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Abstract. We study the robust safety problem for timed automata un-
der guard imprecisions which consists in computing an imprecision pa-
rameter under which a safety specification holds. We give a symbolic
semi-algorithm for the problem based on a parametric data structure,
and evaluate its performance in comparison with a recently published
one, and with a binary search on enlargement values.

1 Introduction

Timed automata [2] are a well-established formal model for real-time systems.
They can be used to model systems as finite automata, while using, in addition, a
finite number of clocks to impose timing constraints on the transitions. Efficient
model checking algorithms have been developed and implemented in tools such as
Uppaal [6], IF [12]. Timed automata are, however, abstract models, and therefore
make idealistic assumptions on timings, such as perfect continuity of clocks,
infinite-precision time measures and instantaneous reaction times.

As for any abstract formalism, once desired properties of a system are proven
on the model, a crucial question that remains is the robustness of these properties
against the assumptions that have been made. What is the extent to which the
assumptions behind the model can be relaxed while a given property still holds?

In this work, we are interested in the robustness against timing imprecisions.
An important amount of work has been done in the timed automata literature
to endow timed automata with a realistic semantics, and take imprecisions into
account, e.g. [18,15,1]. The works [24] and [14] showed that perturbations on
clocks, i.e. imprecisions or clock drifts, regardless of how small they are, may
drastically change the behavior in some models. These observations mean that
there is a need for verification tools to check the robustness of timed automata,
that is, whether the behavior of a given timed automaton is preserved in the
presence of perturbations, and to compute safe bounds on such perturbations.

We consider the robustness of timed automata for safety properties under
timing imprecisions modeled by guard enlargement, consisting in relaxing each
guard of the form x ∈ [a, b] to x ∈ [a − δ, b + δ] where δ is a parameter. Our
goal is to decide if for some δ > 0, the enlarged timed automaton satisfies its
specification (Problem 1), and if this is the case, compute a safe upper bound
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on δ (Problem 2). We insist on the importance of both problems: while the
first one decides the robustness of the model, the second one quantifies it by
actually giving a bound under which the model is correct. This would allow one
for instance to choose an appropriate hardware to implement the model [15,1].

Background. The formulation of Problem 1 has been studied starting with
[24,14] for safety properties, and extended to LTL and richer specifications, e.g.
[9,10] using region-based techniques which cannot be applied efficiently. A sym-
bolic zone-based algorithm was given in [13] for flat timed automata, that is,
without nested cycles by applying acceleration on its cycles. Problem 2 has been
answered in [20] for flat timed automata, where the given algorithm computes
the largest upper bound on δ satisfying the specification. The flatness is a rather
restrictive hypothesis since, for instance, it is easily violated when the system
is obtained by composition of timed automata that contain cycles. Recently, a
zone-based algorithm and a tool to solve Problem 1 for general timed automata
was given [21]; but the algorithm does not compute any bound on δ. The latter
algorithm is based, roughly, on extending the standard forward exploration of
the state space augmented with the acceleration of all cycles encountered during
the search, with some tricks to optimize the computations. In [22], refinements
between interfaces are studied in a game-based framework including syntactic
enlargement to account for imprecisions. In [25,26] the authors use the fact that
replacing all guards by closed ones allow one to verify finite paths (and the case
of a periodic external synchronization) but this does not help in the analysis of
the accumulation of imprecisions, nor can it allow one to compute a bound on δ.

Results. In this paper, we present a symbolic procedure to simultaneously solve
Problems 1 and 2 for general timed automata; if the given model is robust, a safe
upper bound on δ (which may not be the largest one) is output. The procedure
is a semi-algorithm since we do not know whether it terminates although it did
terminate on most of our experiments. It consists in a state-space exploration
with an efficient parametric data structure which treats the enlargement δ as
an unknown parameter, combined with an acceleration procedure for some of
the cycles. We do not systematically accelerate cycles, but rather adopt a “lazy”
approach: during the exploration, when the accumulated imprecisions go beyond
a threshold, we accelerate some cycles that may be responsible for this accumu-
lation. This greatly reduces the computation overhead compared to a systematic
acceleration. We also adapt several abstraction operations such as LU abstrac-
tion [5], and closure inclusion [19] to the parametric setting to reduce the state
space. We ran experiments to evaluate the performance of our procedure. Com-
pared to [21], ours terminated faster in most cases, and sometimes with several
orders of magnitude. To truly evaluate the gain of a parametric analysis, we also
compared with a binary search on the values of δ using an exact model checker.
Our procedure was often faster except against a low precision binary search (i.e.
with few iterations). Section 6 contains a more detailed discussion.
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2 Definitions

Given a finite set of clock C, we call valuations the elements of RC
≥0. For R ⊆ C

and a valuation v, v[R ← 0] is the valuation defined by v[R ← 0](x) = v(x) for
x ∈ C\R and v[R ← 0](x) = 0 for x ∈ R. Given d ∈ R≥0 and a valuation v, v+d
is defined by (v + d)(x) = v(x) + d for all x ∈ C. We extend these operations to
sets of valuations in the obvious way. We write 0 for the valuation that assigns 0
to every clock. An atomic guard is a formula of the form k ≤ x or x ≤ l where
x, y ∈ C, k, l ∈ Q. A guard is a conjunction of atomic guards. A valuation v
satisfies a guard g, denoted v |= g, if all atomic guards are satisfied when each
x ∈ C is replaced by v(x). We write ΦC for the set of guards built on C.

