
Stateless Model Checking for TSO and PSO

Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig,
Bengt Jonsson, Carl Leonardsson, and Konstantinos Sagonas

Dept. of Information Technology, Uppsala University, Sweden

Abstract. We present a technique for efficient stateless model checking of pro-
grams that execute under the relaxed memory models TSO and PSO. The basis for
our technique is a novel representation of executions under TSO and PSO, called
chronological traces. Chronological traces induce a partial order relation on re-
laxed memory executions, capturing dependencies that are needed to represent
the interaction via shared variables. They are optimal in the sense that they only
distinguish computations that are inequivalent under the widely-used representa-
tion by Shasha and Snir. This allows an optimal dynamic partial order reduction
algorithm to explore a minimal number of executions while still guaranteeing full
coverage. We apply our techniques to check, under the TSO and PSO memory
models, LLVM assembly produced for C/pthreads programs. Our experiments
show that our technique reduces the verification effort for relaxed memory mod-
els to be almost that for the standard model of sequential consistency. In many
cases, our implementation significantly outperforms other comparable tools.

1 Introduction

Verification and testing of concurrent programs is difficult, since one must consider all
the different ways in which instructions of different threads can be interleaved. To make
matters worse, most architectures implement relaxed memory models, such as TSO and
PSO [32,4], which make threads interact in even more and subtler ways than by standard
interleaving. For example, a processor may reorder loads and stores by the same thread
if they target different addresses, or it may buffer stores in a local queue.

A successful technique for finding concurrency bugs (i.e., defects that arise only un-
der some thread schedulings), and for verifying their absence, is stateless model check-
ing (SMC) [16], also known as systematic concurrency testing [21,35]. Starting from a
test, i.e., a way to run a program and obtain some expected result, which is terminat-
ing and threadwisely deterministic (e.g. no data-nondeterminism), SMC systematically
explores the set of all thread schedulings that are possible during runs of this test. A
special runtime scheduler drives the SMC exploration by making decisions on schedul-
ing whenever such decisions may affect the interaction between threads, so that the
exploration covers all possible executions and detects any unexpected test results, pro-
gram crashes, or assertion violations. The technique is completely automatic, has no
false positives, does not suffer from memory explosion, and can easily reproduce the
concurrency bugs it detects. SMC has been successfully implemented in tools such as
VeriSoft [17], CHESS [25], and Concuerror [12].

There are two main problems for using SMC in programs that run under relaxed
memory models (RMM). The first problem is that already under the standard model of

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 353–367, 2015.
DOI: 10.1007/978-3-662-46681-0_28

354 P.A. Abdulla et al.

sequential consistency (SC) the number of possible thread schedulings grows exponen-
tially with the length of program execution. This problem has been addressed by partial
order reduction (POR) techniques that achieve coverage of all thread schedulings, by
exploring only a representative subset [34,27,15,13]. POR has been adapted to SMC
in the form of Dynamic Partial Order Reduction (DPOR) [14], which has been further
developed in recent years [29,21,19,28,33,2]. DPOR is based on augmenting each exe-
cution by a happens-before relation, which is a partial order that captures dependencies
between operations of the threads. Two executions can be regarded as equivalent if they
induce the same happens-before relation, and it is therefore sufficient to explore one ex-
ecution in each equivalence class (called a Mazurkiewicz trace [24]). DPOR algorithms
guarantee to explore at least one execution in each equivalence class, thus attaining
full coverage with reduced cost. A recent optimal algorithm [2] guarantees to explore
exactly one execution per equivalence class.

The second problem is that in order to extend SMC to handle relaxed memory mod-
els, the operational semantics of programs must be extended to represent the effects
of RMM. The natural approach is to augment the program state with additional struc-
tures, e.g., store buffers in the case of TSO, that model the effects of RMM [3,5,26].
This causes blow-ups in the number of possible executions, in addition to those pos-
sible under SC. However, most of these additional executions are equivalent to some
SC execution. To efficiently apply SMC to handle RMM, we must therefore extend
DPOR to avoid redundant exploration of equivalent executions. The natural definition
of “equivalent” under RMM can be derived from the abstract representation of execu-
tions due to Shasha and Snir [31], here called Shasha-Snir traces, which is often used in
model checking and runtime verification [18,20,10,11,7,8]. Shasha-Snir traces consist
of an ordering relation between dependent operations, which generalizes the standard
happens-before relation on SC executions; indeed, under SC, the equivalence relation
induced by Shasha-Snir traces coincides with Mazurkiewicz traces. It would thus be
natural to base DPOR for RMM on the happens-before relation induced by Shasha-Snir
traces. However, this relation is in general cyclic (due to reorderings possible under
RMM) and can therefore not be used as a basis for DPOR (since it is not a partial or-
der). To develop an efficient technique for SMC under RMM we therefore need to find
a different representation of executions under RMM. The representation should define
an acyclic happens-before relation. Also, the induced trace equivalence should coincide
with the equivalence induced by Shasha-Snir traces.

