
APE: Authenticated Permutation-Based
Encryption for Lightweight Cryptography

Elena Andreeva1, Begül Bilgin1,2, Andrey Bogdanov3, Atul Luykx1,
Bart Mennink1(B), Nicky Mouha1, and Kan Yasuda1,4

1 Department of Electrical Engineering, ESAT/COSIC,
KU Leuven and iMinds, Ghents, Belgium

{elena.andreeva,begul.bilgin,atul.luykx,
bart.mennink,nicky.mouha}@esat.kuleuven.be

2 Faculty of EEMCS, DIES, UTwente, Enschede, Netherlands
3 Department of Mathematics, Technical University of Denmark, Lyngby, Denmark

anbog@dtu.dk
4 NTT Secure Platform Laboratories, Tokyo, Japan

yasuda.kan@lab.ntt.co.jp

Abstract. The domain of lightweight cryptography focuses on crypto-
graphic algorithms for extremely constrained devices. It is very costly
to avoid nonce reuse in such environments, because this requires either
a hardware source of randomness, or non-volatile memory to store a
counter. At the same time, a lot of cryptographic schemes actually require
the nonce assumption for their security. In this paper, we propose APE
as the first permutation-based authenticated encryption scheme that is
resistant against nonce misuse. We formally prove that APE is secure,
based on the security of the underlying permutation. To decrypt, APE
processes the ciphertext blocks in reverse order, and uses inverse permu-
tation calls. APE therefore requires a permutation that is both efficient
for forward and inverse calls. We instantiate APE with the permutations
of three recent lightweight hash function designs: Quark, Photon, and
Spongent. For any of these permutations, an implementation that sup-
ports both encryption and decryption requires less than 1.9 kGE and
2.8 kGE for 80-bit and 128-bit security levels, respectively.

Keywords: APE · Authenticated encryption · Sponge function · Online ·
Deterministic · Permutation-based · Misuse resistant

1 Introduction

In constrained environments, conventional solutions to cryptographic problems
are prohibitively expensive to implement. Lightweight cryptography deals with
cryptographic algorithms within the stringent requirements imposed by devices
such as low-cost smart cards, sensor networks, and electronic body implants
where energy, power, or hardware area consumption can be heavily restricted.

Although symmetric-key cryptography predominantly makes use of solutions
based on block ciphers, recently permutation-based constructions [9] are gaining
c© International Association for Cryptologic Research 2015
C. Cid and C. Rechberger (Eds.): FSE 2014, LNCS 8540, pp. 168–186, 2015.
DOI: 10.1007/978-3-662-46706-0 9

APE: Authenticated Permutation-Based Encryption 169

traction for a wide range of platforms, and on lightweight devices in particular.
Lightweight permutation-based hash functions include Gluon [6], Photon [19],
Quark [2,3], and Spongent [11].

Lightweight applications in practice require not only hash functions but also
secret-key cryptographic functions, such as authenticated encryption (AE). AE is
a cryptographic primitive that guarantees two security goals: privacy and integrity.
The prevalent solutions in this direction are block cipher based [24,28,31].
Permutation-based AE schemes were only recently proposed, such as the deter-
ministic key-wrap scheme [21] of Khovratovich and SpongeWrap [7,10] of the
Keccak team.

These two constructions unfortunately have their limitations. With the key-
wrap scheme [21], the message length is restricted to one block by design. While
sufficient for key wrapping [29], this construction cannot handle arbitrary-length
data and is therefore not a full AE scheme. SpongeWrap [7,10] can encrypt
messages of varying lengths but relies on the uniqueness of the nonce value:
failure to ensure so makes it possible to reuse the keystream of the encryption.
For example, if a pair of plaintexts share a common prefix, the XOR of the first
pair of plaintext blocks after this common prefix is leaked.

In Rogaway’s security formalism of nonce-based encryption [26,27], the nonce
is considered to be unique for every evaluation. While this approach has theo-
retical merits, in practice it is challenging to ensure that a nonce is never reused.
This is especially the case in lightweight cryptography, as a nonce is realized
either by keeping a state (and correctly updating it) or by providing a hardware
source of randomness. Indeed, nonce misuse is a security threat in plenty of prac-
tical applications, not necessarily limited to the lightweight setting. Examples
include flawed implementations of nonces [13,15,22,23,32], bad management of
nonces by the user, and backup resets or virtual machine clones when the nonce
is stored as a counter.

Nonce misuse resistance has become an important criterion in the design of
AE schemes. The CAESAR competition [14] considers misuse resistance in detail
for their selection of a portfolio of AE algorithms. The problem of nonce misuse
has also been addressed by the recent deterministic AE scheme SIV [29], by the
online AE scheme McOE [18], and in part by the aforementioned deterministic
key-wrap scheme [21]. However, there are currently no permutation-based AE
schemes that are resistant to nonce misuse.

Our Contributions. In this work we introduce APE (Authenticated Permuta-
tion-based Encryption). APE is the first permutation-based and nonce misuse
resistant authenticated encryption scheme. APE is inspired by SpongeWrap
[7,10], but differs in several fundamental aspects in order to achieve misuse
resistance. Most importantly, in APE the ciphertexts are extracted from the
state, whereas SpongeWrap generates a keystream to perform the encryption.
APE encryption processes data in an online manner, whereas decryption is done
backwards using the inverse of the permutation. APE is formally introduced in
Sect. 3. Here, we initially focus on associated data and messages of an integral

170 E. Andreeva et al.

number of blocks. In AppendixA, we show how APE can be generalized at
almost no extra cost to handle fractional associated data and message blocks.

We prove that APE achieves privacy and integrity up to about 2c/2 queries,
where c is the capacity parameter of APE. This result is proven in two different
models: first, in Sect. 4, we prove security of APE in the ideal permutation model,
where the underlying permutation is assumed to behave perfectly random. Next,
in Sect. 5, we consider APE with block ciphers, which is a generalization of APE
where the permutation with surrounding key XORs is replaced with a block
cipher call. We use the results from the ideal model to prove that APE with
block ciphers is secure in the standard model up to roughly 2c/2 queries as well.