A timed automaton A is a tuple (L, Inv, �0, C, E), where L is a finite set of
locations, Inv : L → ΦC the invariants, C is a finite set of clocks, E ⊆ L × ΦC ×
2C×L is a set of edges, and �0 ∈ L is the initial location. An edge e = (�, g, R, �′)

is also written as �
g,R−−→ �′. For any location �, let E(�) denote the set of edges

leaving �. Following the literature on robustness in timed automata (e.g. [24,14])
we only consider timed automata with closed and rectangular guards (that is,
we do not allow constraints of the form x − y ≤ k). We also assume that all
invariants contain an upper bound for all clocks.

A run of A is a sequence q1e1q2e2 . . . qn where qi ∈ L × R
C
≥0, and writing

qi = (�, v), we have v ∈ Inv(�), and either ei ∈ R>0, in which case qi+1 = (�, v+ei),
or ei = (�, g, R, �′) ∈ E, in which case v |= g and qi+1 = (�′, v[R ← 0]). We
say that the run r is along e1e2 . . . en−1. A path is a sequence of edges whose
endpoint locations are equal. Given a path ρ = e1e2 . . . en−1 and states q, q′, we
write q

ρ−→ q′ if there is a run from q to q′ along e1e2 . . . en−1. We write q ⇒ q′

if there is a path ρ with q
ρ−→ q′. We also note q

ρ+

−−→ q′ if there is a run from q
to q′ along an arbitrary (positive) number of repetitions of ρ. A cycle of a timed
automaton is a path that ends in the location it starts. As in [24,14], we assume
that all cycles of considered timed automata reset all clocks at least once. Such
cycles are called progress cycles.

Regions. The first decidability results on timed automata relied on a finite par-
tition of the state space to so called regions, which can be defined using simple
constraints on clocks [2]. We say that 1

η is the granularity of a timed automa-

ton A, if η is the smallest integer such that all constants of A are multiples of 1
η .

We generalize the definition of regions to arbitrary granularities. Let us denote
Nη = 1

ηN. Consider a timed automaton A, with granularity 1
η , and consider a

bound function α : C → Nη mapping each clock to a bound. An α, η-region is
defined by choosing

– for each clock x ∈ C, a constraint among {x = k | k ∈ Nη, k ≤ α(x)} ∪ {k −
1
η < x < k | k ∈ Nη,

1
η ≤ k ≤ α(x)} ∪ {x > α(x)}.

– for each pair x, y ∈ C for which we chose the constraints k − 1
η < x < k,

and l − 1
η < y < l, choose one constraint among frac(x) < frac(y), frac(x) =

frac(y), or frac(x) > frac(y), where frac(·) denotes the fractional part.
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It can be shown that α, η-regions finitely partition the state space R
C . For η =

1, this is the usual definition of regions. Given timed automata with rational
constants, one often rescales the constants to work with integers. In the context of
enlargement, however, it will be more convenient to work directly with rationals.

Difference-Bound Matrices. Because the number of regions is exponential in the
input size, the region-based algorithms are not practical. Symbolic algorithms
were rather given as an efficient solution based on zones which are convex subsets
of the state space definable by clock constraints. Formally, a zone Z is a convex
subset of RC definable by a conjunction of constraints of the form x ≤ k, l ≤ x,
and x − y ≤ m where x, y ∈ C, k, l ∈ Q≥0 and m ∈ Q. Note that because
all guards of the timed automata we consider are closed, all zones that appear
during a state-space exploration are closed. Hence, we do not need to distinguish
strict and non-strict inequalities as done for general timed automata.

We recall a few basic operations defined on zones. Let Post≥0(Z) denote the
zone describing the time-successors of Z, i.e., Post≥0(Z) = {v ∈ R

C
≥0 | ∃t ≥

0, v−t ∈ Z}; and similarly Pre≥0(Z) = {v ∈ R
C
≥0 | ∃t ≥ 0, v+t ∈ Z}. Given R ⊆

C, we let ResetR(Z) be the zone {v ∈ R
C
≥0 | ∃v′ ∈ Z, v = v′[R ← 0]}, and

FreeR(Z) = {v ∈ R
C
≥0 | ∃v′ ∈ Z, v′ = v[R ← 0]}. Intersection is denoted

Z∩Z ′. Zones can be represented by difference-bound matrices (DBM) which are
|C0| × |C0|-matrices with values in Q [16]. Let us define C0 = C ∪ {0}, where 0 is
seen as a clock whose value is always 0. Intuitively, each component (x, y) ∈ C2

0

of a DBM stores a bound on the difference x − y. For any DBM M , let �M�
denote the zone it defines. DBMs admit reduced forms (a.k.a. normal form), and
successor computation can be done efficiently (in O(|C|3)). We refer the reader
to [7] for details. All of the above operations can be computed with DBMs.
By a slight abuse of notation, we will use the same operations for DBMs as for
zones, for instance, we will write M ′ = Post≥0(M) where M and M ′ are reduced
DBMs such that �M ′� = Post≥0�M�. We define an extended zone as a pair (�, Z)
where � is a location and Z a zone. Given an edge e = (�, g, R, �′), and an
extended zone (�, Z), we define Poste

(
(�, Z)

)
= Inv(�′) ∩ Post≥0(g ∩ ResetR(Z)),

and Pree
(
(�, Z)

)
= Pre≥0(g ∩ FreeR(Inv(�

′) ∩ Z)). For a path ρ = e1e2 . . . en, we
define Postρ and Preρ by iteratively applying Postei and Preei respectively.

