear and high-
order attacks, as their analysis is a relevant technical contribution in itself. For a
short discussion of other attack vectors, we refer to the full version of this paper.

We aim to prove the LowMC designs secure against classes of known attacks.
However, due to the choice of random linear layers it is not immediately clear
how to bound the probability of differential or linear characteristics. This is
something we will investigate and resolve in Section 5.1. Due to the extremely
simple description of the Sbox, higher order [Knu94] and cube attacks [DS09]
that exploit a relatively slow growth in the algebraic degree appear to be the
most promising attack vector, and are studied in Section 5.4. The quality of these
bounds is tested on small versions of LowMC. This all will allow us to formulate
in Section 5.6 a relatively simple expression for deriving a lower bound for the
number of rounds given other parameters like the desired security level in terms
of time and data, and block size.
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Table 2. Comparison of ciphers (excluding key schedule). We list the depth-optimized
variants; size-optimized variants are given in () if available. Best in class are marked
in bold.

Cipher Key size Block size Data sec. ANDdepth ANDs/bit Sbox representation
AES-like security

AES-128 128 128 128 40 (60) 43 (40) [BP12] ([BMP13])
AES-192 192 128 128 48 (72) 51 (48) [BP12] ([BMP13])
AES-256 256 128 128 56 (84) 60 (56) [BP12] ([BMP13])
Simon 128 128 128 68 34 [BSS+13]
Simon 192 128 128 69 35 [BSS+13]
Simon 256 128 128 72 36 [BSS+13]

Noekeon 128 128 128 32 16 [DPVAR00]
Robin 128 128 128 96 24 [GLSV14]

Fantomas 128 128 128 48 16.5 [GLSV14]
Threefish 512 512 512 936 (4 536) 306 (36) [FLS+10]
Threefish 512 1 024 1024 1 040 (5 040) 340 (40) [FLS+10]
LowMC 128 256 128 12 8.85 full version

Lightweight security
PrintCipher-96 160 96 96 96 96 full version
PrintCipher-48 80 48 48 48 48 full version

Present 80 or 128 64 64 62 (93) 62 (31) full version ([CHM11])
Simon 96 64 64 42 21 [BSS+13]
Simon 64 32 32 32 16 [BSS+13]
Prince 128 64 64 24 30 [DSES14]

KATAN64 80 64 64 74 36 [CDK09]
KATAN48 80 48 48 74 32 [CDK09]
KATAN32 80 32 32 64 24 [CDK09]

DES 56 64 56 261 284 [TS]
LowMC 80 256 64 11 6.31 full version

5.1 Differential Characteristics

In differential attacks, the principal goal is to find a pair (α, β) of an input
difference α and an output difference β for the cipher such that pairs of input
texts with difference α have an unusual high probability to produce output
texts with difference β. Such a pair of differences is called a differential. A good
differential can be used to mount distinguishing attacks as well as key recovery
attacks on the cipher. For this it suffices if the differential does not cover the
whole cipher but all except one or a few rounds.

As it is infeasible to calculate the probability of differentials for most ciphers,
the cryptanalyst often has to be content with finding good differential charac-
teristics i.e., paths of differences through the cipher for which the probability
can directly be calculated. Note that a differential is made up of all differential
characteristics that have the same input and output difference as the differential.
The probability of a good differential characteristic is thus a lower bound for the
related differential.

Allowing parts of the state to go unchanged through the Sbox layer clearly
increases the chance of good differential characteristics. It is for example always
possible to find a one round characteristic of probability 1. In fact, it is even
possible to find � l

3m�-round characteristics of probability 1 where l is the width
of the identity part and m the number of 3-bit Sboxes. Nonetheless, as we will
prove in the following, this poses no threat. This is because of the randomness of
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the linear layer which maps a fixed subspace to a random subspace of the same
dimension: Most “good” difference i.e., differences that activate none or only few
Sboxes, are mapped to “bad” differences that activate most of the Sboxes per
layer. This causes the number of characteristics that only use “good” differences
to decay exponentially with the number of rounds. In the case of a � l

3m�-round
characteristic of probability 1, this means that the output difference is fixed
to very few options, which makes it then already in the next round extremely
unlikely that any one of the options is mapped onto a “good” difference.