APE is designed to be well suited for lightweight applications. However, APE
decrypts in inverse direction and requires an efficiently invertible permutation.
In Sect. 6, we implement APE in less than 1.9 kGE and 2.8 kGE for 80-bit and
128-bit security respectively with the permutations of Quark, Photon, and
Spongent. The results indicate that including the inverses of these permuta-
tions only leads to a marginal increase of the size of the implementation when
compared to the cost of providing a hardware source of randomness to generate
nonces.

2 Notation

Set R := {0, 1}r and C := {0, 1}c. Given two strings A and B, we use A‖B and
AB interchangeably, so for example AB = A‖B ∈ R × C ∼= {0, 1}r+c. Given
X ∈ R × C, Xr denotes its projection onto R, also known as its rate part,
and Xc denotes its projection onto C, or capacity part. We write 0 ∈ R for a
shorthand for 00 · · · 0 ∈ R and 1 ∈ C for 00 · · · 01 ∈ C. The symbol ⊕ denotes
the bitwise XOR operation of two (or more) strings.

An element of R is called a block. Let R∗ denote the set of strings whose
length is a multiple of r, with at most 2c/2 blocks. This explicit bound of 2c/2 is
needed in order to define a random function as being sampled over a finite set
of functions. Note that the bounds we prove become trivial for queries of length
2c/2 blocks. Similarly, let R+ denote the set of strings whose length is a positive
multiple of r, with at most 2c/2 blocks. Given M ∈ R+, we divide it into blocks
and write M [1]M [2] · · · M [w] ← M , where each M [i] is a block and w the block
length of the string M .

Let A be some class of adversaries. For convenience, we use the notation

ΔA[f, g] := sup
A∈A

∣
∣Pr[Af = 1] − Pr[Ag = 1]

∣
∣

to denote the supremum of the distinguishing advantages over all adversaries
distinguishing f and g. Providing access to multiple algorithms is denoted with

APE: Authenticated Permutation-Based Encryption 171

Fig. 1. The APE mode of operation (encryption). If there is no associated data (A =
∅), we have Vr := 0 and Vc := K.

a comma, e.g. Δ[f1, f2 ; g1, g2] denotes distinguishing the combination of f1 and
f2 from the combination of g1 and g2.

3 APE Authenticated Encryption Mode

We now define our APE mode for the case of plaintexts and associated data of
length a multiple of the block size. We refer to Sect. A for the generalization of
APE to fractional data blocks. APE iterates a fixed permutation p : R × C →
R×C in a way similar to the sponge construction. The permutation p is the only
underlying cryptographic primitive used by APE. A diagram of APE is given in
Fig. 1 and an algorithmic description in Fig. 2.

The encryption algorithm E takes as input a key K ∈ K = C, associated data
A ∈ R∗, and a message M ∈ R+, and returns a ciphertext C ∈ R+ and a tag
T ∈ C, as (C, T) ← EK(A,M). On the other hand, D takes as input a key K ∈ C,
associated data A ∈ R∗, a ciphertext C ∈ R+, and a tag T ∈ C, and returns
either a message M ∈ R+ or the reject symbol ⊥, as M/⊥ ← DK(A,C, T). The
two functionalities are sound, in the sense that whenever we encrypt a message as
(C, T) ← EK(A,M), we always get the message back, not ⊥, via the decryption
process M ← DK(A,C, T).

In APE, the inclusion of a nonce is optional. If a nonce is required, it can
be included as part of the associated data. Care must be taken when allowing
nonces of varying lengths, as the nonce and the associated data should be clearly
distinguishable.

172 E. Andreeva et al.

Fig. 2. The encryption EK(A, M) and decryption DK(A, C, T) algorithms of APE.

4 Privacy and Integrity of APE

We prove that APE satisfies privacy under chosen plaintext attacks (CPA) and
integrity security up to about c/2 bits. Before doing so, in Sect. 4.1 we present
the security model, where we formalize the notion of an ideal online function, and
where we introduce the CPA and integrity security definitions. Then, privacy is
proven in Sect. 4.2 and integrity in Sect. 4.3. The security results in this section
assume that the underlying permutation p is ideal. Later, in Sect. 5, we consider
the security of APE with block ciphers in the standard model.

4.1 Security Model

Let Perm(n) be the set of all permutations on n bits. By ⊥, we denote a function
that returns ⊥ on every input. When writing x

$← X for some finite set X we
mean that x is sampled uniformly from X. To avoid confusion, for X ∈ R × C
we sometimes write [X]c := Xc to denote the projection of X onto C.

APE: Authenticated Permutation-Based Encryption 173

Online functions were first introduced in [4]. We deviate slightly from their
approach by explicitly defining our ideal online function in terms of random
functions.

Definition 1 (Ideal Online Function). Let g : R∗ × R∗ → R and g′ : R∗ ×
R∗ → C be random functions. Then, on input of (A,M) with w = |M |/r, we
define $: R∗ × R+ → R+ × C as

$(A,M [1]‖M [2]‖ · · · ‖M [w]) = (C[1]‖C[2]‖ · · · ‖C[w], T),

where

C[j] = g(A,M [1]‖ · · · ‖M [j]) for j = 1, . . . , w,

T = g′(A,M).

Notice that the above function is actually online: prefixes of outputs remain the
same if prefixes of the inputs remain constant. Furthermore, if the associated
data in the ideal online function is unique for each invocation of the function,
then we achieve full privacy. This is because the inputs to g and g′ will then be
unique for each invocation, and since g and g′ are random functions, we get out-
puts that are independent and uniformly distributed. By comparing our scheme
to the above ideal online function we will automatically achieve the notions
of CPA security and integrity from Rogaway and Zhang [30] and Fleischmann
et al. [18].