Enlargement. We model timing imprecisions in timed automata by the enlarge-
ments of the guards and invariants of by rational values ν > 0. The enlargement
of an atomic guard k ≤ x (resp. x ≤ l) is denoted (k ≤ x)ν = k − ν ≤ x (resp.
(x ≤ l)ν = x ≤ l + ν). The enlargement of a guard g, denoted (g)ν is obtained
by enlarging all its conjuncts. We denote by Aν the timed automaton obtained
from A by enlarging all its guards and invariants by ν.

If ν is known, one could analyze Aν with known techniques, since this is still a
timed automaton (with a possibly different granularity). Here, we are rather in-
teresting in a parametric analysis. We thus consider a symbolic parameter δ. The
parametric enlargement of a guard g, denoted (g)δ is defined by replacing ν by
the symbol δ in the above definition. We will always denote rational enlargement
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�1

x, y ≤ 1

�2

x, y ≤ 1

err

x = 1, x := 0

e1 x = 1, x := 0

e3

y = 1, y := 0

e2

Fig. 1. A timed automaton representing the two processes P1 and P2 instantiated with
period p = 1, and a buffer size of 1. The guard under the locations are the invariants.
The edge e1 represents the arrival of a token in the buffer (period of 1) while e2
represents process P2 reading a token from the buffer. The error state is reached via e3 if
two tokens are pushed to the buffer without any read in between. Without enlargement,
any reachable state at location �2 satisfies x = 0 ∧ y = 1, so the error state is not
reachable. Under enlargement by ν = 1

10
, after the first transition, location �2 is reached

by the set of states 1−ν ≤ y ≤ 1+ν∧0 ≤ x ≤ 2ν due to the enlargement of the guards
and invariants. A simple calculation shows that the set of reachable states at location �2
after k cycles is 1− (2k+1)ν ≤ y ≤ 1+ν∧0 ≤ x ≤ 2kν ∧1− (2k+1)ν ≤ y−x ≤ 1+ν.
Thus, for k = 5, we get y ≤ 1 + ν ∧ x ≤ 1 ∧ −ν ≤ y − x ≤ 1 + ν, and x = 1 ∧ y = 1 is
in this set, from which the error state is reachable.

values by ν, and the parameter symbol by δ. Similarly, parametrically enlarged
timed automata are denoted Aδ. For ν > 0, the instantiation of a parametrically
enlarged guard (g)δ by ν is denoted (g)δ[δ ← ν] which is (g)ν .

Accumulation of Imprecisions. In some timed automata even the smallest en-
largement can lead to drastically different behaviors due to the accumulation of
the imprecisions over long runs [24]. As an example, consider the following simple
problem. Two processes P1, P2 execute on different machines and communicate
via a finite buffer. Every p time units, Process P1 finishes a computation and
pushes a token to the buffer; while P2 reads a token from the buffer with the
same period. We assume P2 has an offset of p. The buffer will clearly not overflow
in this system. However, assuming the slightest delay in the execution of P2, or
the slightest decrease in the execution time of P1 leads to a buffer overflow since
the delays will accumulate indefinitely. Figure 1 represents this system.

3 Accelerating Cycles

The original robust reachability algorithm of [24,14] consists in an exploration
of the region graph, augmented with the addition of the images of all cycles
neighboring reachable states. The idea is that when the guards are enlarged,
these neighboring cycles become reachable, and they precisely capture all states
that become reachable in the timed automaton for all values of δ. Thus, this
algorithm computes the set ∩ν>0Reach(Aν), where Reach(Aν) denotes the states
that are reachable in Aν . A symbolic algorithm for this problem was given in [13]
for flat timed automata, i.e. without nested cycles, and later improved in [20].

In this section, we summarize some of these results from [24,14,13,20] that we
use in the rest of the paper. Let us fix a timed automaton (L, Inv, �0, C, E), and
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a cycle ρ. The following lemma shows the effect of repeating cycles in enlarged
timed automata, formalizing our observations on Fig. 1.

Lemma 1 ([20]). Consider any extended zone (�, Z), and a progress cycle ρ
of A that starts in �. If Pre∗ρ(�)∩Z 
= ∅, then starting from any state of Pre∗ρ(�)∩
Z, for any ν > 0, all states of Post∗(ρ)ν (�) are reachable in Aν , by repeating ρ.

As an example, consider Fig. 1. For the cycle ρ = e2e1 that starts at �2, we
have Pre∗ρ(�) = x, y ≤ 1∧ x− y ≤ 0, and Post∗(ρ)ν (�) = x, y ≤ 1 + ν ∧ x− y ≤ 0.
Since the point (0, 1) is reachable and belongs to Pre∗ρ, all states of Post

∗
(ρ)ν (�)

are reachable, and in particular (1, 1) from which the error state is reachable.
It is known that the above lemma does not hold for non-progress cycles; nev-

ertheless, it was shown that in this case, Post∗(ρ)ν (�) is an over-approximation of
the states reachable by repeating ρ under enlargement [11]. Thus, the algorithm
of [24,14] may have false negatives (may answer “not robust” even though it is)
but not false positives on timed automata with arbitrary cycles.

Conversely, it has been shown that any state that belongs to ∩ν>0Reach(Aν)
is reachable along an alternation of exact runs and repetitions of enlarged cycles.

