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Abstract. In this paper, we investigate the properties of iterative non-
injective functions and the security of primitives where they are used.
First, we introduce the Collision Probability Spectrum (cps) parameter
to quantify how far from a permutation a function is. In particular, we
show that the output size decreases linearly with the number of itera-
tions whereas the collision trees grow quadratically.

Secondly, we investigate the t-sponge construction and show how cer-
tain cps and rate values lead to an improved preimage attack on long
messages. As an example, we find collisions for the gluon-64 internal
function, approximate its cps, and show an attack that violates the
security claims. For instance, if a message ends with a sequence of 1Mb
(respectively 1 Gb) of zeros, then our preimage search takes time 2115.3

(respectively 2105.3) instead of 2128.

Keywords: Random function · Collision probability spectrum ·
Collision tree · T-sponge · GLUON · Collision search

1 Introduction

Consider a function g : S → S where S is some finite space of size 2N and suppose
that it is not a permutation, i.e. that it has collisions. It is well known that for
a random g the complexity of a collision search is of 2N/2 calls to g. However,
not only the collision search complexity but also some related problems are not
well studied when collisions have a certain structure, which is the case in several
designs [1,2]. It might be clear that iterating such a function may lead to an
entropy loss, but again, the scale of this loss and its implications on the security
of stream ciphers and hash functions is not well known or underestimated. In
this paper we introduce a particular parameter called the Collision Probability
Spectrum (cps), which is based on the number of solutions for the following
equation

g(a + y) = g(a). (1)

We study the cps for several designs and show, as an illustration of our methodol-
ogy, a preimage attack on the sponge-based lightweight hash function gluon-64.
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Related work. Bellare and Kohno [3] studied how the number of preimages to
g(a) affects the complexity of the collision search with the notion of balance of a
function. In [4], Flajolet and Odlyzko studied several characteristics of random
mappings, in particular the distribution of preimage sizes, the cycle size and
the size of the iterated image. Their result was applied by Hong and Kim [5]
to the mickey [1] cipher. Indeed, they found experimentally that the size of
the iterated images of this function was essentially the size of the space divided
by the number of iterations, a behavior which they showed experimentally to
correspond to the prediction of Flajolet et al. However, the resulting attacks
were found to be less efficient than the simple collision search [6], though they
allow a time/memory trade-off.

Overview of our results. We introduce the Collision Probability Spectrum para-
meter which quantifies how many solutions Eq. (1) has on average and inves-
tigate its consequences over the iterated images and preimages of S by g. We
assume that the composition of two such functions has certain properties, which
is formalized as an independence assumption. For a large class of mappings two
important facts are proved in Theorem2 (a reader may refer to Fig. 1):

– First, the size of the iterated image of g is inversely proportional with the
number i of iterations:

|gi(S)| ∼ |S|
κ
2 · i

,

where κ depends on the cps and where i has to be smaller than
√|S| —

otherwise, the result does not hold because of the cycles in the functionnal
graph.

– Second, an element y ∈ gi(S) is the root of a collision tree consisting in
elements xl such that any of g(xl), g2(xl), . . . , gi(xl) is equal to y. The average
size of this tree is νi:

νi ∼ κ

4
· i2,

with the same restriction on i: i <
√|S|.

Then we discuss the security of the t-sponge construction provided the cps
of the update function. We amend the collision search bound in the flat sponge
claim [7]:

P =
Q2

2c+1
·
(
1 +

κ − 1
2r

)
,

where c is the capacity and r is the rate of the sponge.
Next, in Theorem 6, we show for small r an improved preimage attack with

complexity
2c · 2r+2/(κz),

where z is the number of zero bytes in the end of the hashed message (actually,
any constant suffices).

Finally, we construct an attack on gluon-64. Aided with a SAT-solver, we
find collisions for the update function and demonstrate a preimage attack of
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complexity 2105 for a message ending with 1 GByte of zeros, which violate the
claimed preimage resistance level of 128 bits.

Structure. This paper is organized as follows. We introduce our theoretical frame-
work in Sect. 2 and discuss its application to existing primitives. We investigate
the security of t-sponge against collision and preimage search in Sect. 3. Finally,
in Sect. 4, we obtain inner-collisions of the update function of gluon-64 with
the help of a SAT-solver and show a preimage attack. For the sake of concision,
the proofs are moved to AppendixA.

Notations. We denote by |E| and #E the size of a set E, by P[ω] the probability

of an event ω and by a
$← E the fact that a is drawn uniformly at random from

a set E.

2 Theoretical Framework

In this section we introduce a model of random functions and highlight its differ-
ence with the usual approach. We then give several properties of the (iterated)
images and preimages of an element by such functions.

2.1 Collision Probability Spectrum and Function Model

Definition 1 (Collision Probability Spectrum). Let S be a finite space and
let g : S → S be a function. We denote ck the probability that the following
equation has exactly k solutions for a ∈ S picked uniformly at random in S:

g(a + x) = g(a), (2)

so that
ck = P[#{x ∈ S, g(a + x) = g(a)} = k | a

$← S] (3)

The solutions x of this equation are called vanishing differences. The set of all the
elements a of S such that Eq. (2) has exactly k solutions is denoted Vk. Finally,
the set C = {ck}k≥1 is the Collision Probability Spectrum (cps) of g.