Definition 2. Let Π = (K, E ,D) denote an AE scheme. The CPA advantage of
a distinguisher D is defined as

Advcpa
Π (D) =

∣
∣
∣
∣
∣
∣
∣

Pr
[

p
$← Perm(r + c) , K

$← K : DEK ,⊥,p,p−1
= 1

]

−

Pr
[

p
$← Perm(r + c) : D$,⊥,p,p−1

= 1
]

∣
∣
∣
∣
∣
∣
∣

.

By Advcpa
Π (q,m) we denote the supremum taken over all distinguishers making

q queries of total length m blocks.

Definition 3. Let Π = (K, E ,D) denote an AE scheme. The integrity advantage
of a distinguisher D is defined as

Advint
Π (D) =

∣
∣
∣
∣
∣
∣
∣

Pr
[

p
$← Perm(r + c) , K

$← K : DEK ,DK ,p,p−1
= 1

]

−

Pr
[

p
$← Perm(r + c) , K

$← K : DEK ,⊥,p,p−1
= 1

]

∣
∣
∣
∣
∣
∣
∣

.

We assume that the distinguisher does not make a decryption query (A,C, T) if
it ever obtained (C, T) ← EK(A,M) for some M . By Advint

Π (q,m) we denote
the supremum taken over all distinguishers making q queries of total length m
blocks.

174 E. Andreeva et al.

4.2 Privacy

In this section, we present a privacy security proof for APE.

Theorem 1. Let Π = (K, E ,D) be the APE construction. Then,

Advcpa
Π (q,m) ≤ m2

2r+c
+

m(m + 1)
2c

.

Proof. We consider the strongest possible type of distinguishers: let D be any
information-theoretic distinguisher which has unbounded computational power
and whose complexity is measured solely by the number of queries it makes to
its oracles. Without loss of generality, we restrict ourselves to distinguishers that
do not ask “trivial” queries, queries to which it knows the answer in advance.

As a first step, we make a PRP-PRF switch [5]: we move from random per-
mutation (p, p−1) to a primitive (f, f−1) defined as follows. This primitive main-
tains an initially empty list of responses, F , and we denote its domain/range by
dom(F)/rng(F). Now, on a non-trivial forward query f(x), the response y is
randomly drawn from R×C. The primitive aborts if y happens to be in rng(F)
already; otherwise, the fresh tuple (x, y) is added to F . Similarly for inverse
queries to f−1. Clearly, (p, p−1) and (f, f−1) behave identically as long as the
latter does not abort. Given that the distinguisher makes at most q queries of
total length m blocks (each block corresponds to a new (f, f−1)-query), such an
abort happens with probability at most

(
m
2

)

/2r+c ≤ m2/2r+c+1. We apply this
PRP-PRF switch to both the ideal and the real world, and hence we find

ΔD(EK ,⊥, p, p−1; $,⊥, p, p−1) ≤ m2

2r+c
+ ΔD(EK ,⊥, f, f−1; $,⊥, f, f−1). (1)

In the remainder, we consider D to have oracle access to one of the two worlds:
(F, f, f−1), where F ∈ {EK , $} (without loss of generality we can drop the ⊥).

If f is called by D then we call this a direct f -query, and similar for direct
f−1-queries. A call of f by EK (as a result of D calling EK) is called an indirect
f -query. When we do not specify whether an f -query is indirect or direct, we
mean that it could be either. Note that indirect queries do not occur in the
random world ($, f, f−1). Every indirect f -query has a sequence of associated
data blocks and message blocks leading up to it (from the EK-query calling it);
we call this sequence the message chain associated to the indirect f -query.

Let Qi denote the set of all prefixes of all queries made by D to its F -
oracle before the ith (f, f−1)-query, where a query (A,M) results in prefixes
{A[1], A[1]‖A[2], . . . , A‖M}. Regarding all direct queries before the ith query,
we denote by Xdir

i the set of all capacity values input to f -queries or output of
f−1-queries. For example, a direct forward query y ← f(x) adds [x]c to Xdir

i

and a direct inverse query x ← f−1(y) adds [x]c to Xdir
i . Similarly, by X ind

i we
denote the set of all capacity values input to indirect f -queries before the ith
f -query. We write Xi = Xdir

i ∪ X ind
i , and initialize X ind

0 = {K}.

APE: Authenticated Permutation-Based Encryption 175

We define event Ei = Edir-X
i ∪ Eind-X

i , where

Edir-X
i : direct query y ← f(x) or x ← f−1(y) satisfies [x]c ∈ X ind

i ∪ X ind
i ⊕ 1,

Eind-X
i : indirect query f(x) with message chain (A,M) /∈ Qi satisfies

[f(x)]c ∈ Xi ∪ Xi ⊕ 1.

We furthermore define

Êi := Ei ∩ ⋂i−1
j=1 Ej , and E :=

⋃m
i=1 Êi, (2)

where Ej is the complement of Ej .
Now, the remainder of the proof is divided as follows. In Lemma 1 we will

prove that (EK , f, f−1) and ($, f, f−1) are indistinguishable as long as E does
not occur. From (1) and the fundamental lemma of game playing [5] we find

Advcpa
Π (q,m) ≤ m2

2r+c
+ Pr[DEK ,f,f−1

sets E].

Then, in Lemma 2, we will prove that Pr[DEK ,f,f−1
sets E] ≤ m(m + 1)

2c
, which

completes the proof. �

Lemma 1. Given that E does not occur, (EK , f, f−1) and ($, f, f−1) are indis-
tinguishable.