Lemma 2 ([14]). Assume that q −→ q′ in Aν for all ν > 0. There exists a path
π0ρ0π1ρ0 . . . πn of A and states q = q0, q

′
0, q1, q

′
1, . . . , qn = q′, such that for all 0 ≤

i ≤ n− 1, and any ν > 0, qi
πi−→ q′i, q

′
i ∈ Pre∗ρi

(�), and qi+1 ∈ Post∗(ρi)ν (�).

Notice that the sequence of states q0, q
′
0, . . . is independent of ν > 0 in the above

lemma, and that the enlargement is only used in Post∗((ρ)i)ν (�).
The algorithms of [13,20] consist in a usual forward exploration on zones

augmented with the application of Lemma 1, by enumerating all cycles in a flat
timed automaton. This cannot be extended to general timed automata since the
cycles that appear in Lemma 2 are not necessarily simple. This has been a major
obstacle against general robust safety algorithms for timed automata.

4 Infinitesimally Enlarged DBMs

We define infinitesimally enlarged DBMs (IEDBM), a parameterized extension of
DBMs, which we will use to explore the state space of enlarged timed automata.
These were first defined in [14] to be used solely as a proof technique. Here, we
extend this data structure with additional properties and explicit computations
of the bounds on parameter δ, and show how it can be used to efficiently explore
the state space.

We fix a clock set C0 including the 0 clock. An infinitesimally enlarged DBM
(IEDBM) is a pair (M,P )〈0,δ0〉 where M is a DBM and P is a |C0| × |C0| matrix
over N, called the enlargement matrix. The value δ0 ∈ (0,∞) is an upper bound
on the unknown parameter δ. Intuitively, an IEDBM (M,P )〈0,δ0〉 represents the
set of DBMs M+νP where ν ∈ [0, δ0). Figure 2 shows an example. We often see,
abusively, an IEDBM as a matrix over pairs (m, p) ∈ Z×N. The component (x, y)
is denoted by (M,P )〈0,δ0〉[x, y]. For simplicity, we always consider the half-open
intervals of the form [0, δ0) even though ν can be chosen equal to δ0 in some cases.
This is not a loss of generality since we are interested in the small values of ν.
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⎛

⎝

0 x y

0 0 1 1
x 3 0 2
y 2 1 0

⎞

⎠+ δ

⎛

⎝
0 0 1
2 0 3
3 3 0

⎞

⎠

y

x

Fig. 2. An IEDBM (above) repre-
senting the parametric set 1 ≤ x ≤
3 + 2δ ∧ 1− δ ≤ y ≤ 2 + 3δ. The set
is represented (below) for δ = 0.15.

IEDBMs will allow us to reason on the
parametric state space of enlarged timed au-
tomata “for small values of δ”, which means
that our computations on the data structure
will hold for all ν ∈ [0, δ0), where δ0 >
0 is bound that is possibly updated to a
smaller value after each operation. For in-
stance, given sets Z1 = 1 ≤ x ≤ 2 + 3ν
and Z2 = x ≤ 3, for unknown δ, and as-
sume we want to compute their intersection.
We will write Z1 ∩ Z2 = 1 ≤ x ≤ 2 + 3δ
and chose δ0 ≤ 1

3 . To make these simplifica-
tions, we need to compare pairs of IEDBM
components in a similar spirit. For instance,
to make the above simplification, we write
(2, 3)〈0, 13 〉 ≤ (3, 0)〈0, 13 〉, which means that

2 + 3ν ≤ 3 for all ν ∈ [0, 13 ). We formal-
ize this in the next subsection. To ease reading, we may omit δ0 from IEDBMs
if it is clear from the context.

4.1 Operations on IEDBMs

We are now going to formalize the simplifications and the operations done on
IEDBMs. In order to use our data structure for parametric exploration, we need
to define basic operations on timed automata. Similar to DBMs, IEDBMs have
reduced forms. To define the reduction operations, we define the + and min
operations.

We define the sum as (m, p)〈0,δ0〉+(n, q)〈0,δ1〉 = (m+n, p+ q)〈0,min(δ0,δ1)〉. As
an example of this operation, assume that we have the constraints x−y ≤ 2+3δ,
and y ≤ 1+ δ with the respective upper bounds δ0 and δ1. Then, by summation,
we may deduce x ≤ 3 + 4δ with the upper bound δ2 = min(δ0, δ1).

Lemma 3. Given (m1, p1)〈0,δ1〉, (m2, p2)〈0,δ2〉, one can compute i ∈ {1, 2}, and
δ3 such that ∀ν ∈ [0, δ3), mi + νpi = min(m1 + νp1,m2 + νp2). We denote this
by (mi, pi)〈0,δ3〉 = min((m1, p1)〈0,δ1〉, (m2, p2)〈0,δ2〉).

We write (m1, p1)〈0,δ1〉 ≤ (m2, p2)〈0,δ2〉 iff min
(
(m1, p1)〈0,δ1〉, (m2, p2)〈0,δ2〉

)
=

(m1, p1)〈0,δ3〉 for some δ3; and (m1, p1)〈0,δ1〉 < (m2, p2)〈0,δ2〉 if m1 
= m2∨p1 
= p2.
Intuitively, just like in regular DBMs, we will use the minimum operation to

compute conjunctions of constraints. For instance, we already saw above that
x ≤ 2+3ν∧x ≤ 3 is simplified to x ≤ 2+3ν given ν ∈ [0, 13 ). This will be written
min

(
(2, 3)〈0,∞〉, (3, 0)〈0,∞〉) = (2, 3) 1

3
. It should be clear that for any Boolean

combination Φ of inequalities written between elements of the form (m, p)〈0,δ1〉,
one can compute, by Lemma 3, a bound δ0 such that either Φ[δ ← ν] holds for
all ν ∈ [0, δ0), or ¬Φ[δ ← ν] holds for all ν ∈ [0, δ0).
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If different upper bounds on δ are given for two elements to be compared, then
we first update the bounds to the minimum of the two bounds. More generally,
we assume that all components of an IEDBM have the same bound δ0.