An equivalent definition of the cps is that it is the probability distribution of
the number of solutions of Eq. 2. We now make some remarks regarding these
definitions:

– Since 0 is always a solution of Eq. (2), we have that c0 = 0.
– If g is a permutation, then C(g) = {c1 = 1, ck = 0 for k > 1}.
– The input space can be partitioned in the following way: S =

⋃∞
k=1 Vk. Fur-

thermore, the output space can be partitioned as g(S) =
⋃∞

k=1 g(Vk). This is
also a disjoint union. Indeed, y ∈ g(Vk) has exactly k preimages, by definition.

– The size of g(Vk) is |g(Vk)| = |S| · ck/k because to each element in g(Vk)
correspond k elements in Vk (see Fig. 2). As a consequence,

|g(S)| = |S| ·
∞∑

k=1

ck

k
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S
g(S)

g2(S)

g3(S)

g4(S)

Fig. 1. Collision trees and output shrinkage of iterative non-injective functions. The
dots represent elements of S and there is an edge from x to y if g(x) = y. Here,
g(a + x) = g(a) always has exactly 3 solutions.

2.2 Composition of Functions with Known CPS

The most interesting application of our theory is the properties of iterative con-
structions where the iterated function has some known cps. However, to make
meaningful and correct statements about composition of such functions, some
independency must be assumed.

Assumption 1 (Independence Assumption). Let g be a function with cps
C. Then there is no correlation between the events x ∈ Vj and g(x) ∈ Vk for
any j, k.

This assumption, as we will see, holds for a few (but not for all) real primi-
tives. For the rest of the paper, we implicitly assume that it holds unless stated
otherwise.

Definition 2. Suppose g is a function on S. Then �i defined as

�i =
|S|

|gi(S)|
is called the shrinking ratio of g.

Our first theorem allows to compute the shrinking ratio of the composition of
two functions with given cps.

Theorem 1. Let g and g′ be functions with cps C = {ck}k≥1 and C′ = {c′k}k≥1,
respectively. Then the shrinking ratio of the composition g ◦ g′ is computed as
follows:

�1(g ◦ g′) =
( 1

�1
−

∞∑

k=1

ck

k

(
1 − 1

�′
1

)k
)−1

.

In particular, when g′ = gi:

�i+1 =
( 1

�1
−

∞∑

k=1

ck

k

(
1 − 1

�i

)k
)−1

.
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V1 V2

g(V1) g(V2)

S

g(S) S\g(S)

Fig. 2. The effect of g with cps {c1 = c2 = 1/2} on S.

A detailed proof is given in AppendixA.1 but we provide a high level view of its
structure.

Proof Sketch 1. We consider an element x0 ∈ g′(S) such that there exists {x0, ...,
xk} with g(xl) = g(x0), i.e. x0 ∈ Vk+1. The number of solutions of g(x0 +
x) = g(x0) in g′(S) for x0 drawn at random in g′(S) ∩ Vk+1 follows a binomial
distribution (m, k, 1/�′

1) as xl ∈ g′(S) with probability |g′(S)|/|S| = 1/�′
1.

Using this observation, we can compute the probability that g(x0+x) = g(x0)
has m solutions in g′(S) for all m: if it has m+1 solutions, then it must be that
x0 ∈ Vk+1 and that only m of the k non zero solutions “made it” to g′(S).
Then, we deduce the size of the image of g′(S) by g, i.e. we give an expression
of �1(g ◦ g′).

Using this theorem, we can give the asymptotic behavior of �i and of the size
of the collision trees as i increases while remaining small enough so that g(x)
is not on a cycle. The results stated below have been checked experimentally
on the functions for which the independence assumption presumably holds. We
need two more definitions.

Definition 3. Suppose g is a function on S with cps C. Then

– κ(C) is the collision average of g — the average number of non-zero solutions
of Eq. (2): κ =

∑
k≥1 ck · k − 1.

– νi(g) is the average tree size of g — the average number of elements in a
collision tree rooted in gi(S). Formally, it is the average number of pairs
(xl, kl) ∈ S × [1, i] such that gkl(xl) = y for y ∈ gi(S).

Theorem 2. Let g be a function with cps C, then for i <
√|S| the shrinking

ratio and the average tree size are approximated as follows for large enough i:

�i ∼ κ

2
· i, νi ∼ κ

4
· i2.

Proof Sketch 2. The asymptotic behaviour of �i can be deduced by using The-
orem 1 with g′ = gi and then using the finite expansion of (1 − 1/�i)k to see
that �i+1 = �i +κ/2. For νi, we simply note that νi =

∑i
k=1 �k. More details are

given in AppendixA.2.
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Finally, we define the following quantities in the same way as Flajolet et al. [4].

Definition 4. We call cycle length and tail length, denoted respectively μ and
λ, the average smallest values such that

gλ(x) = gλ+μ(x)

for x drawn uniformly at random in S.
Experiments (see Appendix A.3) lead us to the following conjecture.

Conjecture 1. Let g be a function of S with cps C. Experimentally, we found
the following values for the tail length λ and the cycle length μ:

λ ∼
√

π

8 · κ
|S|, μ ∼

√
π

8 · κ
|S|.

