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Abstract. AProVE is a system for automatic termination and complex-
ity proofs of C, Java, Haskell, Prolog, and term rewrite systems. The
particular strength of AProVE when analyzing C is its capability to rea-
son about pointer arithmetic combined with direct memory accesses (as,
e.g., in standard implementations of string algorithms). As a prerequisite
for termination, AProVE also proves memory safety of C programs.

1 Verification Approach and Software Architecture

To analyze programs with explicit pointer arithmetic, one has to handle the
interplay between addresses and the values they point to. AProVE uses an ap-
proach based on symbolic execution and abstraction to transform the input
program into a symbolic execution graph that over-approximates all possible
program runs. Language-specific features (such as pointer arithmetic in C) are
handled when generating this graph. The nodes of the symbolic execution graph
are abstract states that represent sets of actual program states, and paths in the
graph correspond to evaluations in the program. To keep the graph finite, we
use abstraction to replace several states at the same program location by a more
general new state. To formalize abstract states, we introduce a novel abstract do-
main that can track allocated memory in detail. An important advantage of our
domain is that although it is based on separation logic, standard integer SMT
solving can be used for all reasoning needed in our approach. Thus, the rules for
symbolic execution and generalization of states can easily be automated.

In C, violating memory safety (i.e., accessing non-allocated memory) leads to
undefined (and possibly non-terminating) behavior. So to prove termination of C
programs with low-level memory access, one must also ensure memory safety.
Hence, during the construction of the symbolic execution graph, we also prove
memory safety of the program. In a similar way, one could also prove other safety
properties by checking that the graph has no path from initial to “unsafe” states.

After verifying memory safety, the graph is automatically transformed into an
integer rewrite system (IRS) whose termination is analyzed afterwards. In this
way, the same termination techniques in the back-end of AProVE are used for ter-
mination analysis of different programming languages in the front-end. A graph-
ical overview of AProVE’s architecture is shown on the next page. Details on
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our approach for analyzing
C programs can be found
in [9]. In [7], we explain
the use of AProVE for
other programming lan-
guages and give references to our corresponding papers on the underlying theory.

2 Strengths and Weaknesses

The strength of our approach for C is that it handles algorithms where the control
flow depends on explicit pointer arithmetic and on detailed information about the
contents of addresses, whereas most other tools fail for such algorithms. More-
over, in contrast to AProVE, most other termination provers ignore the problem
of memory safety and just prove termination under the assumption that the pro-
gram is memory safe. The success of AProVE at the annual international Termi-
nation Competition1 shows that our rewriting-based approach is well suited for
termination analysis of real-world programming languages. Here, AProVE won
almost all categories related to termination of Java, Haskell, Prolog, and to ter-
mination or innermost runtime complexity of rewriting. Moreover, AProVE was
the most powerful tool for termination analysis of C (the competition had such a
category for the first time in 2014). At SV-COMP, AProVE already participated
very successfully in 2014 when the competition featured a demonstration cate-
gory for termination of C programs for the first time. This year, AProVE won the
termination category of SV-COMP by proving termination for 305 of the 395
programs in this category (44 of the remaining programs are non-terminating,
thus AProVE was successful on approx. 87% of the terminating ones).

On the other hand, since AProVE constructs symbolic execution graphs to
prove memory safety and to infer suitable invariants needed for termination
proofs, its runtime is often higher than that of other tools. Moreover, since sym-
bolic execution graphs over-approximate the set of actual program runs, AProVE
currently cannot disprove termination or memory safety.2 A further weakness is
that we only handle algorithms with integers and pointers, but no struct types
yet, and that we assume integers to be unbounded. This is why AProVE cur-
rently only participates in the termination category, since this category assumes
unbounded integers and the examples in this category do not contain structs.
Finally, as our approach is targeted toward termination, up to now we did not
implement support for other forms of safety besides memory safety.

3 Setup and Configuration

AProVE is developed by the “Programming Languages and Verification” group
led by Jürgen Giesl at RWTH Aachen University. AProVE’s main website is [1].

1 http://www.termination-portal.org/wiki/Termination_Competition
2 AProVE already proves non-termination of term rewriting and Java. We are currently
working on adapting these techniques to the abstract domain used for C programs.

http://www.termination-portal.org/wiki/Termination_Competition
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Here, AProVE can be downloaded as a command-line tool or as a plug-in for
the popular Eclipse software development environment [5]. In this way, AProVE
can already be applied during program construction. Moreover, AProVE can also
be accessed directly via a web interface. The website [1] also contains a list of
external tools used by AProVE and a list of present and past contributors.

The particular version for analyzing C programs according to the SV-COMP
format can be downloaded from the following URL. In this version, we disabled
the check for memory safety, since it was agreed that only memory safe programs
will be included in the termination category of SV-COMP.

http://aprove.informatik.rwth-aachen.de/eval/Pointer/AProVE.zip

All files from this archive have to be extracted into one folder. AProVE is im-
plemented in Java and needs a Java 7 Runtime Environment. To avoid handling
the intricacies of C, we analyze programs in the platform-independent intermedi-
ate representation of the LLVM compilation framework [8] and AProVE requires
the Clang compiler Version 2.9 [2] to translate C sources to LLVM. To solve the
arising search problems in the back-end, AProVE needs the satisfiability checkers
Z3 [3], Yices [4], and MiniSAT [6]. Moreover, extending the path environment is
necessary so that AProVE can find the corresponding programs.

AProVE participated in the category “Termination”. It can be invoked for C
files using the following call pattern. Here, <problemFile> is the C file to be
analyzed for termination of the call main(), while <outputFile> is a file where
AProVE should store its proof (or proof attempt).

./AProVE.sh <problemFile> <outputFile>
AProVE prints TRUE on the standard output if it can prove termination.

Otherwise it prints UNKNOWN. As mentioned, currently, AProVE is not able to
disprove termination for C programs, so AProVE does not print FALSE.
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