We say that an IEDBM (M,P )〈0,δ0〉 is reduced if for all x, y, z ∈ C0,
(M,P )〈0,δ0〉[x, y] ≤ (M,P )〈0,δ0〉[x, z]+(M,P )〈0,δ0〉[z, y]. IEDBMs can be reduced
by the usual Floyd-Warshall algorithm, using the above min and + operations:

Lemma 4. Any IEDBM (M,P )〈0,δ0〉 can be reduced in time O(|C0|3). Moreover,
if (M,P )〈0,δ0〉 is reduced, then for all ν ∈ [0, δ0), M + νP is a reduced DBM.

When we consider the complexity of minimization as in Lemma 3, we assume that
operations on rationals are elementary operations (i.e. they can be performed
in constant time). For a more precise analysis, one can incorporate the cost of
these computations; for instance, the reduction operation in the previous lemma
makes O(|C0|3) minimization operations, so as many operations on rationals.

We define the parametric inclusion by (M,P )〈0,δ1〉 � (N,Q)〈0,δ2〉 if, and only
if for all x, y ∈ C, (M,P )[x, y] ≤ (N,Q)[x, y].

Lemma 5. One can compute, given (N1, Q1)〈0,δ1〉, (N2, Q2)〈0,δ2〉, and R ⊆ C,
and in time O(|C|3),
– a reduced IEDBM (M,P )〈0,δ0〉, written (N1, Q1)〈0,δ1〉 � (N2, Q2)〈0,δ2〉, such

that M + νP = (N1 + νQ1) ∩ (N2 + νQ2) for all ν ∈ [0, δ0),
– a reduced IEDBM (M,P )〈0,δ0〉, written PResetR

(
(N1, Q1)〈0,δ1〉

)
, such that

M + νP = ResetR
(
N1 + νQ1

)
for all ν ∈ [0, δ0),

– a reduced IEDBM (M,P )〈0,δ0〉, written PPost≥0

(
(N1, Q1)〈0,δ2〉

)
, such that

M + νP = Post≥0

(
N1 + νQ1

)
for all ν ∈ [0, δ0).

We are going to define the parametric post operation along an edge e. By a
slight abuse of notation, we will see any (non-enlarged) guard g as the IEDBM
(g,0)〈0,∞〉. When we consider the enlargement (g)δ of a guard, this will also
refer to the corresponding IEDBM with δ0 = ∞. By combining these operations,
for a given edge e, we define PPoste

(
(M,P )〈0,δ0〉

)
= PPost≥0

(
PResetR

(
g �

(M,P )〈0,δ0〉
))
, where g is the guard of e, and R its reset set. By Lemma 5 this

corresponds to Poste
(
M + δP ) for sufficiently small δ.

We refer to pairs of locations and IEDBMs as symbolic states. We extend
the parametric post operator to symbolic states by PPoste

(
(�, Z)

)
= (�′, Z ′)

where e = (�, g, R, �′), and Z ′ = PPoste
(
Z).

Lemma 6. For any sequence of edges e1 . . . en, and symbolic state (�, Z), if
PPost(e1)δ(e2)δ...(en−1)δ ((�, Z)) = (�′, Z ′), and (�′, Z ′) 
= ∅, then there exists δ0 >
0 such that for all ν ∈ [0, δ0), and state q′ ∈ (�′, Z ′)[δ ← ν], there exist q ∈
(�, Z)[δ ← ν] such that (�1, q)

(e1)ν ...(en−1)ν−−−−−−−−−−→ (�n, q
′).

Let the width of (M,P )〈0,δ0〉 be defined as width(M,P ) = maxx,y∈C0 Px,y.

4.2 Parametric Abstractions

We will first recall some abstractions applied on zones in a non-parametric set-
ting, then generalize them to symbolic states described by IEDBMs.
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Closures and LU-abstraction. Let α : C → N be a bound function, and η a
granularity. The α, η-closure of a zone Z is the union of the α, η-regions which
intersects it. It is known that when α denotes the maximal constants to which
each clock is compared in a timed automaton A, and η the granularity of A, a
forward exploration based on α, η-closures is sound and complete [8]. However
because closures are not convex, other abstractions have been in use in practical
tools; one of them is LU-abstraction, where the idea is to relax some of the
facets of a zone taking into consideration the maximal constants that appear in
the guards of the timed automaton. We will recall the formal definition of LU-
abstraction by adapting it to DBMs with only non-strict inequalities by a slight
change. The correctness of the abstraction is preserved (proved in Lemma 7).

For a timed automaton A with granularity η, we define the two bound func-
tions L,U : C → Nη, called the LU-bounds where L(x) (resp. U(x)) is the largest
constant c such that the constraint x ≥ c (resp. x ≤ c) appears in some guard or
invariant. Given LU-bounds L,U , for any DBM M , we define M ′ = Extra+LU (M)
as follows.