We will now prove that good differential characteristics exist only with negli-
gible probability in LowMC. The basic idea behind the proof is the following. We
calculate for each possible good differential characteristic the probability that it
is realized in an instantiation of LowMC under the assumption that the binary
matrices of the linear layer were chosen independently and uniformly at random.
We then show that the sum of these probabilities, which is an upper bound for
the probability that any good characteristic exists, is negligible.

Recall that m is the number of Sboxes in one Sbox layer in LowMC and that
l is the bit-length of the identity part of the Sbox layer. We thus have n = 3m+l.
Let V (i) be the number of bit vectors of length n that correspond to a difference
that activates i Sboxes. As we can choose i out of the m Sboxes, as for each
active 3-bit Sbox there are 7 possible non-zero input differences and as the bits
of the identity part can be chosen freely, we have

V (i) =
(

m

i

)
· 7i · 2l . (1)

Let α0 be an input difference and let α1 be an output difference for one
round of LowMC. Let a0 be the number of Sboxes activated by α0. As an active
Sbox maps its non-zero input difference to four possible output differences each
with probability 1

4 , and as a uniformly randomly chosen invertible binary n × n
matrix maps a given non-zero n-bit vector with probability 1

2n−1 to another
given non-zero output vector, the probability that the one-round characteristic
(α0, α1) has a probability larger than 0 is

4a0

2n − 1
. (2)

Let (α0, α1, . . . , αr) now be a given characteristic over r rounds where the
differences αi are at the end of round i and α0 is the starting difference. Let
(a0, a1, . . . , ar−1) be the numbers of Sboxes activated by each α0, α1,. . . , and
αr−1. We can now calculate the probability that this characteristic has a prob-
ability larger than 0 in a random instantiation of LowMC as

4a0

2n − 1
· 4a1

2n − 1
. . .

4ar−1

2n − 1
=

4a0+a1+···+ar−1

(2n − 1)r
. (3)

Summing now over all possible characteristics over r rounds that activate at
most d Sboxes, we can calculate an upper bound for the probability that there
exists an r-round characteristic with d or fewer active Sboxes as
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∑
0≤a0,a1,...,ar−1≤m
a0+a1+···+ar−1≤d

V (a0) · V (a1) · · · V (ar−1) · (2n − 1) · 4a0+a1+···+ar−1

(2n − 1)r
(4)

where the factor (2n − 1) is the number of choices for the last difference αr that
can take any non-zero value.

With the knowledge that each active Sbox reduces the probability of a charac-
teristic by a factor of 2−2, we can now calculate for each parameter set of LowMC
the number of rounds after which no good differentials are present except for
a negligible probability. We consider as good differential characteristics those
with a probability higher than 2−d, where d is the allowed data complexity in
the respective parameter set. We call a negligible probability a probability lower
than 2−100. Note that this probability only comes into play once when fixing an
instantiation of LowMC. The calculated bound for our choice of parameters can
be found in Table 4.

Table 3. Example of how the probability bound pstat, for the existence of differential
or linear characteristic of probability at least 2−d, evolves. The parameters are here
m = 42, d = 128.

Rounds 1 - 6 7 8 9 10 11 12 13 14 15

n = 256 1.0 2−100 2−212 2−326 2−442 2−558 2−676 2−794 2−913 -
n = 1024 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2−26 2−145 2−264

5.2 Linear Characteristics

In linear cryptanalysis [Mat93], the goal of the cryptanalyst is to find affine
approximations of the cipher that hold sufficiently well. As with differential
cryptanalysis, these can be used to mount distinguishing and key recovery
attacks. The approximation is done by finding so-called linear characteristics, a
concatenation of linear approximations for the consecutive rounds of the cipher.
Similar to differential characteristics, linear characteristics activate Sboxes that
are involved in the approximations.