2.3 Independence Assumption in Practice

In this Section, we investigate some results from the literature about particular
functions and see how relevant our model is. A summary of this Section is given
in Table 1.

Table 1. Characteristics derived from the cps of some functions.

Function κ �1 �i/i νi/i2 Reference for the cps

mickey’s update function 0.625 1.407 2−1.7 2−2.7 [8]

Random mapping 1 1.582 2−1 2−2 [4]

gluon-64’s update function 6.982 3.578 21.8 20.8 Sect. 4.2

Random Mappings. The authors of [4] study random mappings and give the
probability that some x ∈ S has r preimages by a random mapping g. From this
we deduce that the cps of a random function is given by the Poisson distribution
with λ = 1:

C = {e−1/(k − 1)!}k≥1.

Our framework implies

κ = 1 and �1 = 1/(1 − e−1) and �i+1 = 1/
(
1 − exp(−1/�i)

)

which fits the results of [4](see also Appendix A.1). The authors of [5] observed
that

log2(�i) ≈ log2(i) − 1,

which also corresponds to κ = 1. Finally, the trail and cycle length given in
Conjecture 1 match those predicted by [4] if we replace κ by 1.
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A5/1. The update function of A5/1 does not satisfy the independence assump-
tion. The author of [2] computed its cps and established that

�1 = 1.6, κ = 1.25,

If the assumption held, then the probability for an element in S to be in g100(S)
would be about 2−6, which is very different from the 2−2.5 actually observed by
Biryukov et al. [9]. The reason is that the update function A5/1 may keep one
of its three LFSR’s untouched, which means that x ∈ Vj and g(x) ∈ Vk are not
independent events in its case.

MICKEY. The update function of the mickey [1] stream-ciphers (v1 and v2)
fits our model. Hong and Kim [5] performed some experiments on the first version
of mickey and, in particular, estimated the size of g2

k

(S) for several values of
k. Their results are coherent with our model. For instance, they observed that
log2(�i) (which they denote by EL(f i)) is approximated as

log2(�i) ≈ log2(i) − 1.8

The constant term 1.8 implies

κ/2 ≈ 2−1.8.

In turn, from the cps values computed in [8](actually, the values ck/k) we obtain
the theoretical value

κ = 0.625,

which corresponds to a difference of about 7 % with the experiments in [5].

3 Improved Collision and Preimage Search

In this section we explore generic collision and preimage search methods in their
application to functions with fixed collision spectrum.

3.1 Basic Collision Search

First, we reformulate the result from Bellare and Kohno [3] with our notation.

Theorem 3 [3]. Let g be a function with CPS C, and let κ be its collision
average. Then the birthday collision attack on g requires about

Q =

√
|S|

κ + 1
. (4)

queries to g.
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The original paper [3] used the parameter balance of g, denoted μ(g), which is
computed as

μ(g) = log|g(S)|
( |S|2

∑
y∈S |g−1(y)|2

)
(5)

If we know the cps of g, the balance can be expressed as follows:

μ(g) ≈ 1 − log2
( ∑∞

k=1 k · ck
)

+ log2
( ∑∞

k=1 ck/k
)

log2
(|S|) . (6)

If Conjecture 1 holds, then the memory-less collision search based on Floyd’s
cycle finding algorithm should be

√
κ as fast as in the case of a random function.

3.2 Collision Attacks on T-sponge

Now we demonstrate that the entropy loss because of collisions in the t-sponge
construction, though observable, can be mitigated by a large rate parameter.

Sponge Construction. The sponge construction [7] is characterised by its rate
r, its capacity c and its update function g. It is based on an internal state of size
r + c where, at each round, r bits of the message are xor-ed. Then the sponge
alternates the application of g function with the message injection until the
message has been entirely absorbed. The digest is then squeezed by extracting
r bits of the internal state and applying the update function to the internal
state again. This is repeated as many times as necessary to obtain a digest of
desired length. A representation of a sponge is given in Fig. 3. The sponge-based
hash function is indifferentiable from a random oracle in the random-function
model up to 2c/2 queries to g [10]. If g is not a permutation, the sponge is called
transformative sponge or t-sponge.

We denote a sponge-based hash function by H : F∗
2 → F

rj
2 , the internal state

space by S = F
r+c
2 , and the update function by g : S → S.

Collision Search in T-sponge. The following theorem shows that to get a
significant speed-up in the collision search, the collision average κ should be at
least of the same magnitude as 2r.

Theorem 4. Let g be a random mapping from F
r+c
2 with cps C. Let H be a

t-sponge of capacity c and rate r updated with g. Then the probability of success
of a brute-force collision attack on H is

P =
Q2

2c+1
·
(
1 +

κ − 1
2r

)

where Q is the number of queries to g.
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Id g g g g g

1 k k+1 k+j

c

r

m1 mk

⊕ ⊕
d1 dj

Fig. 3. Principle of a sponge construction. The message m is sliced into k blocks of r
bits and “absorbed” during the first phase. Then, the j blocks of size r constituting
the digest h are “squeezed”.

The proof of Theorem 4 is in AppendixA.4. For a completely random map-
ping we have κ = 1, so that the theorem has the same form as in [7].