M ′
x,y =

⎧
⎪⎪⎨

⎪⎪⎩

∞ if Mx,y > L(x), or −M0,x > L(x)
∞ if −M0,y > U(y), x 
= 0
−U(y)− 1 if −M0,y > U(y), x = 0
Mx,y otherwise.

(1)

We recall the correctness of LU-abstractions and closures for reachability
properties. Given LU-bounds L,U we write α = max(L,U) for the function
α(x) = max(L(x), U(x)) for all x ∈ C.

Lemma 7. For any timed automaton A with granularity η, its LU-bounds L,U ,
and any path e1e2 . . . en and extended zone (�, Z), define q0 = q′0 = q′′0 = (�, Z),
and let for 0 ≤ i < n, qi+1 = Postei(qi), q

′
i+1 = Extra+LU (Postei(q

′
i)), and q′′i+1 =

Closureα,η(Extra
+
LU (q

′′
i )). Then, qn 
= ∅ ⇔ q′n 
= ∅ ⇔ q′′n 
= ∅.

One can thus explore the state space of a timed automaton while systematically
applying LU-abstraction at each step. In practice, one does not apply closures
since they do not yield convex sets. Nevertheless, a O(|C|2)-time algorithm was
given in [19] to decide whether M ⊆ Closureα(N). Thus, when the regular inclu-
sion test is replaced with the latter one, the exploration becomes equivalent to
an exploration using closures [19,8].

Parametric Closures and LU-abstraction. We would like to use these abstrac-
tions in our parametric setting. We will show how these sets can be computed
parametrically using IEDBMs. Observe that when we consider parametrically
enlarged timed automata, the LU-bounds also depend on δ. Let us denote the
parametric LU-bounds by Lδ(x) (resp. Uδ(x)) which is the maximum parametric
constant, in the sense of Lemma 3, which appears in the guards of Aδ as a lower
bound (resp. upper bound) on x. We define the parametric LU-abstraction, for
any IEDBM (M,P )〈0,δ0〉 by (M ′, P ′)〈0,δ1〉 = PExtra+LδUδ

((M,P )〈0,δ0〉) obtained
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by applying (1) where M is replaced by (M,P ), L and U by Lδ and Uδ re-
spectively. The new upper bound δ1 is computed so that all comparisons in (1)
hold.

Lemma 8. Consider any enlarged timed automaton Aδ and its parametric LU-
bounds Lδ, Uδ. For any (M,P )〈0,δ0〉, if we write (M ′, P ′)〈0,δ1〉 =

PExtra+LδUδ
((M,P )〈0,δ0〉), then for all ν ∈ [0, δ1), M

′+νP ′ = Extra+LU (M +νP ).

Thus, LU-abstractions of enlarged zones have uniform representations for small δ.
For an enlarged timed automaton Aδ we define αδ = max(Lδ, Uδ). For ν > 0,

we will denote by αν the function obtained from αδ by instantiating δ to ν. By a
slight abuse of notation, we define the αν-closure of a zone as its (αν , η)-closure
where η is the granularity of Aν . Here A will be clear from the context, so there
will be no ambiguity. We now adapt the inclusion algorithm of [19] to IEDBMs.

Lemma 9. Given IEDBMs Z = (M,P )〈0,δ0〉 and Z ′ = (N,Q)〈0,δ0〉, we have
∀δ0 > 0, ∃ν ∈ [0, δ0),M + νP 
⊆ Closureαν (N + νQ), iff, writing Z ′ = N + νQ,
there exist x, y ∈ C such that

1.
(
Z ′

x,0 < Zx,0 and Z ′
x,0 ≤ αδ(x)

)
, or

(
Z ′

0,x < Z0,x and Z0,x + αδ(x) ≥ 0
)
,

2. or Z0,x + αδ(x) ≥ 0, and Z ′
y,x < Zy,x, and Z ′

y,x ≤ αδ(y) + Z0,x.

Moreover, if this condition doesn’t hold, then one can compute δ1 under which
we do have the inclusion M + νP ⊆ Closureαν (N + νQ).

Notation 10 . We denote the successor operation followed by LU-abstraction as
ExPost(·) = Extra+LU (Post(·)). For the parametric version, we denote PExPost(·)
= PExtra+LδUδ

(PPost(·)), where the bounds Lδ, Uδ are implicit. We furthermore
denote by �c the parametric inclusion check defined by Lemma 9.

We implicitly assume that when a parametric inclusion check �c is performed,
the upper bound δ0 is globally updated to the new bound δ1 given by Lemma 9.

4.3 Parametric Cycle Acceleration

In [20] a parametric data structure based on the parameterized DBMs of [3] was
used to represent the state space under all values of δ rather than for small
values. The corresponding algorithms are based on linear arithmetics of reals.
This results in a more complicated data structure which is also more general.
IEDBMs simplify this representation by storing the state space only for small
values of δ, that is δ ∈ [0, δ0). To compute cycle accelerations, we recall a result
of [20] which bounds the number of iterations to compute pre and post fixpoints
of a given cycle.