The proof for the absence of good differential characteristics is directly trans-
ferable to linear characteristics because of two facts. Firstly, the maximal linear
probability of the Sbox is 2−2, just the same as the maximal differential proba-
bility. Secondly, the transpose of a uniformly randomly chosen invertible binary
matrix is still a uniformly randomly chosen invertible binary matrix. Thus we
can use equation 4 to calculate the bounds for good linear characteristics as well.

5.3 Boomerang Attacks

In boomerang attacks [Wag99], good partial differential characteristics that cover
only part of the cipher can be combined to attack ciphers that might be immune
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to standard differential cryptanalysis. In these attacks, two differential charac-
teristics are combined, one that covers the first half of the cipher and another
that covers the second half. If both have about the same probability, the com-
plexity corresponds roughly to the inverse of the fourth power of this probability
[Wag99]. Thus to calculate the number of rounds sufficient to make sure that
no boomerang exists, we calculate the number of rounds after which differential
characteristics of probability 2−d/4 exist only with negligible probability and
then double this number.

5.4 Higher Order Attacks

Due to its small size, the degree of the Sbox in its algebraic representation is
only two. Since in one round the Sboxes are applied in parallel and since the
affine layer does not change the algebraic degree, the algebraic degree of one
round is two as well. As a low degree could be used as a lever for a high-order
attack, let us take a look at how the algebraic degree of LowMC develops over
several rounds.

Clearly the algebraic degree of the cipher after r rounds is bounded from
above by 2r. It is furthermore generally bounded from above by n − 1 since
the cipher is a permutation. A second upper bound, that is better suited and
certainly more realistic for the later rounds, was found by Boura et al. [BCC11].
In our case it is stated as following: If the cipher has degree dr after r rounds, the
degree after round r + 1 is at most n

2 + dr

2 . Differing from Boura et al. [BCC11],
in LowMC the Sbox layer only partially consists of Sboxes and partially of the
identity mapping. This must be accounted for and requires a third bound: If
the cipher has degree dr after r rounds, the degree after round r + 1 is at most
m + dr. A proof of this can be found in the full version of this paper. This can
be summarized as follows:

Lemma 1. If the algebraic degree of LowMC with m Sboxes and length l of the
identity part in the Sbox layer is dr after r rounds, the degree in round r + 1 is
at most

min
(

2dr,m + dr,
n

2
+

dr
2

)
(5)

where n = 3m + l is the block width of LowMC.

Combining these three bounds, we can easily calculate lower bounds for the
number of rounds r needed for different parameter sets l and m of LowMC to
reach a degree that is at least as large as the allowed data complexity d minus
1. The results of this for LowMC’s parameters are displayed in Table 4.

5.5 Experimental Cryptanalysis

We proved that no good differential or linear characteristic can cover sufficiently
many rounds to be usable as an attack vector in LowMC. This does not exclude
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Table 4. For the different sets of LowMC parameters, bounds are given for the number
of rounds for which no good differential or linear characteristics exist (rstat), to avoid
good boomerangs (rbmrg), and the number of rounds needed to have a sufficiently high
algebraic degree (rdeg). The bounds were calculated using equations 4 and 5.

Sboxes blocksize data complexity rstat rbmrg rdeg

49 256 64 5 6 6
63 256 128 5 6 7

though the possibility of good differentials or linear hulls for which a large num-
ber of characteristics combine. Given the highly diffusive, random linear layers,
this seems very unlikely.

Likewise we were able to find lower bounds on the number of rounds needed
for the algebraic degree of LowMC to be sufficiently high. Even though this is
state-of-the art also for traditional designs to date, this gives us no guarantee
that it will indeed be high. Unfortunately it is not possible to directly calculate
the algebraic degree for any large block size.

