
Cascade

(Competition Contribution)

Wei Wang and Clark Barrett

New York University, New York, United States

Abstract. Cascade is a static program analysis tool developed at New
York University. It uses bounded model checking to generate verification
conditions and checks them using an SMT solver which either produces
a proof of correctness or gives a concrete trace showing how an assertion
can fail. It supports the majority of standard C features except for float-
ing point. A distinguishing feature of Cascade is that its analysis uses a
memory model which divides up memory into several partitions based
on alias information.

1 Verification Approach

Boundedmodel checking (BMC) [4] is an efficientmethod to detect bugs automat-
ically. The technique constructs a formula that encodes a program up to a user-
specified bound. A memory model is a crucial part of the encoding in bounded
model checking of programs, determining how the contents of and modifications
to memory are represented. The most precise model is a flat model, which repre-
sents memory as a single array of bytes. However, this model typically does not
scale well because the solver cannot easily infer which regions are disjoint.

Cascade uses a novel partition memory model. The main idea of this model
is to split the memory according to the alias information acquired by incorpo-
rating a Steensgaard points-to analysis module [8]. This ensures that variables
and dynamically allocated regions that may alias end up in the same parti-
tion. Each partition is modeled using a separate array. The memory partitioning
significantly eases the burden of reasoning about disjointness and thus scales
much better than the flat memory model, while the points-to-analysis approach
ensures the soundness of modeling type-unsafe behaviors in C.

2 System Architecture

Cascade [9] is implemented in Java. The overall framework is illustrated in Fig-
ure 1. The C front-end converts a C program into an abstract syntax tree using
a parser built using the xtc parser generator [6]. Both the core module and pre-
processing module take the abstract syntax tree as input. In the preprocessing
module, the points-to analysis is performed for each function in the C program
without function-inlining or loop-unrolling. All the alias groups and the points-
to relations among them are discovered here. The core module uses symbolic

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 420–422, 2015.
DOI: 10.1007/978-3-662-46681-0_33



Cascade 421

execution [2, 3, 7] over the abstract syntax tree to build verification conditions
as a SMT formula. Currently, it takes the approach of simple forward execution.
The partition memory model is built based on the alias information generated at
the preprocessing step. Verification conditions are discharged by an SMT solver.
Cascade currently supports both CVC4 [1] and Z3 [5].

Fig. 1. Cascade framework

3 Strength and Weaknesses of the Approach

Cascade supports arbitrary user assertions, including reachability of labels in
the C-code. Furthermore, it can detect bugs related to memory safety, including
invalid memory accesses, invalid memory frees and memory leaks. In SV-COMP
2015, these checks are only enabled for the MemorySafety category. Cascade
relies on loop unrolling and function inlining, and so it may perform poorly if
either of these steps are required to be too large. In the competition, Cascade uses
successively larger unrolls until a fixed bound of 1024 is reached, or a violation
is detected, or a timeout is reached. Note that we set a timeout of 850 seconds.
We also use a fixed function-inlining depth of 2. For memory safety checking,
we use a different set of parameters: the maximum unroll is 200 and the inline
depth is 5. If no error is found or the ERROR label cannot be reached within the
maximum bounds, Cascade will report SAFE. Otherwise, it will report UNSAFE
and the witness will be dumped in the GraphML format.

4 Tool Setup and Configuration

The version of Cascade submitted to SV-COMP 2015 can be downloaded at:

http://cascade.cims.nyu.edu/bin/sv-comp-2015-4113-cvc4-patch.tar.gz

http://cascade.cims.nyu.edu/bin/sv-comp-2015-4113-cvc4-patch.tar.gz


422 W. Wang and C. Barrett

This version uses CVC4 as the back-end solver. Cascade requires JVM version
1.7.0. The archive unzips to a directory called sv-comp-2015-4113-patch
which contains a script called run cascade bmc. The script should be run from
the sv-comp-2015-4113-patch directory as follows:

run_cascade_bmc -trace <c-benchmark>

where c-benchmark is the name of the C file to be analyzed. The results are
printed on stdout and should be interpreted as follows:

– if the last line printed is UNSAFE, this should be interpreted as FALSE;
– if the last line printed is UNSAFE:p <prop> this should be intepreted as
FALSE(<prop>);

– otherwise, if the last word printed is SAFE, this should be interpreted as
TRUE;

– any other result should be interpreted as UNKNOWN.

For results that correspond to FALSE, a witness is dumped to the file:

out/<benchmark-name>/witness.graphml.

where <benchmark-name> is the filename of the C benchmark that was checked
without the path prefix.

In the competition, Cascade will participate in the following categories: Bit
Vectors, Control Flow and Integer Variables, Heap Manipulation, and Memory
Safety. We will not participate in the others for various reasons including lack
of support for function pointers and concurrency.

References

1. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

2. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model check-
ing using SAT procedures instead of BDDs. In: Proceedings of Design Automation
Conference (DAC 1999), vol. 317, pp. 226–320 (1999)

3. Brand, D., Joyner, W.H.: Verification of protocols using symbolic execution. Com-
put. Networks 2, 351 (1978)

4. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Hei-
delberg (2004)

5. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS, pp. 337–340
(2008)

6. Grimm, R.: Rats!, a parser generator supporting extensible syntax (2009)
7. King, J.C.: Symbolic execution and program testing. Communications of the

ACM 385, 226–394 (1976)
8. Steensgaard, B.: Points-to analysis in almost linear time. In: ACM Symposium on

Principles of Programming Languages, pp. 32–41 (1996)
9. Wang, W., Barrett, C., Wies, T.: Cascade 2.0. In: McMillan, K.L., Rival, X. (eds.)

VMCAI 2014. LNCS, vol. 8318, pp. 142–160. Springer, Heidelberg (2014)


	Cascade
	1 Verification Approach
	2 System Architecture
	3 Strength and Weaknesses of the Approach
	4 Tool Setup and Configuration