Contribution. In this paper, we show how to apply SMC to TSO and PSO in a way
that achieves maximal possible reduction using DPOR, in the sense that redundant ex-
ploration of equivalent executions is avoided. A cornerstone in our contribution is a
novel representation of executions under RMM, called chronological traces, which de-
fine a happens-before relation on the events in a carefully designed representation of
program executions. Chronological traces are a succinct canonical representation of
executions, in the sense that there is a one-to-one correspondence between chronologi-
cal traces and Shasha-Snir traces. Furthermore, the happens-before relation induced by
chronological traces is a partial order, and can therefore be used as a basis for DPOR.
In particular, the Optimal-DPOR algorithm of [2] will explore exactly one execution
per Shasha-Snir trace. In particular, for so-called robust programs that are not affected

Stateless Model Checking for TSO and PSO 355

by RMM (these include data-race-free programs), Optimal-DPOR will explore as many
executions under RMM as under SC: this follows from the one-to-one correspondence
between chronological traces and Mazurkiewicz traces under SC. Furthermore, robust-
ness can itself be considered a correctness criterion, which can also be automatically
checked with our method (by checking whether the number of equivalence classes is
increased when going from SC to RMM).

We show the power of our technique by using it to implement an efficient stateless
model checker, which for C programs with pthreads explores all executions of a test-
case or a program, up to some bounded length. During exploration of an execution, our
implementation generates the corresponding chronological trace. Our implementation
employs the source-DPOR algorithm [2], which is simpler than Optimal-DPOR, but
about equally effective. Our experimental results for analyses under SC, TSO and PSO
of number of intensely racy benchmarks and programs written in C/pthreads, shows that
(i) the effort for verification under TSO and PSO is not much larger than the effort for
verification under SC, and (ii) our implementation compares favourably against CBMC,
a state-of-the-art bounded model checking tool, showing the potential of our approach.

2 Overview of Main Concepts

store: x :=1

load: $r:=y

store: y:=1

load: $s:=x

p q

Fig. 1. A program implementing the
classic idiom of Dekker’s mutual ex-
clusion algorithm

This section informally motivates and explains the
main concepts of the paper. To focus the pre-
sentation, we consider mainly the TSO model.
TSO is relevant because it is implemented in the
widely used x86 as well as SPARC architectures.
We first introduce TSO and its semantics. There-
after we introduce Shasha-Snir traces, which ab-
stractly represent the orderings between dependent
events in an execution. Since Shasha-Snir traces
are cyclic, we introduce an extended representa-
tion of executions, for which a natural happens-before relation is acyclic. We then
describe how this happens-before relation introduces undesirable distinctions between
executions, and how our new representation of chronological traces remove these dis-
tinctions. Finally, we illustrate how a DPOR algorithm exploits the happens-before re-
lation induced by chronological traces to explore only a minimal number of executions,
while still guaranteeing full coverage.

TSO — an Introduction. TSO relaxes the ordering between stores and subsequent loads
to different memory locations. This can be explained operationally by equipping each
thread with a store buffer [30], which is a FIFO queue that contains pending store oper-
ations. When a thread executes a store instruction, the store does not immediately affect
memory. Instead it is delayed and enqueued in the store buffer. Nondeterministically,
at some later point an update event occurs, dequeueing the oldest store from the store
buffer and updating the memory correspondingly. Load instructions take effect imme-
diately, without being delayed. Usually a load reads a value from memory. However, if
the store buffer of the same thread contains a store to the same memory location, the
value is instead taken from the store in the store buffer.

356 P.A. Abdulla et al.

p: store: x :=1 // Enqueue store

p: load: $r:=y // Load value 0

q: store: y:=1 // Enqueue store

q: update // y = 1 in memory

q: load: $s:=x // Load value 0

p: update // x = 1 in memory

Fig. 2. An execution of the program in Fig. 1.
Notice that $r = $s = 0 at the end.

To see why this buffering semantics
may cause unexpected program behav-
iors, consider the small program in Fig. 1.
It consists of two threads p and q. The
thread p first stores 1 to the memory loca-
tion x, and then loads the value at memory
location y into its register $r. The thread q
is similar. All memory locations and reg-
isters are assumed to have initial values 0.
It is easy to see that under the SC semantics, it is impossible for the program to ter-
minate in a state where both registers $r and $s hold the value 0. However, under the
buffering semantics of TSO, such a final state is possible. Fig. 2 shows one such pro-
gram execution. We see that the store to x happens at the beginning of the execution, but
does not take effect with respect to memory until the very end of the execution. Thus
the store to x and the load to y appear to take effect in an order opposite to how they
occur in the program code. This allows the execution to terminate with $r = $s = 0.

Shasha-Snir Traces for TSO. Partial order reduction is based on the idea of capturing
the possible orderings between dependent operations of different threads by means of a
happens-before relation. When threads interact via shared variables, two instructions are
considered dependent if they access the same global variable, and at least one is a write.
For relaxed memory models, Shasha and Snir [31] introduced an abstract representation
of executions, here referred to as Shasha-Snir traces, which captures such dependencies
in a natural way. Shasha-Snir traces induce equivalence classes of executions. Under
sequential consistency, those classes coincide with the Mazurkiewicz traces. Under a
relaxed memory model, there are also additional Shasha-Snir traces corresponding to
the non-sequentially consistent executions.

store: x :=1

load: $r:=y

store: y:=1

load: $s:=x

p q

Fig. 3. The Shasha-Snir trace corre-
sponding to the execution in Fig. 2

A Shasha-Snir trace is a directed graph, where
edges capture observed event orderings. The
nodes in a Shasha-Snir trace are the executed in-
structions. For each thread, there are edges be-
tween each pair of subsequent instructions, cre-
ating a total order for each thread. For two in-
structions i and j in different threads, there is an
edge i → j in a trace when i causally precedes j.
This happens when j reads a value that was writ-
ten by i, when i reads a memory location that is
subsequently updated by j, or when i and j are subsequent writes to the same memory
location. In Fig. 3 we show the Shasha-Snir trace for the execution in Fig. 2.