To nevertheless strengthen our confidence in the design, we numerically
examined the properties of small-scale versions of LowMC. In table 5, we find the
results for a 24-bit wide version with 4 Sboxes. For testing its resistance against
differential cryptanalysis, we calculated the full codebook under 100 randomly
chosen keys and used the distribution of differences to estimate the probabilities
of the differentials. To reduce the computational complexity, we restricted the
search space to differentials with one active bit in the input difference.

It can clearly be seen that the probability of differentials quickly saturates to
values too low to allow an attack. Clearly, the bound calculated with equation 4
(pstat in the table) overestimates the probability of good characteristics. Even
though we were not able to search the whole space of differentials there is little
reason to assume that there are other differentials that fare considerably better.
It is important to note that the number of impossible differentials goes to 0
after only few rounds. Thus impossible differentials cannot be used to attack
any relevant number of rounds. At the same time this assures the absence of any
truncated differentials of probability 1.

The minimal algebraic degree2 is tight for this version when compared with
the theoretic upper bound as determined with equation 5. More experimental
cryptanalysis can be found in the full version of this paper.

5.6 Fixing the Number of Rounds

We base our recommendation for the number of rounds on the following:

r ≥ max(rstat, rbmrg, rdeg) + router

2 That is the minimum of the algebraic degrees of the 24 output bit when written as
Boolean functions.
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Table 5. Experimental results of full codebook encryption over 100 random keys
for a set of small parameters are given. pbest and pworst are the best and the worst
approximate differential probability of any differential with one active bit in the input
difference. nimposs is the number of impossible differentials with one active bit in the
input difference. degexp is the minimal algebraic degree in any of the output bits.
degtheor is the upper bound for the algebraic degree as determined from equation 5.
pstat is the probability that a differential or linear characteristic of probability at least
2−12 exists (see eq. 4).

(a) n = 24, m = 4, k = 12, d = 12

Rounds pbest pworst nimposs degexp degtheor pstat

2 2−8.64 0 228.58 4 4 -
3 2−12.64 0 228.00 8 8 -
4 2−14.64 0 24.25 12 12 -
5 2−18.60 2−26.06 0 16 16 -
6 2−20.49 2−25.84 0 20 20 -
7 2−23.03 2−25.74 0 22 22 -
8 2−23.06 2−25.74 0 23 23 -
10 - - - - - 2−5.91

11 - - - - - 2−16.00

12 - - - - - 2−26.28

19 - - - - - 2−101.5

where rstat is a bound for statistical attack vectors such as differentials and linear
characteristics as discussed in Section 5.1, rbmrng is the bound for boomerang
attacks as discussed in Section 5.3, and where rdeg indicates the number of rounds
needed for the cipher to have sufficient degree as discussed in Section 5.4. Values
of these for the parameters of LowMC can be found in Table 4. For the number
of rounds which can be peeled off at the beginning and end of the cipher by key
guessing and other strategies, we use the ad-hoc formular router = rstat.

6 Comparison of Implementations

In the following we report on experiments when evaluating LowMC with MPC
protocols in Section 6.1 and with FHE in Section 6.2. The performance of both
implementations is independent of the specific choice of the random matrices
and vectors used in LowMC (cf. Section 3.3) as we do not use any optimizations
that are based on their specific structure.

In both the FHE and MPC settings, for more efficient matrix multiplication,
we use a method that is generically better than a naive approach: the “method of
the four Russians” [ABH10]. This method reduces the complexity of the matrix-
vector product from O(n2) to O(n2/log(n)), i.e. it’s an asymptotically faster
algorithm and is also fast in practice for the dimensions we face in LowMC.
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Asymptotically faster methods like the Strassen-Winograd method method make
no sense however, for the dimensions we are considering.

It turns out that considering design-optimizations of the linear layer by intro-
ducing structure and thereby lowering the density of the matricies and in turn
reducing the number of XOR computations will not improve performance of
all these implementations. On the contrary, as the application of the security
analysis suggests, the number of rounds would need to be increased in such a
case.