Nevertheless, since in practice the functions are not drawn at random from
the set of all functions, it is of interest to be able to predict the effect of their
properties over the security they provide. In particular, we see that a function
with κ > 1 does not exactly provide c/2 bits of security against birthday attacks.
Such functions can be found in real cryptographic primitives, see Sect. 4. How-
ever, we also immediately see that this effect is small since typical value of κ are
of order of magnitude 1, 10 being already rather bad, while 2r is at least in the
hundreds. The designers of a t-sponge need not really worry about the number
of collisions in the update function if the rate is high enough.

3.3 Improved Preimage Attack

Principle of the Iterated Preimage Attacks. Consider a set {gk}k∈K of
random functions of S with cps’s {Ck}k∈K and a fixed starting point x0 ∈ S
and let {k1, ..., kl} be a set of l elements of K. We call keyed walk the sequence

(
x1 = gk1(x0), x2 = gk2(x1), ..., xl = gkl

(xl−1) = d
)
.

and it can for instance correspond to the successive values of the internal state
of a t-sponge or of a Davies-Meyer based Merkle-Damg̊ard hash function as
we discuss in the next sections. Consider a keyed walk directed by a sequence
{k1, k2, ..., α, α, ..., α} ending with z copies of the same symbol α. Then, intu-
itively, much entropy will have been lost because of the z iterations of gα so that
it should be easier to find a second sequence of keys leading to the same final
value. This is formalized by the next theorem and a graphical representation of
the phenomena we use is given in Fig. 4.
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x0 xk

d

gi1 gik

gα

gα

gαgαgα

g

Collision tree

−z
α (d)

Fig. 4. The two targets of the iterated preimage attacks on d where d is in gz
α(S) and

z = 5. Different colors correspond to different function calls (Color figure online).

Theorem 5. Let {gk}k∈K be a set of random mappings of S with cps’s {Ck}k∈K
and consider a sequence {k1, k2, ..., α, ..., α} of l keys from K ending with z iden-
tical keys α. Given the final value d of the corresponding keyed walk, the value
of α and the number z, it is possible to find, for large enough z:

1. a keyed walk ending in d in time |S| · 4/(κz),
2. a keyed walk ending in d after precisely z calls to gα in time |S| · 2/κ.

where κ is the collision average of Cα.

Proof. Let d be the final element in the walk. From the structure of the walk, we
know that d ∈ gz

α(S). Using Theorem 2, we know that there are (κ/2)·z elements
in g−z

α (d) and that the collision tree rooted at d contains (κ/4) · z2 elements.
Therefore, such an element of g−z

α (d) is found with probability κ · z/(|S| · 2) and
an element in the collision tree with probability κ · z2/(|S| · 4).

However, in both cases, we need to call gα z times to know if the element we
picked at random is mapped to d after exactly z iterations of gα (first case) or
at most z iterations (second case). Therefore, finding an element in the collision
tree (first case) requires |S| · z/(κ · z2/4) = |S| · 4/(κz) calls to gα and finding an
element in g−z

α (d) requires |S| · z/(κ · z/2) = |S| · 2/κ. 
�
Note that these attacks can be generalized to the case where the end of the mes-
sage is periodic instead of constant, i.e. if it ends with z copies of (α1, α2, ..., αp).
We simply need to replace gα by g′ = gα1 ◦ ... ◦ gαp

. The κ involved in the
complexity computations is then that of g′, i.e.

∑p
i=1 κi where κi is the collision

average of gαi
(see Lemma 2 in Sect. 5). The constraint on z being large is only

such that we can assume that z has the asymptotical behaviours described in
Theorem 2.
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Application to a T-sponge. Hashing a message with a t-sponge can be seen
as performing a keyed walk where the keys are the message blocks of length r
and the initial value x0 is the all-zero vector. The function gk is gk(x) = g(x⊕k)
where k is set to zero after its r first bits and g is the update function of the
t-sponge. Clearly, gk has the same cps as g.

While the flat sponge claim provides a good description of the security offered
by a sponge (be it a t-sponge or a p-sponge) against collision search and, for
p-sponge, against second preimage search, there is a gap between the number of
queries it allows and the best algorithm known for preimage search. In particular,
there is to the best of our knowledge no algorithm allowing a preimage search
with complexity below 2c calls to the sponge function.1 Theorem 6 bridges the
gap between the 2c/2 bound of the flat sponge claim and the 2c bound for
preimage search by applying Theorem 5 to the t-sponge structure.

Theorem 6. Let H be a t-sponge with update function g, and let κ be the
collision average of g. Let M be a message such that its last z injections to the
sponge are identical. Then a preimage to H(M) can be found with complexity

2c · 2r+2/(κz)

Such messages can be quite common. For instance, the last z calls of g can
be blank calls for the sole purpose to slow down the hashing as suggested by
NIST [12].2 Such an attack can be prevented by setting an upper-bound of about
2r+2/κ for the length of the message which in turn means that r has to be high
in a t-sponge.