Making the Happens-Before Relation Acyclic. Shasha-Snir traces naturally represent
the dependencies between operations in an execution, and are therefore a natural basis
for applying DPOR. However, a major problem is that the happens-before relation in-
duced by the edges is in general cyclic, and thus not a partial order. This can be seen
already in the graph in Fig. 3. This problem can be addressed by adding nodes that
represent explicit update events. That would be natural since such events occur in the

Stateless Model Checking for TSO and PSO 357

representation of the execution in Fig. 2. When we consider the edges of the Shasha-
Snir trace, we observe that although there is a conflict between p : load: $r:=y and
q : store: y:=1, swapping their order in the execution in Fig. 2 has no observable ef-
fect; the load still gets the same value from memory. Therefore, we should only be
concerned with the order of the load relative to the update event q : update.

store: x :=1

load: $r:=y

update

store: y:=1

load: $s:=x

update

p q

Fig. 4. A trace for the execution in Fig. 2 where
updates are separated from stores

These observations suggest to define
a representation of traces that separates
stores from updates. In Fig. 4 we have re-
drawn the trace from Fig. 3. Updates are
separated from stores, and we order up-
dates, rather than stores, with operations
of other threads. Thus, there are edges
between updates to and loads from the
same memory location, and between two
updates to the same memory location. In
Fig. 4, there is an edge from each store to
the corresponding update, reflecting the principle that the update cannot occur before
the store. There are edges between loads and updates of the same memory location, re-
flecting that swapping their order will affect the observed values. However, notice that
for this program there are no edges between the updates and loads of the same thread,
since they access different memory locations.

Chronological Traces for TSO. Although the new representation is a valid partial order,
it will in many cases distinguish executions that are semantically equivalent according
to the Shasha-Snir traces. The reason for this is TSO buffer forwarding: When a thread
executes a load to a memory location x, it will first check its store buffer. If the buffer
contains a store to x, then the load returns the value of the newest such store buffer entry
instead of loading the value from memory. This causes problems for a happens-before
relation that orders all updates and loads of the same memory location.

store: x:=1

load: $r:=x

store: x:=2

p q

Fig. 5. A program illustrating
buffer forwarding

For example, consider the program shown in Fig. 5.
Any execution of this program will have two updates
and one load to x. Those accesses can be permuted in
six different ways. Fig. 6(a), 6(b) and 6(c) show three of
the corresponding happens-before relations. In Fig. 6(a)
and 6(b) the load is satisfied by buffer forwarding, and
in 6(c) by a read from memory. These three relations
all correspond to the same Shasha-Snir trace, shown in
Fig. 7(a), and they all have the same observable behav-
ior, since the value of the load is obtained from the same store. Hence, we should find a
representation of executions that does not distinguish between these three cases.

We can now describe chronological traces, our representation which solves the above
problems, by omitting some of the edges, leaving some nodes unrelated. More precisely,
edges between loads and updates should be omitted in the following cases.

1. A load is never related to an update originating in the same thread. This captures
the intuition that swapping the order of such a load and update has no effect other

358 P.A. Abdulla et al.

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

(a)

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

(b)

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

(c)

Fig. 6. Three redundant happens-before relations for Fig. 5

store: x:=1

load: $r:=x

store: x:=2

p q

(a) A Shasha-Snir trace corresponding
to all three traces of Fig. 6

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

(b) The three traces can be merged into this
single trace

Fig. 7. Traces unifying the ones in Fig. 6

than changing a load from memory into a load of the same value from buffer, as
seen when comparing Fig. 6(b) and 6(c).

2. A load ld from a memory location x by a thread p is never related to an update by
an another thread q, if the update by q precedes some update to x originating in a
store by p that precedes ld. This is because the value written by the update of q is
effectively hidden to the load ld by the update to x by p. Thus, when we compare
Fig. 6(a) and 6(b), we see that the order between the update by q and the load is
irrelevant, since the update by q is hidden by the update by p (note that the update
by p originates in a store that precedes the load).

When we apply these rules to the example of Fig. 5, all of the three representations in
Fig. 6(a), 6(b), and 6(c) merge into a single representation shown in Fig. 7(b). In total,
we reduce the number of distinguished cases for the program from six to three. This is
indeed the minimal number of cases that must be distinguished by any representation,
since the different cases result in different values being loaded by the load instruction
or different values in memory at the end of the execution. Our proposed representation
is optimal for the programs in Fig. 1 and 5. In Theorem 1 of Section 3 we will show
that such an optimality result holds in general.

Chronological Traces for PSO. The TSO and PSO memory models are very similar.
Adapting our techniques to PSO is done by slightly altering the definition of chrono-
logical traces. The details can be found in our technical report [1].

DPOR Based on Chronological Traces. Here, we illustrate how stateless model check-
ing performs DPOR based on chronological traces, in order to explore one execution
per chronological trace. As example, we use the small program of Fig. 5.

Stateless Model Checking for TSO and PSO 359

The algorithm initially explores an arbitrary execution of the program, and simul-
taneously generates the corresponding chronological trace. In our example, this ex-
ecution can be the one shown in Fig. 8(a), along with its chronological trace. The
algorithm then finds those edges of the chronological trace that can be reversed by
changing the thread scheduling of the execution. In Fig. 8(a), the reversible edges are
the ones from p : update to q : update, and from p : load: $r:=x to q : update. For
each such edge, the program is executed with this edge reversed. Reversing an edge
can potentially lead to a completely different continuation of the execution, which
must then be explored.