6.1 MPC Setting

As an example for both classes of MPC protocols described in Section 2.1 we
use the GMW protocol [GMW87] in the semi-honest setting. As described in
[CHK+12], this protocol can be partitioned into 1) a setup phase with a constant
number of rounds and communication linear in the MC of the circuit (2κ bits per
AND gate for κ-bit security), and 2) an online phase whose round complexity
is linear in the ANDdepth of the circuit. Hence, we expect that the setup time
grows linearly in the MC while the online time grows mostly with increasing
ANDdepth when network latency is high.

Benchmark Settings. For our MPC experiments we compare LowMC against
other ciphers with a comparable level of security. We compare LowMC with the
two standardized ciphers Present and AES and also with the NSA cipher Simon
which previously had the lowest number of ANDs per encrypted bit (cf. Table 2).
More specifically, for lightweight security with at least κ = 80 bit security we
compare LowMC with 80 bit keys against Present with 80 bit key (using the
Sbox of [CHM11]) and Simon with 96 bit keys (the Simon specification does
not include a variant with 80 bit keys); for long-term security with κ = 128 bit
security we compare LowMC with 128 bit keys against AES-128 (using the Sbox
of [BP12]) and Simon with 128 bit key; we set the security parameters for the
underlying MPC protocol to κ = 80 bit for lightweight security and to κ = 128
bit for long-term security. We exclude the key schedule and directly input the pre-
computed round keys. We use the GMW implementation that is available in the
ABY-framework [DSZ15] which uses the efficient oblivious transfer extensions of
[ALSZ13]3. We run our MPC experiments on two desktop PCs, each equipped
with an Intel Haswell i7-4770K CPU with 3.5 GHz and 16GB of RAM, that are
connected by Gigabit LAN. To see the impact of the reduced ANDdepth in the
online phase, we measured the times in a LAN scenario (0.2 ms latency) and
also a trans-atlantic WAN scenario (50 ms latency) which we simulated using
the Linux command tc.

In our first experiment depicted in Table 6 we encrypt a single block, whereas
in our second experiment depicted in Table 7 we encrypt multiple blocks in
parallel to encrypt 12.8 Mbit of data.
3 Our MPC implementations of the benchmarked block-ciphers are available online as

part of the ABY-framework https://github.com/encryptogroup/ABY.

https://github.com/encryptogroup/ABY
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Table 6. GMW benchmarking results for single block. Best in class marked in bold.

Lightweight Security
Cipher Present Simon LowMC
Communication [kB] 39 26 51
Runtime LAN WAN LAN WAN LAN WAN
Setup [s] 0.003 0.21 0.002 0.21 0.002 0.14
Online [s] 0.05 13.86 0.05 5.34 0.06 1.46
Total [s] 0.05 14.07 0.05 5.45 0.06 1.61

Long-Term Security
Cipher AES Simon LowMC
Communication [kB] 170 136 72
Runtime LAN WAN LAN WAN LAN WAN
Setup [s] 0.01 0.27 0.009 0.23 0.002 0.15
Online [s] 0.04 4.08 0.05 6.95 0.07 1.87
Total [s] 0.05 4.35 0.06 7.18 0.07 2.02

Single-Block Results. From our single-block experiments in Table 6 we
see that the communication of LowMC is higher by factor 2 compared to the
lightweight security ciphers but lower by factor 2 compared to the long-term
security ciphers. In terms of total runtime, for lightweight security LowMC per-
forms similar to Present and Simon in the LAN setting and outperforms both
by factor 3 to 9 in the WAN setting. For long-term security AES is slightly
faster than LowMC in the LAN setting, but slower than LowMC in the WAN
setting by factor 2. These results can be explained by the high number of XOR
gates of LowMC compared to AES, which impact the run-time higher than the
communication for the AND gates. In the WAN setting, the higher ANDdepth
of AES outweighs the local overhead of the XOR gates for LowMC, yielding a
faster run-time for LowMC.