Lemma 11 ([20]). Let N = |C|2. For any cycle ρ, if PPost∗(ρ)δ (�) 
= ∅ then

PPost∗(ρ)δ (�) = PPostN(ρ)δ (�), and if PPre∗ρ(�) 
= ∅ then PPre∗ρ(�) = PreNρ (�).
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Data: Timed automaton A = (L, Inv, �0, C, E), and target location �T .
1 Wait := {(�0, Z0)〈∞〉}, Passed := ∅, (�0, Z0).K := K0;
2 while Wait �= ∅ do
3 (�, Z) := pop(Wait), Add (�,Z) to Passed;
4 if � = �T then return Unsafe;
5 if width(Z) > (�, Z).K then
6 Let π denote the prefix that ends in (�,Z), along edges e1e2 . . . e|π|−1;
7 foreach cycle ρ = eiei+1 . . . ej do
8 if PPre∗ρ(�) ∩ πi �= ∅ and ∀q ∈ Passed, PPost∗(ρ)δ (�) �
c q then

9 Add PPost∗(ρ)δ (�) as a successor to πj , and to Wait;

10 end

11 end
12 if no fixpoint was added then (�, Z).K = (�, Z).K +K0 ;

13 foreach e ∈ E(�) s.t. ∀q ∈ Passed, PExPosteδ ((�,Z)) �
c q do
14 (�′, Z′) := PExPosteδ ((�, Z);
15 Add (�′, Z′) to Wait;
16 (�′, Z′).parent := (�, Z);
17 (�′, Z′).K := (�, Z).K;

18 end

19 end
20 return Safe;
Algorithm 1. Symbolic robust safety semi-algorithm. Here (�0, Z0) is the initial

state symbolic state, and K0 is a positive constant. We have two containers Wait

and Passed storing symbolic states. The search tree is formed by assigning to each

visited state (�, Z) a parent denoted (�,Z).parent (Line 16). We also associate to

each symbolic state a bound K on width, denoted (�, Z).K.

5 Symbolic Robust Safety

Our semi-algorithm consists of a zone-based exploration with IEDBMs using the
parametric LU-abstraction and the inclusion algorithm �c of Lemma 9. It is easy
to see that an exploration based on IEDBMs may not terminate in general (see
e.g. Fig. 1). Nevertheless, we apply acceleration on well chosen cycles while it
is exploring the state space, and it terminated in most of our experiments. To
choose the cycles to accelerate, we adopt a lazy approach: we fix a bound K,
and run the forward search using IEDBMs until the target is reached or some
symbolic state has width greater than K. In the latter case, we examine the
prefix of the current state, and accelerate its cycles by Lemma 1. If no new
state is obtained, then we increment the bound K for the current branch and
continue the exploration. We thus interpret a large width as the accumulation
of imprecisions due to cycles. No cycle may be responsible for a large width, in
which case we increase the width threshold and continue the exploration.

We establish the correctness of our semi-algorithm in the following lemma.
When it answers Unsafe, it has found a path that ends in the target state, and
the proof shows that such a run exists in all Aν for ν > 0. If it answers Safe,
then it has terminated without visiting the target state. If δ0 denotes the upper
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bound on δ after termination, the proof shows that for all ν ∈ [0, δ0), an exact
exploration applied on Aν would visit the same symbolic states as our algorithm
when the IEDBMs are instantiated with δ ← ν. In other words, the exploration
search tree uniformly represents all the search trees that would be generated by
an exact algorithm applied on Aν for ν ∈ [0, δ0).

Lemma 12 (Correctness). For any timed automaton A and location �T , if
Algorithm 1 answers Unsafe then for all ν > 0, �T is reachable in Aν from the
initial state. If it answers Safe, then if δ0 denotes the upper bound on δ after
termination, then for all ν ∈ [0, δ0), Aν does not visit �T .

6 Experimental Evaluation

In this section, we evaluate the performance of our semi-algorithm on sev-
eral benchmarks from the literature; most of which are available from
www.uppaal.org, and have been considered in [21], with the exception of
the scheduling tests (Sched *) which were constructed from the experiments
of [17]. We implemented Alg. 1 in OCaml in a tool called Symrob (symbolic
robustness, available from www.ulb.ac.be/di/verif/sankur). We consider two
other competing algorithms: the first one is the recently published tool Verifix [21]
which solves the infinitesimal robust safety problem but does not output any
bound on δ. The second algorithm is our implementation of a binary search on the
values of δ which iteratively calls an exact model checker until a given precision
is reached.

The exact model checking algorithm is a forward exploration with DBMs
using LU extrapolation and the inclusion test of [19] implemented in Symrob.
We do not use advanced tricks such as symmetry reduction, federations of zones,
and clock decision diagrams; see e.g. [4]. The reason is that our goal here is
to compare algorithms rather than software tools. These optimizations could
be added to the exact model checker but also to our robust model checker (by
adapting to IEDBMs), but we leave this for future work.

In Table 1, the number of visited symbolic states (as IEDBMs for Symrob

and as DBMs for Verifix) and the running times are given. On most bench-
marks Symrob terminated faster and visited less states. We also note that Symrob
actually computed the largest δ below which safety holds for the benchmarks
CSMA/CD and Fischer. One can indeed check that syntactically enlarging the
guards by 1/3 (resp. 1/2) makes the respective classes of benchmarks unsafe (Re-
call that the upper bound δ0 is always strict in IEDBMs). On one benchmark,
Verifix wrongly classified the model as non-robust, which could be due to a
bug or to the presence of non-progress cycles in the model (see [11]).