In the example, reversing the edge from p : load: $r:=x to q : update will generate
the execution and chronological trace in Fig. 8(b). Notice that the new execution is
observably different from the previous one: the load reads the value 2 instead of 1.

The chronological traces in both Fig. 8(a) and 8(b) display a reversible edge from
p : update to q : update. The algorithm therefore initiates an execution where q :
update is performed before p : update. The algorithm will generate the execution and
chronological trace in Fig. 8(c).

Notice that the only reversible edge in Fig. 8(c) is the one from q : update to p :
update. However, executing p : update before q : update has already been explored
in Fig. 8(a) and Fig. 8(b). Since there are no more edges that can be reversed, SMC
terminates, having examined precisely the three chronological traces that exist for the
program of Fig. 5.

p: store: x:=1
p: update
p: load: $r:=x

q: store: x:=2
q: update

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

(a)

p: store: x:=1
p: update

q: store: x:=2
q: update

p: load: $r:=x

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

(b)

p: store: x:=1
q: store: x:=2
q: update

p: update
p: load: $r:=x

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

(c)

Fig. 8. How SMC with DPOR explores the program of Fig. 5

3 Formalization

In this section we summarize our formalization of the concepts of Section 2. We intro-
duce our representation of program executions, define chronological traces, formalize
Shasha-Snir traces for TSO, and prove a one-to-one correspondence between chrono-
logical traces and Shasha-Snir traces. The formalization is self-contained, but for lack
of space, we sometimes use precise English rather than formal notation. A more fully
formalized version, and theorem proofs, can be found in our technical report [1].

360 P.A. Abdulla et al.

Parallel Programs. We consider parallel programs consisting of a number of threads
that run in parallel, each executing a deterministic code, written in an assembly-like
programming language. The language includes instructions store: x:=$r, load: $r:=x,
and fence. Other instructions do not access memory, and their precise syntax and se-
mantics are ignored for brevity. Here, and in the remainder of this text, x, y, z are used
to name memory locations, u, v, w are used to name values, and $r, $s, $t are used to
name processor registers. We use TID to denote the set of all thread identifiers.

Formal TSO Semantics. We formalize the TSO model by an operational semantics.
Define a configuration as a pair (L,M), where M maps memory locations to values,
and L maps each thread p to a local configuration of the form L(p) = (R,B), where R
is the state of local registers and program counter of p, and B is the contents of the store
buffer of p. This content is a word over pairs (x, v) of memory locations and values.
We let the notation B(x) denote the value v such that (x, v) is the rightmost pair in B of
form (x,). If there is no such pair in B, then B(x) =⊥.

In order to accommodate memory updates in our operational semantics, we assume
that for each thread p ∈ TID, there is an auxiliary thread upd(p), which nondeter-
ministically performs memory updates from the store buffer of p. We use AuxTID =
{upd(p)|p ∈ TID} to denote the set of auxiliary thread identifiers. We use p and q to
refer to real or auxiliary threads in TID ∪ AuxTID as convenient.

For configurations c = (L,M) and c′ = (L′,M′), we write c
p−→ c′ to denote that

from configuration c, thread p can execute its next instruction, thereby changing the
configuration into c′. Let L(p) = (R,B), and Rpc be obtained from R by advancing the
program counter after p executes its next instruction. Depending on this next instruction
op, we have the following cases.

Store: If op has the form store: x:=$r, then c
p−→ c′ iff M′ = M and L

′ = L[p ←↩
(Rpc,B · (x, v))] where v = R($r), i.e., instead of updating the memory, we insert the
entry (x, v) at the end of the store buffer of the thread.

Load: If op has the form load: $r:=x, then M
′ = M and either

1. (From memory) B(x) =⊥ and L
′ = L[p ←↩ (Rpc[$r ←↩ M(x)],B)], i.e., there is

no entry for x in the thread’s own store buffer, so the value is read from memory, or
2. (Buffer forwarding) B(x) �=⊥ and L

′ = L[p ←↩ (Rpc[$r ←↩ B(x)],B)], i.e., p
reads the value of x from its latest entry in its store buffer.

Fence: If op has the form fence, then c
p−→ c′ iff B = ε and M

′ = M and L
′ = L[p ←↩

(Rpc,B)]. A fence can only be executed when the store buffer of the thread is empty.

Update: In addition to instructions which are executed by the threads, at any point
when a store buffer is non-empty, an update event may nondeterministically occur. The
memory is then updated according to the oldest (leftmost) letter in the store buffer,
and that letter is removed from the buffer. To formalize this, we will assume that the

auxiliary thread upd(p) executes a pseudo-instruction u(x). We then say that c
upd(p)−−−−→

c′ iff B = (x, v) · B′ for some x, v, B′ and M
′ = M[x ←↩ v] and L

′ = L[p ←↩ (R,B′)].

Stateless Model Checking for TSO and PSO 361

Program Executions. A program execution is a sequence c0
p1−→ c1

p2−→ · · · pn−→ cn
of configurations related by transitions labelled by actual or auxiliary thread IDs. Since
each transition of each program thread (including the auxiliary threads of form upd(q))
is deterministic, a program run is uniquely determined by its sequence of thread IDs. We
will therefore define an execution as a word of events. Each event represents a transition
in the execution as a triple (p, i, j), where p is a regular or auxiliary thread executing an
instruction i (which can possibly be an update), and the natural number j is such that
the event is the jth event of p in the execution.