Multi-Block Results. From our multi-block experiments in Table 7 we see
that LowMC needs less communication than all other ciphers: at least factor 2 for
lightweight security and factor 4 for long-term security. Also the total runtime of
LowMC is the lowest among all ciphers, ranging from factor 6 when compared to
Simon for lightweight security to factor 9 when compared to AES for long-term
security.

Summary of the Results. To summarize our MPC experiments, the bene-
fits of LowMC w.r.t. the online time depend on the network latency: over the
low-latency LAN network existing ciphers achieve comparable or even slightly
faster online runtimes than LowMC, whereas in the higher latency WAN network
LowMC achieves the fastest online runtime. W.r.t. the total runtime, LowMC’s
benefit in the single-block application again depends on the latency (comparable
or slightly less efficient over LAN, but more efficient over WAN), whereas in the
multi-block application LowMC significantly improves over existing ciphers by
factor 6 to 9. For secure computation protocols with security against malicious
adversaries, the benefit of using LowMC would be even more significant, since
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Table 7. GMW benchmarking results for multiple blocks to encrypt 12.8 Mbit of data.
Best in class marked in bold.

Lightweight Security
Cipher Present Simon LowMC
Comm. [GB] 7.4 5.0 2.5
Runtime LAN WAN LAN WAN LAN WAN
Setup [s] 214.17 453.89 268.93 568.35 43.33 138.63
Online [s] 2.71 34.35 3.29 37.06 2.02 17.12
Total [s] 216.88 488.24 272.22 605.41 45.36 155.75

Long-Term Security
Cipher AES Simon LowMC
Comm. [GB] 16 13 3.5
Runtime LAN WAN LAN WAN LAN WAN
Setup [s] 553.41 914.27 444.30 727.48 62.01 193.90
Online [s] 2.50 33.52 2.97 34.42 2.36 21.11
Total [s] 555.91 947.79 447.27 761.90 64.37 215.01

there the costs per AND gate are at least an order of magnitude higher than in
the semi-honest GMW protocol, cf. [NNOB12,LOS14].

6.2 FHE Setting

WeimplementedLowMCusing thehomomorphic encryption libraryHELib [HS13,
HS14], which implements the BGV homomorphic encryption scheme [BGV11] and
which was also used to evaluate AES-128 [GHS12a,GHS12b]. Our implementation
represents each plaintext, ciphertext and key bits as individual HE ciphertexts on
which XOR and AND operations are performed. Due to the nature of the BGV
system this means that we can evaluate many such instances in parallel, typically
a few hundred. We found this representation to be more efficient than our other
“compact” implementation which packs these bits into the slots of HE ciphertexts.

In the homomorphic encryption setting the number of AND gates is not the
main determinant of complexity. Instead, the ANDdepth of the circuit largely
determines the cost of XOR and AND, where AND is more expensive than
XOR. However, due to the high number of XORs in LowMC, the cost of the
linear layer is not negligible. In our implementation we use the “method of the
four Russians” [ABH10] to reduce the number of HE ciphertext additions from
O(n2) to O(n2/ log(n)).

In our experiments we chose the depth for the homomorphic encryption
scheme such that the “base level” of fresh ciphertexts is at least the number
of rounds, i.e. we consume one level per round. Our implementation also does
not precompute round keys in advance, but deriving round keys is considered
part of the evaluation (cost).