Similarity to the Herding Attack. This attack was introduced in [13] and
is also refered to as the Nostradamus attack. In a herding attack, an attacker
commits to a digest d and, when given a challenge P , has to find a suffix S such
that H(P ||S) = d. To achieve this she builds, during an offline phase, a so-called
diamond structure which is essentially a binary collision tree with 2� nodes and
rooted at d. The nodes of the tree contain the value of the internal state as well
as the message block which needs to be absorbed to go to its child. During the
online phase, she uses the diamond to find efficiently the suffix S: all she has to
do is find a way to reach any of the 2�+1 − 1 nodes in the diamond from the
given starting point.

Application to a Merkle-Damg̊ard Construction. When a block cipher
is used in Davies-Meyer mode to build a Merkle-Damg̊ard-based hash function,
1 This case corresponds to the case where the attacker inverts the squeezing operations

in time 2c to retrieve the last internal state of the sponge before the squeezing and
then uses a meet-in-the middle approach to find a valid message leading to this
internal state in time 2c/2 (see [11]). Furthermore, this second step cannot be carried
out in the case of a t-sponge since the update function cannot be inverted.

2 Here, we consider that the message hashed is of a length equal to a multiple of r
to begin with, so that the padding consisting in appending a one to the end of the
message can be seen as part of the squeezing.
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the successive chaining values hi ∈ S are obtained from the previous one and the
i-th message block: hi = Emi

(hi−1)⊕hi−1 = gmi
(hi−1). Because of the feedback

of hi−1, we do not expect gk to be a permutation and, therefore, expect such
a construction to be vulnerable to iterated preimage attacks. The padding used
for Merkle-Damg̊ard constructions usually takes into account the length of the
message so that we need a message of the same length. Therefore, it is not
enough to aim at an element in the collision tree, we need to find an element
which is precisely in g−z

α (d) so that a preimage search requires 2N+1/κ: if the
cps of gk is such that κ > 2 then the iterated preimage attack is more efficient
than brute-force. Furthermore, if there is an efficient way around the padding
(e.g., with expandable messages [14]), the efficiency becomes 2N+2/(κz) where
N is the size of the internal state of the hash function.

4 Preimage Attack on GLUON-64

4.1 The GLUON Family of Hash Functions

Introduced in [15], the gluon family of hash functions consists of three members
corresponding to different security levels: gluon-64, gluon-80 and gluon-112.
They have a t-sponge structure and have characteristics summarized in Table 2.

Table 2. Characteristics of the hash functions of the gluon family.

name rate r capacity c collision search preimage search

gluon-64 8 128 264 2128

gluon-80 16 160 280 2160

gluon-112 32 224 2112 2224

The function g used to update the internal state has the same structure in
the three cases. It can be seen as a stream-cipher based on a Feedback with
Carry Shift Register (fcsr). The concept of fcsr has evolved through time
as the first stream-cipher [16] based on a component bearing this name got
broken [17]. When we talk about fcsr in this paper, we refer to the last version
of this structure, i.e. the one used in X-FCSR v2 [18] and, of course, gluon. For
example, the algebraic representation of the fcsr used by gluon-64 is given in
Fig. 5.

A fcsr is made of w cells of r bits. Each cell may be on the receiving end of a
feedback. If the cell i receives no feed-backs, then its content at time t + 1 is the
content of the cell of index i + 1 at time t. Consider now that the cell i receives
a feedback. This cell contains an additional memory to store the value of the
carry from one clock to the next. The content of the cell at time t is denoted mt

i

and that of the carry register ct
i. Since it receives a feedback there are a cell of

index j and a value of shift s (possibly equal to zero) such that:

mt+1
i = mt

i+1 +
(
mt

j 
 s
)

+ ct
i

ct+1
i = mt

i+1 · (
mt

j 
 s
)

+ mt
i+1 · ct

i +
(
mt

j 
 s
) · ct

i
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Fig. 5. Algebraic representation of the fcsr used in gluon-64. Blue arrows correspond
to feed-backs shifted to the right and red ones to the left. The value of the shift is given
by the label of the arrow (Color figure online).

where “
 s” is a C-style notation for the shift of the content of a cell by s bits
to the left (or |s| bits to the right if s ≤ 0) and + and · are respectively the
bitwise addition and multiplication in F

r
2.

The update function of every member of the gluon family is made of three
steps: padding of the input and loading in a fcsr (pad), clocking of the fcsr
(ρ) and filtering Φ. We describe these steps separately.

Pad. The internal state of the sponge is of size r(w−1), so that r(w−1) = r+c.
The padding consists simply in appending a block of r bits all equal to one
to the end of the internal state. The rw bits thus obtained are then loaded
in a fcsr with an internal state made of w cells of size r. All the carries of
the fcsr are set to zero. This operation is denoted pad : Fr+c

2 → F
rw
2 × F

rw
2

as the output is made of the main register and the carry register of the fcsr.
ρd+4. The fcsr is clocked d+4 times. One clocking is denoted ρ : Frw

2 ×F
rw
2 →

F
rw
2 × F

rw
2 .

Φ. The output of g is extracted r bits by r bits using the following method: fixed
words of the main register are rotated and then xor-ed to obtain r bits and
then the fcsr is clocked. This operation is repeated w − 1 times so as to
have r(w − 1) = r + c bits of output. The action of clocking the fcsr w − 1
times while filtering r bits each time is denoted Φ : Frw

2 × F
rw
2 → F

r+c
2 .