Proof. Note that in the ideal world, each direct f -query is new, and is answered
with a uniformly randomly drawn response. Now, consider a direct query f(x)
in the real world. As the distinguisher does not make trivial queries, it does not
coincide with any previous direct query. Additionally, if [x]c ∈ X ind

i ∪ X ind
i ⊕ 1,

where f(x) is the ith f -query, then this would trigger Edir-X
i , hence we can

assume [x]c /∈ X ind
i ∪ X ind

i ⊕ 1. This means that the query f(x) is truly new,
and its value is independently and uniformly distributed. The same reasoning
applies to f−1-queries. Therefore, we only need to consider queries to the big
oracle F ∈ {EK , $}. Let (A,M) be a query made by the distinguisher. Denote
by w the number of blocks of M . Denote the corresponding ciphertext and tag
by (C, T).

First consider the case (A,M [1]‖ · · · ‖M [j]) ∈ Qi for some j ∈ {0, . . . , w} and
assume j is maximal (we will come back to the case of (A, ∗) �∈ Qi later in the
proof). Let (A′,M ′) be the corresponding earlier query, so M [1]‖ · · · ‖M [j] =
M ′[1]‖ · · · ‖M ′[j], and denote its ciphertext and tag by (C ′, T ′) and block length
by w′. Clearly, in the ideal world ($, f, f−1), we have C[i] = C ′[i] for i = 1, . . . , j,
but C[i] for i = j + 1, . . . , w and T are uniformly randomly drawn. We will
consider how these values are distributed in the real world (EK , f, f−1). We first
consider the general case j < w, the case j = w is discussed afterwards.

1. C[1], . . . , C[j]. Also in the real world, these values equal C ′[1], . . . , C ′[j], which
follows clearly from the specification of EK . Note that in particular, the state
value V equals V ′ after the jth round.

176 E. Andreeva et al.

2. C[j + 1]. We make a distinction between j > 0 and j = 0, and start with
the former case. Write the indirect query corresponding to the jth round as
f(x). The input of the (j +1)th query will be f(x)⊕ (M [j +1], 0). Note that
(A,M ′‖M [j + 1]) �∈ Q, as this would contradict the fact that j is maximal.
Now, assume this (j +1)th query has already been made before, i.e. [f(x)]c ∈
Xdir∪X ind. This may be the case (it may even date from before the evaluation
of (A,M ′)), but at this particular time the capacity part [f(x)]c did not hit
any element from Xdir ∪ X ind (otherwise it would have triggered Eind-X).
After this query has been made, there has not been any newer indirect query
or any newer direct query whose capacity part hit [f(x)]c (both cases would
have triggered Edir-X ∪Eind-X). Thus, the query corresponding to the (j+1)th
round is generated independently and uniformly at random.

Now, in the case j = 0, V denotes the state right after the hashing of A
(V = (0,K) if A = ∅). The same story as before applies with the difference
that now the input to the (j + 1)th query is V ⊕ (M [j + 1], 1). Here we use
that by E, no other query hit X ind

j ⊕ 1 (for direct queries) or Xj ⊕ 1 (for
indirect queries) in the meanwhile, and that X ind is initialized with {K}.

3. C[j + 2], . . . , C[w]. By the above argument, the indirect query made in the
(j +1)th round of (A,M), say f(x) for the sake of presentation, is responded
with a uniformly random answer. This query would have triggered Eind-X

if [f(x)]c ∈ Xi. Therefore, we know that also the (j + 2)th query is truly
random and so is C[j + 2]. The same reasoning applies up to C[w].

4. T . The same reasoning applies: the previous query is responded with a truly
random answer f(x). Consequently T = [f(x)]c ⊕ K is random too.

A special treatment is needed for j = w. In this case, C[1], . . . , C[w] equals
C ′[1], . . . , C ′[w] by construction, but the query producing T is not new. Yet, the
distinguisher never made that query itself by virtue of Edir-X , so it never learnt
T ⊕ K. Besides, due to the absence of indirect capacity collisions, Eind-X , every
f -query will produce a tag at most once. This means that T will look uniformly
random to the distinguisher, as it would look if it were produced by $.

Finally, we consider the case (A, ∗) �∈ Qi, hence this is the first time a query
for this particular associated data A is made. Then, the above reasoning carries
over for j = 0 with the simplification that if A �= ∅, the value Vc right after the
hashing of A can be considered new. �

Lemma 2. Pr[DEK ,f,f−1
sets E] ≤ m(m + 1)

2c
.

Proof. Inspired by (2), we start bounding Pr[Ei ∩ ⋂i−1
j=1 Ej] for i ∈ {1, . . . , m}.

Clearly,

Pr[Ei ∩ ⋂i−1
j=1 Ej] ≤ Pr[Ei | ⋂i−1

j=1 Ej].

Therefore, we assume
⋂i−1

j=1 Ej and consider the probability the ith query trig-
gers Ei.

APE: Authenticated Permutation-Based Encryption 177

If the ith query is a direct (forward or inverse) query, it triggers Edir-X
i if the

distinguisher guesses (in case of forward) or hits (in case of inverse) a capacity
part in X ind

i ∪ X ind
i ⊕ 1, which happens with probability at most 2|X ind

i |/2c.
On the other hand, if the ith query is a new indirect query (i.e. for which
(A,M) /∈ Qi) it triggers Eind-X

i if [f(x)]c ∈ Xi ∪ Xi ⊕ 1. This occurs with
probability at most 2|Xi|/2c.

As the query is either direct or indirect, we could take the maximum of both
values. Given that |X ind

i | ≤ |Xi| ≤ i, we find:

Pr[Ei | ⋂i−1
j=1 Ej] ≤ 2i

2c
.

The result is now obtained by summing over i = 1, . . . , m (as in (2)). �

4.3 Integrity

In this section, we present an integrity security proof for APE.

Theorem 2. Let Π = (K, E ,D) be the APE construction. Then,

Advint
Π (q,m) ≤ m2

2r+c
+

2m(m + 1)
2c

.