We consider LowMC instances for Present-80 and AES-128 like security. We
always choose a homomorphic encryption security level of 80 for compatibility
with [GHS12b]. Our results are given in Table 8. Our implementation is available
at https://bitbucket.org/malb/lowmc-helib.

https://bitbucket.org/malb/lowmc-helib
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Table 8. LowMC (commit f6a086e) in HElib [HS13] (commit e9d3785e) on Intel
i7-4850HQ CPU @ 2.30GHz; d is the allowed data complexity, m is the number of
Sboxes, n is the blocksize, r is the number of rounds, # blocks is the number of blocks
computed in parallel, tsetup is the total setup time, teval is the total running time of
the encryption in seconds, tsbox the total time spent in the S-Box layer in seconds,
tkey the total time spent in the key schedule in seconds, tblock = teval/#blocks and
tbit = tblock/n. The rows marked as “main” contain the main parameter proposals.
The rows marked as “perf”, “cons” or “smll” contain alternative parameter sets being
conservative, performance oriented or relatively small respectively.

d m r n #blocks tsetup teval tsbox tkey tblock tbit Memory Comment

128 63 12 256 600 11.6 506.1 353.2 1.6 0.8434 0.0033 1.58GB main
128 86 11 512 600 11.7 847.6 451.5 3.2 1.4127 0.0028 2.62GB perf
128 86 12 512 600 11.7 893.9 480.1 3.2 1.4898 0.0029 2.62GB cons

64 49 11 256 600 11.0 383.0 206.3 0.9 0.6383 0.0025 1.52GB main
64 49 10 256 600 11.5 305.6 255.6 1.1 0.5093 0.0020 1.37GB perf
64 34 11 128 600 13.0 260.7 204.0 0.7 0.4345 0.0034 1.08GB smll

For comparison with previous results in the literature we reproduce those
results in Table 9 which demonstrates the benefit of a dedicated block cipher for
homomorphic evaluation.

Table 9. Comparison of various block cipher evaluations in the literature and this
work; Notation as in Table 8. Memory requirements are not listed as they are usually
not provided in the literature. The first row is based on experimental data obtained on
the same machine and the same instance of HELib as in Table 8.

d ANDdepth #blocks teval tblock tbit Cipher Reference Key Schedule

128 40 120 3m 1.5s 0.0119s AES-128 [GHS12b] excluded
128 40 2048 31h 55s 0.2580s AES-128 [DHS14] excluded
128 40 1 22m 22m 10.313s AES-128 [MS13] excluded
128 40 12 2h47m 14m 6.562s AES-128 [MS13] excluded
128 12 600 8m 0.8s 0.0033s LowMC this work included

64 24 1024 57m 3.3s 0.0520s PRINCE [DSES14] excluded
64 11 600 6.4m 0.64s 0.0025s LowMC this work included

7 Conclusions, Lessons Learned, and Open Problems

We proposed block ciphers with an extremely small number of AND gates and
an extremely shallow AND depth, demonstrated the soundness of our design
through experimental evidence and provided a security analysis of these con-
structions. Of course, as with any other block cipher, more security analysis is
needed to firmly establish the security provided by this new design. Further-
more, with the proposal of the LowMC familiy, we bring together the areas of
symmetric cryptographic design and analysis research with new developments
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around MPC and FHE. Finally, in contrast to current folklore belief, in some
implementation scenarios, we identified practical cases where “free XORs” can
no longer be considered free and where local computations in an MPC protocol
represent a considerable bottleneck.

To finish, we highlight a number of open problems related to the LowMC
family of ciphers. Is it possible to reduce the number of rounds in LowMC fur-
ther, which in turn would further reduce MC and ANDdepth? Analyzing such an
extreme corner of the design space for a symmetric cipher is an interesting enda-
vor in itself. Can we add more structure into the linear layers in order to reduce
the necessary computational effort in those cases where the number of AND gates
is no longer the bottleneck? Do such approaches beat applying asymptotically
faster linear algebra techniques for applying linear layers as done in Section 6?
As we argue in the paper, simply lowering the density of the matrices by several
factors of two will not be enough.

Currently, the MC and ANDdepth of various cipher constructions is poorly
understood. For example, it would be interesting to find efficient algorithms
along the lines of [BMP13] for the various ciphers including the recent lightweight
cipher proposals in the literature. While our choice for GF(2) is well motivated,
there are scenarios where larger fields might be beneficial. What designs minimize
MC and ANDdepth under such constraints?
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[BCG+12] Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M.,
Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rom-
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