Chronological Traces. We can now introduce the main conceptual contribution of the
paper, viz. chronological traces. For an execution τ we define its chronological trace
TC(τ) as a directed graph 〈V,E〉. The vertices V are all the events in τ (both events
representing instructions and events representing updates). The edges are the union of
six relations: E = →po

τ ∪ →su
τ ∪→uu

τ ∪→src-ct
τ ∪→cf-ct

τ ∪→uf
τ . These edge relations

are defined as follows, for two arbitrary events e = (p, i, j), e′ = (p′, i′, j′) ∈ V :

Program Order: e→po
τ e′ iff p = p′ and j′ = j + 1, i.e., e and e′ are consecutive events

of the same thread.

Store to Update: e→su
τ e

′ iff e′ is the update event corresponding to the store e.

Update to Update: e→uu
τ e′ iff i = u(x) and i′ = u(x) for some x, and e and e′ are

consecutive updates to the memory location x.

Source: e→src-ct
τ e′ iff e′ is a load which reads the value of the update event e, which

is from a different process. Notice that this definition excludes the possibility of p =
upd(p′); a load is never src-related to an update from the same thread.

Conflict: e→cf-ct
τ e′ iff e′ is the update that overwrites the value read by e.

Update to Fence: e→uf
τ e

′ iff i = u(x) for some x, and i′ = fence and p = upd(p′)
and e is the latest update by p which occurs before e′ in τ . The intuition here is that the
fence cannot be executed until all pending updates of the same thread have been flushed
from the buffer. Hence the updates are ordered before the fence, and the chronological
trace has an edge from the last of these updates to the fence event.

Shasha-Snir Traces. We will now formalize Shasha-Snir traces, and prove that chrono-
logical traces are equivalent to Shasha-Snir traces, in the sense that they induce the same
equivalence relation on executions. We first recall the definition of Shasha-Snir traces.
We follow the formalization by Bouajjani et al. [8].

First, we introduce the notion of a completed execution: An execution τ is completed
when all stores have reached memory by means of a corresponding update event. In the
context of Shasha-Snir traces, we will restrict ourselves to completed executions.

For a completed execution τ , we define the Shasha-Snir trace of τ as the graph
T (τ) = 〈V,E〉 where V is the set of all non-update events (p, i, j) in τ (i.e., i �= u(x)
for all x). The edges E is the union of four relations E = →po

τ ∪→st
τ ∪→src-ss

τ ∪→cf-ss
τ ,

where →po
τ (program order) is the same as for Chronological traces, and where, letting

e = (p, i, j) and e′ = (p′, i′, j′):

362 P.A. Abdulla et al.

Store Order: e→st
τ e

′ iff i and i′ are two stores, whose corresponding updates are con-
secutive updates to the same memory location. I.e., store order defines a total order on
all the stores to each memory location, based on the order in which they reach memory.

Source: e→src-ss
τ e′ iff e′ is a load which reads its value from e, via memory or by buffer

forwarding.

Conflict: e→cf-ss
τ e′ iff e′ is the store which overwrites the value read by e.

We are now ready to state the equivalence theorem.

Theorem 1. (Equivalence of Shasha-Snir Traces and Chronological Traces) For a
given program P with two completed executions τ, τ ′, it holds that T (τ) = T (τ ′) iff
TC(τ) = TC(τ ′).

DPOR for TSO. A DPOR algorithm can exploit Chronological traces to perform state-
less model checking of programs that execute under TSO (and PSO), as illustrated at the
end of Section 2. The explored executions follow the semantics of TSO in Section 3. For
each execution, its happens-before relation, which is the transitive closure of the edge
relation E = →po

τ ∪→su
τ ∪→uu

τ ∪→src-ct
τ ∪→cf-ct

τ ∪→uf
τ of the corresponding chrono-

logical trace, is computed on the fly. This happens-before relation can in principle be
exploited by any DPOR algorithm to explore at least one execution per equivalence
class induced by Shasha-Snir traces. We state the following theorem of correctness.

Theorem 2. (Correctness of DPOR Algorithms) The algorithms Source-DPOR and
Optimal-DPOR of [2], based on the happens-before relation induced by chronological
traces, explore at least one execution per equivalence class induced by Shasha-Snir
traces. Moreover, Optimal-DPOR explores exactly one execution per equivalence class.

4 Implementation

To show the effectiveness of our techniques we have implemented a stateless model
checker for C programs. The tool, called Nidhugg, is available as open source at
https://github.com/nidhugg/nidhugg. Major design decisions have been that
Nidhugg: (i) should not be bound to a specific hardware architecture and (ii) should use
an existing, mature implementation of C semantics, not implement its own. Our choice
was to use the LLVM compiler infrastructure [23] and work at the level of its interme-
diate representation (IR). LLVM IR is low-level and allows us to analyze assembly-like
but target-independent code which is produced after employing all optimizations and
transformations that the LLVM compiler performs till this stage.