Proof. The basic idea of the proof is the same as for Theorem 1. Again, let D
be any information-theoretic distinguisher. By the PRP-PRF switch, we find

ΔD(EK ,DK , p, p−1; EK ,⊥, p, p−1) ≤ m2

2r+c
+ ΔD(EK ,DK , f, f−1; EK ,⊥, f, f−1).

(3)

We consider D to have oracle access to one of the two worlds: (EK , F, f, f−1),
where F ∈ {DK ,⊥}.

We use the same notation as in Theorem 1, but slightly more involved defini-
tions are required and we re-introduce them. If f is called by D then we call this
a direct f -query, and similar for direct f−1-queries. A call of f by EK or DK (as
a result of D calling them) is called an indirect f -query, and similar for indirect
f−1-queries (via DK). Every indirect f -query has a sequence of associated data
blocks and/or message blocks leading up to it (from the EK- or DK-query calling
it); we call this sequence the message chain associated to the indirect f -query.
Every indirect f−1-query has a tag and a sequence of ciphertext blocks leading
up to it, and we call this sequence the associated ciphertext chain.

Let Qi denote the set of all prefixes of all queries made by D to its EK-
oracle before the ith (f, f−1)-query, where an EK-query (A,M) results in prefixes
{A[1], A[1]‖A[2], . . . , A‖M}. In this set, we also include {A[1], . . . , A} for an F -
query (A,C, T). Let Q−1

i denote the set of all suffixes of all queries made by D to
its F -oracle before the ith query, where an F -query (A,C, T) results in suffixes
{C[w]‖T,C[w − 1]‖C[w]‖T, . . . , C‖T}. (The tag value T is included here for
technical reasons.) Regarding all direct queries before the ith query, we denote

178 E. Andreeva et al.

by Xdir
i the set of all capacity values input to f -queries or output of f−1-queries,

and by Y dir
i the set of all capacity values input to f−1-queries or output of f -

queries. For example, a direct forward query y ← f(x) adds [x]c to Xdir
i and [y]c

to Y dir
i . The sets X ind

i and Y ind
i are defined similarly. We write Xi = Xdir

i ∪X ind
i

and Yi = Y dir
i ∪ Y ind

i , and initialize X ind
0 = Y ind

0 = {K}.
We define event Ei = Edir-X

i ∪Eind-X
i ∪Edir-Y

i ∪Eind-Y
i , where Edir-X

i and Eind-X
i

are as in the proof of Theorem 1 with the renewed definitions of the sets, and where

Edir-Y
i : direct query y ← f(x) or x ← f−1(y) satisfies [y]c ∈ Y ind

i ∪ Y ind
i ⊕ 1,

Eind-Y
i : indirect query f−1(y) with ciphertext chain (C, T) /∈ Q−1

i satisfies

[f−1(y)]c ∈ Yi ∪ Yi ⊕ 1 or [y]c ∈ Y dir
i ⊕ K.

Definitions Êi and E are as before. The latter condition of Eind-Y
i , [y]c ∈ Y dir

i ⊕K,
covers the case the distinguisher obtains the key by making a direct inverse query
and a DK-query.

Now, the remainder of the proof is divided as follows. In Lemma 3 we will prove
that (EK ,DK , f, f−1) and (EK ,⊥, f, f−1) are indistinguishable as long as E does
not occur. From (3) and the fundamental lemma of game playing [5] we find

Advcpa
Π (q,m) ≤ m2

2r+c
+ Pr[DEK ,DK ,f,f−1

sets E].

Then, in Lemma 4, we will prove that Pr[DEK ,DK ,f,f−1
sets E] ≤ 2m(m + 1)

2c
,

which completes the proof. �

Lemma 3. Given that E does not occur, (EK ,DK , f, f−1) and (EK ,⊥, f, f−1)
are indistinguishable.

Proof. The proof is given in the full version [1]. It is similar to the proof of
Lemma 1. �

Lemma 4. Pr[DEK ,DK ,f,f−1
sets E] ≤ 2m(m + 1)

2c
.

Proof. The proof is given in the full version [1]. It is similar to the proof of
Lemma 2. �

5 Standard Model Security of APE

As is conventionally done for existing permutation-based designs, our proof for
APE assumes that the underlying permutation is ideal. By considering a gen-
eralized version of APE, we now provide a standard model security argument
for our scheme. Inspired by [16], we note that APE can also be described as
a block cipher based design: we drop the key additions at the beginning and
end, and replace the permutations with a keyed block cipher EK defined by
EK := KpK := ⊕0‖K ◦ p ◦ ⊕0‖K . (One can view EK as the Even-Mansour [17]

APE: Authenticated Permutation-Based Encryption 179

block cipher with partial key addition.) We remark that this is, indeed, an
equivalent description of APE if the block cipher is replaced by KpK. In our
notation we denote APE as described and based on some block cipher E by
Π ′ = (K, EE ,DE). We first give the privacy and integrity definitions in the stan-
dard model and then show that our results of Theorems 1 and 2 easily translate
to a standard model security of Π ′.

Definition 4. Let E be a block cipher, and let Π ′ = (K, EE ,DE) denote an AE
scheme. The CPA advantage of a distinguisher D is defined as

Advcpa
Π′ (D) =

∣
∣
∣Pr

[

K
$← K : DEE

K = 1
]

− Pr
[

D$ = 1
]∣
∣
∣ .

By Advcpa
Π′ (t, q,m) we denote the supremum taken over all distinguishers run-

ning in time t and making q queries of total length m blocks. Alternatively, we
write Advcpa

Π′ (t, q,m) = Δt
q,m(EE

K ; $) as in Definition 2 with the inclusion of t.

Definition 5. Let E be a block cipher, and let Π ′ = (K, EE ,DE) denote an AE
scheme. The integrity advantage of a distinguisher D is defined as

Advint
Π′(D) =

∣
∣
∣Pr

[

K
$← K : DEE

K ,DE
K = 1

]

− Pr
[

K
$← K : DEE

K ,⊥ = 1
]∣
∣
∣ .