Overall, g is equal to Φ◦ρd+4◦pad. The function pad is a bijection and we shall
consider that the restriction of Φ over the set of the pairs main register/carry
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register reachable after d + 4 calls to ρ starting in the image of pad is collision-
free. The designers of gluon claim:

After a few iterations from an initial state, the automaton is in a periodic
sequence of states of length P . The average number of required iterations
to be in such a state is experimentally less than log2(n), where n is the
size of the main register [...] This leads to consider a function [g] which is
really close to a permutation from {0, 1}b into itself because the surjective
part of the construction is really limited once the function [g] acts on
the main cycle.

However, what happens during these first rounds, before the main cycle is
reached? It is possible to encode the equation

(ρk ◦ pad)(a + x) = (ρk ◦ pad)(x) (7)

for a fixed a into a CNF-formula solvable by a SAT-solver as long as k is not too
big, say 10. The encoding is fairly straight-forward and we shall not go into the
details for the sake of concision. Note that solving the equation (ρk ◦pad)(x) = y
using a SAT-solver is fast, meaning that it is possible to run a fcsr backward.
However, we tried encoding the filtering so as to solve (Φ ◦ ρk ◦ pad)(x) = y but
no SAT-solver was able to handle the corresponding CNF-formula — we killed
the process after 1 week of running time for gluon-112 (simplest filtering of the
three), and for k = 1 instead of k = d + 4 = 46.

We solved (7) for many values of a and for k = 10 for each member of the
gluon family. While no non-zero solutions were found for any a for gluon-80
and gluon-112, it turns out that (7) has many solutions for gluon-64. We used
Algorithm 1 to find to which Vk any element a ∈ S belongs by enumerating all
the values of x such that (7) holds. It works by solving (7) for x, thus (possibly)
finding a solution x1; then solving (7) with the constraint that the solution must
be different from x1, thus (possibly) finding x2, etc. until no more solutions can
be found. If there are k such x �= 0, then a is in Vk+1.

4.2 CPS and Preimage Attack on GLUON-64

We ran Algorithm 1 for gluon-64 on 24,000 different elements chosen uniformly
at random in S = F

r+c
2 . This allowed us to approximate the cps of the update

function. Our results are Fig. 6.
We deduce that c1 = 0.065, �1 = 3.578 and κ = 6.982 which are much worse

than what one should expect from a random function, namely c1 = e−1 ≈ 0.368,
�1 = 1/(1 − e−1) ≈ 1.582 and κ = 1. This means that finding a preimage in
a scheme equivalent to appending z identical words at the end of the message
has a complexity of 2136+2/(6.982 · z) = 2128 · (146.7/z). For z > 147, this is
more efficient than classical brute-force. The complexities for some values of
z < 2(r+c)/2 = 268 are given in Table 3 (Fig. 7).
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Fig. 6. Approximation of the cps of the function used by gluon-64 to update its
internal state over 24,000 random elements of F136

2 . Note that non-zero ck were observed
well after k = 20.

Table 3. Complexity C of a preimage search for d = H(m) where H is gluon-64 and
m is unkown except for the z identical bytes in its end.

z log2(C)

147 b 127.99

500 b 126.23

1 kb 125.23

1 Mb 115.27

1 Gb 105.30

109 Gb 75.19

5 Other Properties of CPS

The cps of a function is preserved by some transformation as shown in Lemma 1.
The collision average of g1 ◦ g2 has a simple expression given in Lemma 2.

Lemma 1. Let g be a function with cps C, P : S → S be a permutation and
J : S → S be injective over g(S). Then g′ = J ◦ g ◦ P has cps C as well.

Proof. Since J is injective over g(S), we have g′(y) = g′(a) if and only if
g(P (y)) = g(P (a)). Since the events “g′(y) = g′(a) has k solutions” and “g(x) =
g(P (a)) has k solutions” have the same probability, namely ck, we see that g
and g′ have the same cps. 
�
Lemma 2. Let g1 have collision average κ1 and g2 have collision average κ2.
Then g1 ◦ g2 has collision average κ1 + κ2.

Proof. Suppose that (g2◦g1)(x) = (g2◦g1)(y) with x �= y. There are two distinct
ways this could happen:
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Fig. 7. Evolution of the number of possible values for the internal state of gluon-64
when a message block is absorbed (thick vertical arrow) or when it absorbs a constant
several times (thin vertical arrow) z = 3 times.

– if g1(x) = g1(y), which happens in κ1 cases on average,
– or if g1(x) �= g1(y) but g2

(
g1(x)

)
= g2

(
g1(y)

)
. There are on average κ2/�1

solutions for g2(X) = g2(Y ) in g1(S) where �1 is the shrinking ratio of g1.
However, each of these solutions is the image of �1 elements of S by g1.

Overall, the equation has κ1 + �1 · κ2/�1 = κ1 + κ2 solutions, which proves
the lemma. 
�
Note that Lemma 2 had to hold at least for g1 = g2 because otherwise we
would have had a contradiction with the asymptotic behaviour of �i described
in Theorem 2.