Nidhugg detects assertion violations and robustness violations that occur under the
selected memory model. We implement the Source-DPOR algorithm from Abdulla
et al. [2], adapted to relaxed memory in the manner described in this paper. Before
applying Source-DPOR, each spin loop is replaced by an equivalent single load and as-
sume statement. This substantially improves the performance of Source-DPOR, since
a waiting spin loop may generate a huge number of improductive loads, all returning

https://github.com/nidhugg/nidhugg

Stateless Model Checking for TSO and PSO 363

the same wrong value; all of these loads will cause races, which will cause the number
of explored traces to explode. Exploration of program executions is performed by in-
terpretation of LLVM IR, based on the interpreter lli which is distributed with LLVM.
We support concurrency through the pthreads library. This is done by hooking calls to
pthread functions, and executing changes to the execution stacks (adding new threads,
joining, etc.) as appropriate within the interpreter.

5 Experimental Results

We have applied our implementation to several intensely racy benchmarks, all imple-
mented in C/pthreads. They include classical benchmarks, such as Dekker’s, Lamport’s
(fast) and Peterson’s mutual exclusion algorithms. Others, such as indexer.c, are de-
signed to showcase races that are hard to identify statically. Yet others (stack safe.c) use
pthread mutexes to entirely avoid races. Lamport’s algorithm and stack safe.c originate
from the TACAS Competition on Software Verification (SV-COMP). Some benchmarks
originate from industrial code: apr 1.c, apr 2.c, pgsql.c and parker.c.

We show the results of our tool Nidhugg in Table 1. For comparison we also in-
clude the results of two other analysis tools, CBMC [6] and goto-instrument [5], which
also target C programs under relaxed memory. The techniques of goto-instrument and
CBMC are described in more detail in Section 6.

All experiments were run on a machine equipped with a 3 GHz Intel i7 processor and
6 GB RAM running 64-bit Linux. We use version 4.9 of goto-instrument and CBMC.
The benchmarks have been tweaked to work for all tools, in communication with the
developers of CBMC and goto-instrument. All benchmarks are available at https://
github.com/nidhugg/benchmarks_tacas2015.

Table 1 shows that our technique performs well compared to the other tools for most
of the examples. We will briefly highlight a few interesting results.

We see that in most cases Nidhugg pays a very modest performance price when
going from sequential consistency to TSO and PSO. The explanation is that the num-
ber of executions explored by our stateless model checker is close to the number of
Shasha-Snir traces, which increases very modestly when going from sequential consis-
tency to TSO and PSO for typical benchmarks. Consider for example the benchmark
stack safe.c, which is robust, and therefore has equally many Shasha-Snir traces (and
hence also chronological traces) under all three memory models. Our technique is able
to benefit from this, and has almost the same run time under TSO and PSO as under SC.

We also see that our implementation compares favourably against CBMC, a state-
of-the-art bounded model checking tool, and goto-instrument. For several benchmarks,
our implementation is several orders of magnitude faster.

The effect of the optimization to replace each spin loop by a load and assume state-
ment can be seen in the pgsql.c benchmark. For comparison, we also include the bench-
mark pgsql bnd.c, where the spin loop has been modified such that Nidhugg fails to
automatically replace it by an assume statement.

The only other benchmark where Nidhugg is not faster is fib true.c. The benchmark
has two threads that perform the actual work, and one separate thread that checks the
correctness of the computed value, causing many races, as in the case of spin loops.

https://github.com/nidhugg/benchmarks_tacas2015
https://github.com/nidhugg/benchmarks_tacas2015

364 P.A. Abdulla et al.

Table 1. Analysis times (in seconds) for our implementation Nidhugg, as well as CBMC and
goto-instrument under the SC, TSO and PSO memory models. Stars (*) indicate that the analy-
sis discovered an error in the benchmark. A t/o entry means that the tool did not terminate within
10 minutes. An ! entry means that the tool crashed. Struck-out entries mean that the tool gave the
wrong result. In the fence column, a dash (-) means that no fences have been added to the bench-
mark, a memory model indicates that fences have been (manually) added to make the benchmark
correct under that and stronger memory models. The LB column shows the loop unrolling depth.
Superior run times are shown in bold face.