By Advint
Π′(t, q,m) we denote the supremum taken over all distinguishers running

in time t and making q queries of total length m blocks. Alternatively, we write
Advint

Π′(t, q,m) = Δt
q,m(EE

K ,DE
K ; EE

K ,⊥) as in Definition 3 with the inclusion of t.

In both definitions we refer to the rate of Π ′, the number of block cipher calls per
message block, as ρ. Furthermore, we need the notion of strong pseudorandom
permutation, or prp±1, security of E.

Definition 6. Let E be a block cipher. The prp±1 advantage of a distinguisher
D is defined as

Advprp±1
E (D) =

∣
∣
∣
∣
∣
∣
∣

Pr
[

K
$← K : DEK ,E−1

K = 1
]

−

Pr
[

π
$← Perm(r + c) : Dπ,π−1

= 1
]

∣
∣
∣
∣
∣
∣
∣

.

By Advprp±1
E (t, q) we denote the maximum advantage taken over all distinguish-

ers that run in time t and make q queries.

We demonstrate that the standard model security of APE with block ciphers is
implied by the results of Sect. 4. To this end we introduce two propositions, one
with respect to the integrity and one with respect to the privacy of Π ′.

Proposition 1. Let E be a block cipher.

Advint
Π′(t, q,m) ≤ m2

2r+c
+

2m(m + 1)
2c

+ 2Advprp±1
E (t′, ρm).

180 E. Andreeva et al.

Proof. Let K
$← K. Let E be a publicly available block cipher and π, p

$←
Perm(r + c) be random permutations. We first switch from E to random π:

Δt
q,m(EE

K ,DE
K ; EE

K ,⊥) ≤ Δt
q,m(EE

K ,DE
K ; Eπ

K ,Dπ
K) + Δt

q,m(Eπ
K ,Dπ

K ; Eπ
K ,⊥)

+ Δt
q,m(Eπ

K ,⊥; EE
K ,⊥)

≤ Δt
q,m(Eπ

K ,Dπ
K ; Eπ

K ,⊥) + 2Advprp±1
E (t′, ρm),

where t′ ≈ t. As π is a random permutation, we could give the distinguisher
unlimited time (effectively considering information-theoretic distinguishers), and
the bound simplifies to:

Δt
q,m(EE

K ,DE
K ; EE

K ,⊥) ≤ Δq,m(Eπ
K ,Dπ

K ; Eπ
K ,⊥) + 2Advprp±1

E (t′, ρm).

For the remaining Δ-term:

Δq,m(Eπ
K , Dπ

K ; Eπ
K , ⊥) ≤ Δq,m(Eπ

K , Dπ
K ; EKpK

K , DKpK
K)

+ Δq,m(EKpK
K , DKpK

K ; EKpK
K , ⊥) + Δq,m(EKpK

K , ⊥; Eπ
K , ⊥)

≤ 0 + Δq,m(EKpK
K , DKpK

K ; EKpK
K , ⊥) + 0,

where we use that π and KpK are identically distributed as π and p are ran-
dom permutations and K is random and unknown. The middle term equals
Advint

Π (q,m) with the difference that the distinguisher cannot access p. A dis-
tinguisher would only benefit from such additional access, thus:

Δq,m(EKpK
K ,DKpK

K ; EKpK
K ,⊥) ≤ Advint

Π (q,m),

which is bounded in Theorem 2. This completes the proof. �

Proposition 2. Let E be a block cipher.

Advcpa
Π′ (t, q,m) ≤ m2

2r+c
+

1m(m + 1)
2c

+ Advprp±1
E (t′, ρm).

Proof. The proof is a straightforward simplification of the proof of Proposition 1,
and therefore omitted. �

6 Hardware Implementation

We implement APE with the permutations ofPhoton [19],Quark [3], andSpon-
gent [11]. The results are given in Table 1. We use these permutations without any
modifications to investigate the hardware performance of APE. As the designs of
Photon, Quark, and Spongent follow the hermetic sponge strategy [8], the
underlying permutations are assumed to be indistinguishable from random per-
mutations. This assumption is necessary in order to achieve the claimed privacy
(Theorem 1) and integrity (Theorem 2) security bounds. Since APE is designed
for constrained devices, we focus on a security level of 80 and 128 bits, which cor-
respond to a capacity of 160 or 256 bits, respectively. One exception is APE based

APE: Authenticated Permutation-Based Encryption 181

on Quark: since Quark is not equipped with a version for 128 bits of security we
resort to a permutation that offers 112 bits of security. The versions of Photon
and Spongent with 80 bits of security are implemented with a 4-bit serialization,
which means that we implement one 4-bit S-box. For the versions with higher secu-
rity, we use an 8-bit serialization which requires two 4-bit S-boxes for Spongent
and one 8-bit S-box for Photon. Unlike Photon and Spongent, the round per-
mutation of Quark is based on Feedback Shift Registers (FSRs). Hence it is pos-
sible to update one bit per clock cycle, and in our implementation we choose to do
so for area efficiency.

As APE decrypts in reverse order and requires the inverse permutation, for
each of the algorithms (Photon, Quark, and Spongent) we have provided
both an encryption-only implementation and an implementation with encryption
and decryption. In brief, we have implemented APE as follows. The initial state
is XORed with the first data inserted nibble by nibble (or byte by byte, or bit
by bit). After each permutation evaluation, the resulting ciphertext is output as
the new data is inserted in the same clock cycle. At the end of the iteration, the
entire state is output and the capacity part is XORed with the key to generate
the tag. Similarly, for decryption, the first state corresponds to the ciphertext
concatenated with an XOR of the key and the tag, and at the end authenticity
is verified.