6 Conclusion

We introduced the notion of cps and of the collision average κ, which is com-
puted from the cps. The collision average value determines the shrinking ratio
and the collision tree size of an iterative construction, and hence directly affects
their security, in particular preimage and collision resistance.

We have showed that the t-sponge is a fragile object when the rate parameter
is small. For instance, preimages to long messages of specific structure become
much easier to find. We gave specific recommendations for the designers of such
constructions. Hopefully, our framework might become a useful tool in the design.

Finally, we demonstrated a practical application of our methodology. Aided
with a SAT-solver, we found collisions for the gluon-64 update function and
then approximated its cps and the collision average κ. We showed that for not
so long messages of 1 Gigabyte a preimage can be found with complexity 2105

compared to the security claim of 2128, and shortcut attacks are possible for
messages of only a kilobyte long.

Acknowledgement. The authors thank the designers of the GLUON family of hash
functions for providing a reference implementation, Alex Biryukov for very helpful
discussions and the anonymous reviewers for their comments.
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A Proofs and Experiments

A.1 Proof of the Iterated Values of �i

Let us prove Theorem 1.

Proof. We shall look at the effect multiple iterations of g have over sets {x0, ..., xk}
where g(xj) = g(xj′) for all j, j′.

Let x0 be in g′(S) and such that there are k other elements {x1, ..., xk} such
that g(x0) = g(xj), i.e. x ∈ Vk+1.

As every element in S is in g′(S) with probability only 1/�′
1, the number of

elements colliding with x in g′(S) follows a binomial distribution with parameters
(m, k, 1/�′

1) (we consider that the output of g′ are uniformly distributed over S
and that they are independent from one another). Thus, there are m elements
colliding with x ∈ g′(S) with probability

(
k
m

)
(1/�′

1)
m(1 − 1/�′

1)
k−m. Let Cm+1

be the probability that g(x0 + x) = g(x0) has m non-zero solutions in g′(S)
knowing that x0 ∈ g′(S):

Cm+1 =
∞∑

k=m

ck+1

(
k

m

)( 1
�′
1

)m(
1 − 1

�′
1

)k−m

. (A.1)

Furthermore, we have:

�′
1

�1(g ◦ g′)
=

|(g ◦ g′)(S)|
|g′(S)| =

∞∑

m=1

Cm

m
,

and so:

�′
1

�1(g ◦ g′)
=

∞∑

m=1

1
m

∞∑

k=m−1

ck+1

(
k

m − 1

)( 1
�′
1

)m−1(
1 − 1

�′
1

)k−m+1

=
∞∑

k=0

k∑

m=0

ck+1

m + 1

(
k

m

)( 1
�′
1

)m(
1 − 1

�′
1

)k−m

.

This expression can be simplified because
(

k
m

)
/(m+1) =

(
k+1
m+1

)
/(k+1), so that:

�′
1

�1(g ◦ g′)
=

∞∑

k=0

ck+1

k + 1

k∑

m=0

(
k + 1
m + 1

)( 1
�′
1

)m(
1 − 1

�′
1

)k−m

=
∞∑

k=0

ck+1

k + 1

k+1∑

m=1

(
k + 1

m

)( 1
�′
1

)m−1(
1 − 1

�′
1

)k−(m−1)

=
∞∑

k=0

ck+1 · �′
1

k + 1

( k+1∑

m=0

(
k + 1

m

)( 1
�′
1

)m(
1 − 1

�′
1

)k+1−m

− (
1 − 1

�′
1

)k+1
)
.
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Note that
∑k+1

m=0

(
k+1
m

)(
1
�′
1

)m(
1 − 1

�′
1

)k+1−m

= 1 (binomial theorem), so in the
end we obtain:

1
�1(g ◦ g′)

=
∞∑

k=0

ck+1

k + 1

(
1 − (

1 − 1
�′
1

)k+1
)

=
∞∑

k=1

ck

k

(
1 − (

1 − 1
�′
1

)k
)

=
1
�1

−
∞∑

k=1

ck

k

(
1 − 1

�′
1

)k

which proves the Theorem. 
�
Note that this result is coherent with the one found by [4] in the case of random
functions, i.e. when {ck}k≥1 = {e−1/

(
(k − 1)!

)}k≥1. Indeed, they prove that

1
�i+1

= 1 − exp
(−1

�i

)
,

which is the same as the one we found:

1
�i+1

=
∞∑

k=1

ck

k

(
1 − (

1 − 1
�i

)k
)

= e−1
∞∑

k=1

1
k!

(
1 − (

1 − 1
�i

)k
)

= 1 − exp
(−1

�i

)
.

A.2 Proof of the Asymptotic Behaviors

Theorem 1 gives the recurrence relation �i satisfies so we can prove its asymptotic
behavior.