CBMC goto-instrument Nidhugg

fence LB SC TSO PSO SC TSO PSO SC TSO PSO

apr 1.c - 5 t/o t/o t/o t/o ! ! 5.88 6.06 16.98
apr 2.c - 5 t/o t/o t/o ! ! ! 2.60 2.20 5.39
dcl singleton.c - 7 5.95 31.47 *18.01 5.33 5.36 *0.18 0.08 0.08 *0.08
dcl singleton.c pso 7 5.88 30.98 29.45 5.20 5.18 5.17 0.08 0.08 0.08
dekker.c - 10 2.42 *3.17 *2.84 1.68 *4.00 *220.11 0.10 *0.11 *0.09
dekker.c tso 10 2.39 5.65 *3.51 1.62 297.62 t/o 0.11 0.12 *0.08
dekker.c pso 10 2.55 5.31 4.83 1.72 428.86 t/o 0.11 0.12 0.12
fib false.c - - *1.63 *3.38 *3.00 *1.60 *1.58 *1.56 *2.39 *5.57 *6.20
fib false join.c - - *0.98 *1.10 *1.91 *1.31 *0.88 *0.80 *0.32 *0.62 *0.71
fib true.c - - 6.28 9.39 7.72 6.32 7.63 7.62 25.83 75.06 86.32
fib true join.c - - 6.61 8.37 10.81 7.09 5.94 5.92 1.20 2.88 3.19
indexer.c - 5 193.01 210.42 214.03 191.88 70.42 69.38 0.10 0.09 0.09
lamport.c - 8 7.78 *11.63 *10.53 6.89 t/o t/o 0.08 *0.08 *0.08
lamport.c tso 8 7.60 26.31 *15.85 6.80 513.67 t/o 0.09 0.08 *0.07
lamport.c pso 8 7.72 30.92 27.51 7.43 t/o t/o 0.08 0.08 0.08
parker.c - 10 12.34 *91.99 *86.10 11.63 9.70 9.65 1.50 *0.09 *0.08
parker.c pso 10 12.72 141.24 166.75 11.76 10.66 10.64 1.50 1.92 2.94
peterson.c - - 0.35 *0.38 *0.35 0.18 *0.20 *0.21 0.07 *0.07 *0.07
peterson.c tso - 0.35 0.39 *0.35 0.19 0.18 0.56 0.07 0.07 *0.07
peterson.c pso - 0.35 0.41 0.40 0.18 0.18 0.19 0.07 0.07 0.08
pgsql.c - 8 19.80 60.66 *4.63 21.03 46.57 *296.77 0.08 0.07 *0.08
pgsql.c pso 8 23.93 71.15 121.51 19.04 t/o t/o 0.07 0.07 0.08
pgsql bnd.c pso (4) 3.57 9.55 12.68 3.59 t/o t/o 89.44 106.04 112.60
stack safe.c - - 44.53 516.01 496.36 45.11 42.39 42.50 0.34 0.36 0.43
stack unsafe.c - - *1.40 *1.87 *2.08 *1.00 *0.81 *0.79 *0.08 *0.08 *0.09
szymanski.c - - 0.40 *0.44 *0.43 0.23 *0.89 *1.16 0.07 *0.13 *0.07
szymanski.c tso - 0.40 0.50 *0.43 0.23 0.23 2.48 0.08 0.08 *0.07
szymanski.c pso - 0.39 0.50 0.49 0.23 0.24 0.24 0.08 0.08 0.08

Stateless Model Checking for TSO and PSO 365

We show with the benchmark fib true join.c that in this case, the problem can be alle-
viated by forcing the threads to join before checking the result.

Most benchmarks in Table 1 are small program cores, ranging from 36 to 118 lines
of C code, exhibiting complicated synchronization patterns. To show that our technique
is also applicable to real life code, we include the benchmarks apr 1.c and apr 2.c.
They each contain approximately 8000 lines of code taken from the Apache Portable
Runtime library, and exercise the library primitives for thread management, locking, and
memory pools. Nidhugg is able to analyze the code within a few seconds. We notice
that despite the benchmarks being robust, the analysis under PSO suffers a slowdown
of about three times compared to TSO. This is because the benchmarks access a large
number of different memory locations. Since PSO semantics require one store buffer
per memory location, this affects analysis under PSO more than under SC and TSO.

6 Related Work

To the best of our knowledge, our work is the first to apply stateless model checking
techniques to the setting of relaxed memory models; see e.g. [2] for a recent survey
of related work on stateless model checking and dynamic partial order reduction tech-
niques. There have been many works dedicated to the verification and checking of pro-
grams running under RMM (e.g., [18,20,22,3,10,11,7,8,9,36]). Some of them propose
precise analyses for checking safety properties or robustness of finite-state programs un-
der TSO (e.g., [3,8]). Others describe monitoring and testing techniques for programs
under RMM (e.g., [10,11,22]). There are also a number of efforts to design bounded
model checking techniques for programs under RMM (e.g., [36,9]) which encode the
verification problem in SAT.

The two closest works to ours are those presented in [6,5]. The first of them [6] de-
velops a bounded model checking technique that can be applied to different memory
models (e.g., TSO, PSO, and Power). That technique makes use of the fact that the
trace of a program under RMM can be viewed as a partially ordered set. This results
in a bounded model checking technique aware of the underlying memory model when
constructing the SMT/SAT formula. The second line of work reduces the verification
problem of a program under RMM to verification under SC of a program constructed
by a code transformation [5]. This technique tries to encode the effect of the RMM
semantics by augmenting the input program with buffers and queues. This work in-
troduces also the notion of Xtop objects. Although an Xtop object is a valid acyclic
representation of Shasha-Snir traces, it will in many cases distinguish executions that
are semantically equivalent according to the Shasha-Snir traces. This is never the case
for chronological traces. An extensive experimental comparison with the corresponding
tools [6,5] under the TSO and PSO memory models was given in Section 5.

7 Concluding Remarks

We have presented the first technique for efficient stateless model checking which is
aware of the underlying relaxed memory model. To this end we have introduced chrono-
logical traces which are novel representations of executions under the TSO and PSO

366 P.A. Abdulla et al.

memory models, and induce a happens-before relation that is a partial order and can
be used as a basis for DPOR. Furthermore, we have established a strict one-to-one
correspondence between chronological and Shasha-Snir traces. Nidhugg, our publicly
available tool, detects bugs in LLVM assembly code produced for C/pthreads programs
and can be instantiated to the SC, TSO, and PSO memory models. We have applied
Nidhugg to several programs, both benchmarks and of considerable size, and our ex-
perimental results show that our technique offers significantly better performance than
both CBMC and goto-instrument in many cases.

We plan to extend Nidhugg to more memory models such as Power, ARM, and the
C/C++ memory model. This will require to adapt the definition chronological traces to
them in order to also guarantee the one-to-one correspondence with Shasha-Snir traces.