For the hardware implementation results in Table 1, we used ModelSim to
verify the functionality of the designs and Synopsys Design Vision D-2010.03-SP4
for synthesis. We used Faraday Standard Cell Library based on UMC 0.18μm
and open-cell 45nm NANGATE [25] library. As main observations, we see that
APE with an encryption and decryption mode can be implemented with less
than 1.9 kGE and 2.8 kGE for 80-bit and 128-bit security respectively.

When implemented with the same permutation, encryption-only implemen-
tations of SpongeWrap and APE will have similar implementation figures. This
is because in both constructions, the processing of every message block requires
one XOR with the rate part and one permutation function call. We recall that
the crucial difference between SpongeWrap and APE is that APE provides nonce
misuse resistance. For the decryption operation, the cost of misuse resistance for
APE is that the backwards permutation must be implemented as well.

As shown in Table 1, the overhead of implementing both p and p−1 is at most
283 GE on our 45 nm implementation. For devices without non-volatile memory,
this overhead is very low compared to the cost of providing a hardware source
of randomness to generate nonces.

Note that the permutation-based schemes are implemented on 180 nm and
45 nm CMOS, whereas for the block cipher based schemes, lightweight implemen-
tations on 65 nm CMOS are provided. Therefore, we cannot compare these imple-
mentations directly. Also note that the clock frequencies of the implementations
differ, which lead to different throughput figures. However, it seems that APE
and ALE have similar performance figures and APE is smaller than ASC-1 A,
ASC-1 B and AES-CCM.

182 E. Andreeva et al.

Table 1. APE is implemented using the Photon, Quark, and Spongent permu-
tations. For each algorithm, we provide an encryption-only implementation, as well
as one that does both encryption and decryption (denoted as “e/d”). The area fig-
ures depend on the library that we have used: Area A refers to UMC 180 nm, Area B
refers to NANGATE 45 nm. Our overview also includes lightweight implementations of
the authenticated encryption schemes ALE [12], ASC-1 [20], and AES-CCM [31]. We
remark that the clock frequency of the APE implementations is 100 kHz, compared to
20 MHz for the other ciphers.

7 Conclusions

In this paper, we introduced APE, the first misuse resistant permutation-based
AE scheme. We proved that APE provides security and integrity up to the
birthday bound of the capacity, in the ideal permutation model. We show that
the security of APE in the ideal permutation model implies the security of APE
with block ciphers in the standard model. This not only ensures security of APE
when its underlying primitive is considered an ideal permutation, but also allows
to employ it with any secure block cipher of specific form. To achieve misuse
resistance, the decryption of APE as a permutation-based construction uses the
inverse permutation to decrypt in a backwards manner. The advantage of having
backwards decryption is that if the tag or last ciphertext block is missing, then
decryption is impossible. Our hardware implementations of APE show that it is

APE: Authenticated Permutation-Based Encryption 183

well-suited for lightweight applications. In fact, using any of the permutations
of Quark, Photon, and Spongent, less than 1.9 kGE (80-bit security) and
less than 2.8 kGE (128-bit security) is required for an implementation of APE
that supports both encryption and decryption. Due to its resistance against
nonce reuse and its low area requirements in hardware, APE is suitable for
environments where it is prohibitively expensive to require non-volatile memory
or a hardware source of randomness.

Acknowledgments. We would like to thank the various anonymous reviewers for pro-
viding useful comments. Furthermore, we would like to thank Reza Reyhanitabar, Ivan
Tjuawinata, Anthony Van Herrewege, Ingrid Verbauwhede, and Hongjun Wu for various
suggestions to improve the quality of the text. This work was supported in part by the
Research Council KU Leuven: GOA TENSE (GOA/11/007). In addition, this work was
supported by the Research Fund KU Leuven, OT/13/071. Elena Andreeva and Nicky
Mouha are supported by Postdoctoral Fellowships from the Flemish Research Founda-
tion (FWO-Vlaanderen). Atul Luykx and Bart Mennink are supported by Ph.D. Fellow-
ships from the Institute for the Promotion of Innovation through Science and Technology
in Flanders (IWT-Vlaanderen). Begül Bilgin is partially supported by the FWO project
G0B4213N.

References

1. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N.,
Yasuda, K.: APE: Authenticated Permutation-Based Encryption for Lightweight
Cryptography. Cryptology ePrint Archive, Report 2013/791 (2013) (full version of
this paper)

2. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A Light-
weight Hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol.
6225, pp. 1–15. Springer, Heidelberg (2010)

3. Aumasson, J.P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A Lightweight
Hash. J. Cryptol. 26(2), 313–339 (2013)

4. Bellare, M., Boldyreva, A., Knudsen, L.R., Namprempre, C.: On-Line Ciphers and
the Hash-CBC Constructions. J. Cryptol. 25(4), 640–679 (2012)

5. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Frame-
work for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

6. Berger, T.P., D’Hayer, J., Marquet, K., Minier, M., Thomas, G.: The GLUON
Family: A Lightweight Hash Function Family Based on FCSRs. In: Mitrokotsa,
A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 306–323.
Springer, Heidelberg (2012)

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Permutation-Based Encryp-
tion, Authentication and Authenticated Encryption, Directions in Authenticated
Ciphers, pp. 159–170 (July 2012). http://www.hyperelliptic.org/djb/diac/record.
pdf

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic Sponge Func-
tions. http://sponge.noekeon.org/CSF-0.1.pdf

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge Functions. In:
ECRYPT Hash Function Workshop (May 2007)

http://www.hyperelliptic.org/djb/diac/record.pdf
http://www.hyperelliptic.org/djb/diac/record.pdf
http://sponge.noekeon.org/CSF-0.1.pdf

184 E. Andreeva et al.

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the Sponge:
Single-Pass Authenticated Encryption and Other Applications. In: Miri, A.,
Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg
(2012)

11. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
spongent: A Lightweight Hash Function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011)

12. Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., Tischhauser, E.: ALE: AES-
Based Lightweight Authenticated Encryption. In: Moriai, S. (ed.) FSE 2013. LNCS,
vol. 8424, pp. 447–466. Springer, Heidelberg (2014)

13. Borisov, N., Goldberg, I., Wagner, D.: Intercepting Mobile Communications: The
Insecurity of 802.11. In: Rose, C. (ed.) MOBICOM, pp. 180–189. ACM (2001)

14. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness (April 2013)

15. Cantero, H.M., Peter, S., Bushing, S.: Console Hacking 2010 - PS3 Epic Fail. In:
27th Chaos Communication Congress, December 2010

16. Chang, D., Dworkin, M., Hong, S., Kelsey, J., Nandi, M.: A Keyed Sponge Con-
struction with Pseudorandomness in the Standard Model. In: The Third SHA-3
Candidate Conference, March 2012

17. Even, S., Mansour, Y.: A Construction of a Cipher from a Single Pseudorandom
Permutation. J. Cryptol. 10(3), 151–162 (1997)

18. Fleischmann, E., Forler, C., Lucks, S.: McOE: A Family of Almost Foolproof On-
Line Authenticated Encryption Schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS,
vol. 7549, pp. 196–215. Springer, Heidelberg (2012)

19. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011)

20. Jakimoski, G., Khajuria, S.: ASC-1: An Authenticated Encryption Stream Cipher.
In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 356–372. Springer,
Heidelberg (2012)

21. Khovratovich, D.: Key Wrapping with a Fixed Permutation. Cryptology ePrint
Archive, Report 2013/145 (2013)

22. Kohno, T.: Attacking and Repairing the WinZip Encryption Scheme. In: Atluri,
V., Pfitzmann, B., McDaniel, P.D. (eds.) ACM Conference on Computer and Com-
munications Security, pp. 72–81. ACM (2004)

23. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Public Keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 626–642. Springer, Heidelberg (2012)

24. McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter
Mode (GCM) of Operation. In: Canteaut, A., Viswanathan, K. (eds.)
INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

25. NANGATE: The NanGate 45nm Open Cell Library. http://www.nangate.com
26. Rogaway, P.: Authenticated-Encryption with Associated-Data. In: Atluri, V. (ed.)

ACM Conference on Computer and Communications Security 2002, pp. 98–107.
ACM (2002)

27. Rogaway, P.: Nonce-Based Symmetric Encryption. In: Roy, B., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 348–359. Springer, Heidelberg (2004)

28. Rogaway, P., Bellare, M., Black, J.: OCB: A Block-Cipher Mode of Operation for
Efficient Authenticated Encryption. ACM Trans. Inf. Syst. Secur. 6(3), 365–403
(2003)

http://www.nangate.com

APE: Authenticated Permutation-Based Encryption 185

29. Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-Wrap
Problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–
390. Springer, Heidelberg (2006)

30. Rogaway, P., Zhang, H.: Online Ciphers from Tweakable Blockciphers. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 237–249. Springer, Heidelberg (2011)

31. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). Request
For Comments 3610 (2003)

32. Wu, H.: The Misuse of RC4 in Microsoft Word and Excel. Cryptology ePrint
Archive, Report 2005/007 (2005)

A APE for Fractional Data

The APE description of Sect. 3 should only be used when the application can
guarantee that the length of the plaintext and the associated data is always a
multiple of the block size r. In this section, we explain how to adjust APE to
handle fractional plaintext and associated data. This is done by applying ‘10*’-
padding to all plaintext and associate data (fractional or not).

The extension of APE to fractional associated data is given in Fig. 3, and
to fractional messages in Fig. 4. We elaborate on the extension for fractional
messages (the extension for fractional associated data being similar). Split a
message M into r-bit blocks, where the last block M [w] is possibly incomplete.
We distinguish among three cases:

– |M [w]| ≤ r − 1 and w = 1. The procedure can be seen in the top part of
Fig. 4. Note that the corresponding ciphertext will be r bits. This is required
for decryption to be possible;

– |M [w]| ≤ r − 1 and w ≥ 2. The procedure is depicted in the bottom part of
Fig. 4. Note that the ciphertext C[w − 1] is of size equal to M [w]. The reason
we opt for this design property is the following: despite M [w] being smaller
than r bits, we require its corresponding ciphertext to be r bits for decryption
to be possible. As a toll, the extended APE generates ciphertext C[w − 1] to
be of size equal to M [w];

– |M [w]| = r. In this special case where M consists of integral message blocks,
we nevertheless need a padding. However, instead of occupying an extra mes-
sage block for this, the ‘10*’-padding spills over into the capacity. This can be
seen as an XOR of 10 · · · 00 into the capacity part of the state. We recall the
reader of the fact that the ⊕1 in the beginning of the function is a shorthand
notation for ⊕00 · · · 01, and hence, these values do not cancel each other out.

The adjustments have no influence on the decryption algorithm D, except if
|M | ≤ r for which a slightly more elaborate function is needed. Note that the
spilling of the padding in case |M [w]| = r causes security to degrade by half a
bit: intuitively, APE is left with a capacity of c′ = c − 1 bits. We have opted for
this degrading over an efficiency loss due to an additional round.

The proofs of security of APE with fractional data can be found in the full
version of this paper [1].

186 E. Andreeva et al.

Fig. 3. A generalization of APE that can handle fractional associated data blocks.

Fig. 4. A generalization of APE that can handle fractional message blocks.

	APE: Authenticated Permutation-Based Encryption for Lightweight Cryptography
	1 Introduction
	2 Notation
	3 APE Authenticated Encryption Mode
	4 Privacy and Integrity of APE
	4.1 Security Model
	4.2 Privacy
	4.3 Integrity

	5 Standard Model Security of APE
	6 Hardware Implementation
	7 Conclusions
	References
	A APE for Fractional Data