Proof. Since �i is obviously increasing (the output space keeps shrinking and we
keep i < 2n/2 to remain away from the main cycle) we have, for large enough i:

1
�i+1

=
∞∑

k=1

ck

k

(
1 − (

1 − k

�i
+

k(k − 1)
2 · �2i

+ o(�−2
i )

))

=
1
�i

∞∑

k=1

ck
(
1 − k − 1

2 · �i
+ o(�−1

i )
)
,

so that we have:

�i

�i+1
=

∞∑

k=1

ck −
∞∑

k=1

ck · (k − 1)
2 · �i

+ o(�−1
i )

= 1 − κ/2
�i

+ o(�−1
i )
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which in turns implies

�i+1 =
�i

1 − κ/2
�i

+ o(�−1
i )

= �i +
κ

2
+ o(1),

so that �i = κ
2 · i + o(i). This observation concludes the proof of the behavior

of �i.
Let us now look at νi. There are on average �w elements reaching y ∈ gw(S)

in exactly w iterations. Since gi(S) ⊆ gw(S) for all w ≤ i, we have that y ∈ gi(S)
is reached, on average, by:

– �1 elements in exactly 1 iteration,
– �2 elements in exactly 2 iterations,

...
– �i elements in exactly i iterations.

Overall, there are on average
∑i

w=1 �w ≈ ∑i
w=1(κ/2)w ≈ (κ/4)i2 elements

reaching y ∈ gi(S) after at most i iterations of g. 
�

A.3 Experimental Justification of Conjecture 1

For every N between 12 and 17 included, we generated 100 functions with a
given cps and, for each of them, we picked 40 elements at random in F

N
2 and

computed λ/2N/2 and μ/2N/2 for each of them (24,000 data points for each
cps). The average of these values for cps’s corresponding to different values of
κ are given in Fig. 8. As we can see, both λ/2N/2 and μ/2N/2 are almost equal
to

√
π/(8κ), which is equivalent to Conjecture 1 being correct.

Fig. 8. Average value of λ/2N/2 and μ/2N/2 for different κ.
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A.4 Proof of the Effect of the CPS on a T-sponge

Proof. Our proof is a modified version of the one used by Bertoni et al. in the
paper where they introduced the sponge construction [7]. In particular, we use
the same terminology: we call the elements of F

c+r
2 “nodes” and we partition

the space according to the value of the bits in the capacity to obtain 2c “super-
nodes”, each containing 2r nodes. There is an oriented edge from node x to
node y if and only if y = g(x). Finding a collision in H boils down to finding
two different paths in this graph starting from points in the super-node with
capacity zero to an identical super-node.

We shall study the fan-in and the fan-out of these super-nodes, the fan-in of
a super-node being the number of edges going to it and the fan-out the number
of edges going out of it. In this framework, the fan-out of each super-node is 2r.
However, the number of edges going in each super-node is not constant. Consider
some super-node Y made of nodes y1, ..., y2r . Each yi has a fan-in F (yi) so that
the F (yi)’s are independent and identically distributed random variables with
the distribution

P[F (yi) = k] =
ck

k
if k ≥ 1 , P[F (yi) = 0] = 1 − 1

�1

which has a mean equal to 1 and a variance equal to κ.
The value of the fan-in of the super-node Y is the sum of the fan-in’s of its

nodes:

F (Y ) =
2r∑

i=1

F (yi).

We consider that 2r is large enough to apply the central limit theorem so that
F (Y ) is normally distributed with mean equal to 2r and variance equal to κ ·2r.

Consider now the set Nk of all the super-nodes with fan-in equal to k; in
other words the set of the super-nodes with exactly k preimages. It has a size
equal to |Nk| = 2cG(k) where

G(k) =
1√

2π · κ · 2r
· exp

( − 1
2

· (k − 2r)2

κ · 2r

)

and the Nk’s form a partition of the space of the super-nodes. Consider some
node x1: the probability that its image by g is in a super-node of Nk is

P[g(x1) ∈ Nk] =
k

2c+r
· |Nk| =

k

2r
· G(k)

Let V be the super-node g(x1) is in. The probability that a second element
x2 �= x1 is such that g(x2) is in the same super-node as g(x1) is the probability
that x2 is at the beginning of one of the k − 1 edges going to V which are not
the one starting at x1. Therefore, the probability that g(x1) and g(x2) are in the
same super-node V knowing that V ∈ Nk is

P[g(x1), g(x2) ∈ V | V ∈ Nk] =
k − 1
2c+r

· k

2r
· G(k)
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so that the probability that g(x1) and g(x2) have the same capacity bits for x1

and x2 chosen uniformly at random is

P[g(x1), g(x2) ∈ V ] =
∞∑

k=0

k(k − 1)
2c+2r

· G(k) ≈ (2r)2 + κ · 2r − 2r

2c+2r
.

Therefore, the probability of success of a collision search performed by absorbing
Q messages at random until two internal states with the same capacity bits are
observed is

P[success of collision search] ≈
(

Q

2

)
22r + 2r(κ − 1)

2c+2r
≈ Q2

2c+1
· (

1 +
κ − 1

2r

)
.


�

B Algorithms

Algorithm 1. Enumerating all the solutions of g(a + δ) = g(a).
D = empty list
b = 0
while b < rw − 1 do

F = CNF(ρ1
k) + CNF(ρ2

k) + CNF(ρ1
k(x) = ρ2

k(y))
F = F + CNF(x = a) + CNF(xb + yb = 1)
for δ in D do

F = F + CNF(x + y �= δ)
end for
if SAT-solver concludes that F is satisfiable then

Retrieve y from the assignment and append x + y to D
else

b = b + 1 � We move on only when this bit is exhaustively used
end if

end while
Return D
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