References

1. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.: Stateless
model checking for TSO and PSO (2015) arXiv:1501.02069

2. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.: Optimal dynamic partial order reduction.
In: POPL, pp. 373–384. ACM (2014)

3. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Counter-example guided
fence insertion under TSO. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214,
pp. 204–219. Springer, Heidelberg (2012)

4. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial. Com-
puter 29(12), 66–76 (1996)

5. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak mem-
ory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS,
vol. 7792, pp. 512–532. Springer, Heidelberg (2013)

6. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded model check-
ing of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 141–157. Springer, Heidelberg (2013)

7. Alglave, J., Maranget, L.: Stability in weak memory models. In: Gopalakrishnan, G., Qadeer,
S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 50–66. Springer, Heidelberg (2011)

8. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness against TSO.
In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 533–553. Springer,
Heidelberg (2013)

9. Burckhardt, S., Alur, R., Martin, M.M.K.: CheckFence: Checking consistency of concurrent
data types on relaxed memory models. In: PLDI, pp. 12–21. ACM (2007)

10. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory mod-
els. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 107–120. Springer,
Heidelberg (2008)

11. Burnim, J., Sen, K., Stergiou, C.: Sound and complete monitoring of sequential consistency
for relaxed memory models. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS,
vol. 6605, pp. 11–25. Springer, Heidelberg (2011)

12. Christakis, M., Gotovos, A., Sagonas, K.: Systematic testing for detecting concurrency errors
in Erlang programs. In: ICST, pp. 154–163. IEEE (2013)

13. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using partial order
techniques. STTT 2(3), 279–287 (1999)

14. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking software.
In: POPL, pp. 110–121. ACM (2005)

15. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems. LNCS,
vol. 1032. Springer, Heidelberg (1996)

Stateless Model Checking for TSO and PSO 367

16. Godefroid, P.: Model checking for programming languages using VeriSoft. In: POPL, pp.
174–186. ACM (1997)

17. Godefroid, P.: Software model checking: The VeriSoft approach. Formal Methods in System
Design 26(2), 77–101 (2005)

18. Krishnamurthy, A., Yelick, K.A.: Analyses and optimizations for shared address space pro-
grams. J. Parallel Distrib. Comput. 38(2), 130–144 (1996)

19. Lauterburg, S., Karmani, R.K., Marinov, D., Agha, G.: Evaluating ordering heuristics for
dynamic partial-order reduction techniques. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE
2010. LNCS, vol. 6013, pp. 308–322. Springer, Heidelberg (2010)

20. Lee, J., Padua, D.A.: Hiding relaxed memory consistency with a compiler. IEEE Trans. Com-
puters 50(8), 824–833 (2001)

21. Lei, Y., Carver, R.: Reachability testing of concurrent programs. IEEE Trans. Softw.
Eng. 32(6), 382–403 (2006)

22. Liu, F., Nedev, N., Prisadnikov, N., Vechev, M.T., Yahav, E.: Dynamic synthesis for relaxed
memory models. In: PLDI, pp. 429–440. ACM (2012)

23. The LLVM compiler infrastructure, http://llvm.org
24. Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986.

LNCS, vol. 255, Springer, Heidelberg (1987)
25. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P., Neamtiu, I.: Finding and repro-

ducing heisenbugs in concurrent programs. In: OSDI, pp. 267–280. USENIX (2008)
26. Park, S., Dill, D.L.: An executable specification, analyzer and verifier for RMO (relaxed

memory order). In: SPAA, pp. 34–41. ACM (1995)
27. Peled, D.: All from one, one for all, on model-checking using representatives. In: Courcou-

betis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993)
28. Saarikivi, O., Kähkönen, K., Heljanko, K.: Improving dynamic partial order reductions for

concolic testing. In: ACSD. IEEE (2012)
29. Sen, K., Agha, G.: A race-detection and flipping algorithm for automated testing of multi-

threaded programs. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS, vol. 4383, pp. 166–182.
Springer, Heidelberg (2007)

30. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: A rigorous and us-
able programmer’s model for x86 multiprocessors. Comm. of the ACM 53(7), 89–97 (2010)

31. Shasha, D., Snir, M.: Efficient and correct execution of parallel programs that share memory.
ACM Trans. on Programming Languages and Systems 10(2), 282–312 (1988)

32. SPARC International, Inc. The SPARC Architecture Manual Version 9 (1994)
33. Tasharofi, S., Karmani, R.K., Lauterburg, S., Legay, A., Marinov, D., Agha, G.: TransDPOR:

A novel dynamic partial-order reduction technique for testing actor programs. In: Giese, H.,
Rosu, G. (eds.) FORTE 2012 and FMOODS 2012. LNCS, vol. 7273, pp. 219–234. Springer,
Heidelberg (2012)

34. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G. (ed.) APN
1990. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991)

35. Wang, C., Said, M., Gupta, A.: Coverage guided systematic concurrency testing. In: ICSE,
pp. 221–230. ACM (2011)

36. Yang, Y., Gopalakrishnan, G., Lindstrom, G., Slind, K.: Nemos: A framework for axiomatic
and executable specifications of memory consistency models. In: IPDPS. IEEE (2004)

http://llvm.org

	Stateless Model Checking for TSO and PSO
	1 Introduction
	2 Overview of Main Concepts
	3 Formalization
	4 Implementation
	5 Experimental Results
	6 Related Work
	7 Concluding Remarks