Table 2 shows the performance of the binary search for varying precision
ε ∈ { 1

10 ,
1
20 ,

1
40}. With precision 1

10 , the binary search was sometimes faster than
Symrob (e.g. on CSMA/CD), and sometimes slower (e.g. Fischer); moreover,
the computed value of δ was underestimated in some cases (e.g. CSMA/CD
and Fischer benchmarks). With precision 1

20 , more precision was obtained on δ
but at a cost of an execution time that is often worse than that of Symrob

www.uppaal.org
www.ulb.ac.be/di/verif/sankur
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Table 1. Comparison between Symrob (breadth-first search, instantiated with K0 =
10) and Verifix [21]. The running time of the exact model checking implemented in
Symrob is given for reference in the column “Exact” (the specification was satisfied
without enlargement in all models). Note that the visited number of states is not
always proportional to the running time due to additional operations performed for
acceleration in both cases. The experiments were performed on an Intel Xeon 2.67
GHz machine.

Benchmark Robust – δ Visited States Time

Symrob Verifix Symrob Verifix Symrob Verifix Exact

CSMA/CD 9 Yes – 1/3 Yes 147,739 1,064,811 61s 294s 42s

CSMA/CD 10 Yes – 1/3 Yes 398,354 846,098 202s 276s 87s

CSMA/CD 11 Yes – 1/3 Yes 1,041,883 2,780,493 12m 26m 5m

Fischer 7 Yes – 1/2 Yes 35,029 81,600 11s 12s 6s

Fischer 8 Yes – 1/2 Yes 150,651 348,370 45s 240s 24s

Fischer 9 Yes – 1/2 Yes 627,199 1,447,313 4m 160m 2m20s

MutEx 3 Yes – 1000/11 Yes 37,369 984,305 3s 131s 3s

MutEx 4 No No 195,709 146,893 16s 41s 4s

MutEx 4 fixed Yes – 1/7 – 5,125,927 – 38m >24h 7m

Lip Sync – No – 29,647,533 >24h 14h 5s

Sched A Yes – 1/4 No* 9,217 16,995 11s 248s 2s

Sched B No – 50,383 – 105s >24h 40s

Sched C No No 5,075 5,356 3s 29s 2s

Sched D No No 15,075 928 2s 0.5s 0.5s

Sched E No No 31,566 317 5s 0.5s 0.5s

Table 2. Performance of binary search where the initial enlargement is 8, and the
required precision ε is either 1/10, 1/20 or 1/40. Note that when the model is not
robust, the binary search is inconclusive. Nonetheless, in these cases, we do know that
the model is unsafe for the smallest δ for which we model-checked the model. In these
experiments the choice of the initial condition (here, δ = 8) wasn’t significant since the
first iterations always took negligeable time compared to the case δ < 1.

Benchmark Robust – δ Visited States Time

ε = 1/10 ε = 1/20 ε = 1/10 ε = 1/20 ε = 1/10 ε = 1/20 ε = 1/40

CSMA/CD 9 Yes – 1/4 Yes – 5/16 151,366 301,754 43s 85s 123s

CSMA/CD 10 Yes – 1/4 Yes – 5/16 399,359 797,914 142s 290s 428s

CSMA/CD 11 Yes – 1/4 Yes – 5/16 1,043,098 2,085,224 8m20s 17m 26m

Fischer 7 Yes – 3/8 Yes – 7/16 75,983 111,012 15s 21s 31s

Fischer 8 Yes – 3/8 Yes – 7/16 311,512 462,163 53s 80s 129s

Fischer 9 Yes – 3/8 Yes – 7/16 1,271,193 1,898,392 5m 7m30s 12m

MutEx 3 Yes – 8 Yes – 8 37,369 37,369 2s 2s 2s

MutEx 4 Inconclusive 1,369,963 1,565,572 1m5s 1m15s 1m30s

MutEx 4 fix’d Yes – 5/8 Yes – 9/16 6,394,419 9,864,904 9m30s 17m 25m

Lip Sync Inconclusive – – >24h >24h >24h

Sched A Yes – 7/16 Yes – 15/32 27,820 37,101 6s 9s 11s

Sched B Inconclusive 109,478 336,394 35s 140s 20m

Sched C Inconclusive 10,813 36,646 2s 6s 56s

Sched D Inconclusive 27,312 182,676 2s 9s 60s

Sched E Inconclusive 98,168 358,027 6s 17s 95s



Symbolic Quantitative Robustness Analysis of Timed Automata 497

and systematically more states to visit. Increasing the precision to 1
40 leads to

even longer execution times. On non-robust models, a low precision analysis is
often fast, but since the result is inconclusive, one rather increases the precision,
leading to high execution times. The binary search can be made complete by
choosing the precision exponentially small [11] but this is too costly in practice.

7 Conclusion

We presented a symbolic procedure to solve the quantitative robust safety prob-
lem for timed automata based on infinitesimally enlarged DBMs. A good per-
formance is obtained thanks to the abstraction operators we lifted to the para-
metric setting, and to the lazy approach used to accelerate cycles. Although no
termination guarantee is given, we were able to treat several case studies from
the literature, demonstrating the feasability of robustness verification, and the
running time was often comparable to that of exact model checking. Our exper-
iments show that binary search is often fast if run with low precision; however,
as precision is increased the gain of a parametric analysis becomes clear. Thus,
both approaches might be considered depending on the given model.

An improvement over binary search for a problem of refinement in timed
games is reported in [23]; this might be extended to our problem as well. Both
our tool and Verifix fail when a large number of cycles needs to be accelerated,
and this is difficult to predict. An improvement could be obtained by combining
our lazy acceleration technique using the combined computation of the cycles
of [21]. An extension to LTL objectives could be possible using [9].
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