
dReach: δ-Reachability Analysis

for Hybrid Systems

Soonho Kong, Sicun Gao, Wei Chen, and Edmund Clarke

Computer Science Department, Carnegie Mellon University, USA

Abstract. dReach is a bounded reachability analysis tool for nonlinear
hybrid systems. It encodes reachability problems of hybrid systems to
first-order formulas over real numbers, which are solved by delta-decision
procedures in the SMT solver dReal. In this way, dReach is able to handle
a wide range of highly nonlinear hybrid systems. It has scaled well on
various realistic models from biomedical and robotics applications.

1 Introduction

dReach is a bounded reachability analysis tool for hybrid systems. It encodes
bounded reachability problems of hybrid systems as first-order formulas over the
real numbers, and solves them using δ-decision procedures in the SMT solver
dReal [12]. dReach is able to handle a wide range of highly nonlinear hybrid
systems [16,13,15,3]. Figure 1 highlights some of its features: on the left is an
example of some nonlinear dynamics that dReach can handle, and on the right
a visualized counterexample generated by dReach on this model.

It is well-known that the standard bounded reachability problems for sim-
ple hybrid systems are already highly undecidable [2]. Instead, we work in the
framework of δ-reachability of hybrid systems [10]. Here δ is an arbitrary pos-
itive rational number, provided by the user to specify the bound on numerical
errors that can be tolerated in the analysis. For a hybrid system H and an unsafe
region unsafe (both encoded as logic formulas), the δ-reachability problem asks
for one of the following answers:

– safe: H cannot reach unsafe.
– δ-unsafe: Hδ can reach unsafeδ.

Here, Hδ and unsafeδ encode (δ-bounded) overapproximations of H and unsafe,
defined explicitly as their syntactic variants.It is important to note that the defi-
nition makes the answers no weaker than standard reachability: When safe is the
answer, we know for certain that H does not reach the unsafe region (no δ is in-
volved); when δ-unsafe is the answer, we know that there exists some δ-bounded
perturbation of the system that can render it unsafe. Since δ can be chosen to
be very small, δ-unsafe answers in fact discover robustness problem in the sys-
tem, which should be regarded as unsafe indeed. We have proved that bounded
δ-reachabilty is decidable for a wide range of nonlinear hybrid systems, even

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 200–205, 2015.
DOI: 10.1007/978-3-662-46681-0_15

dReach: δ-Reachability Analysis for Hybrid Systems 201

y
z

z
dx

z

z
m

x
z

z
m

kz

zk
k

kz

zk
k

dt

dv

zz

dt

dz

y
z

z
dx

z

z
m

dt

dy

x
z

z
m

kz

zk
k

kz

zk
k

dt

dx

yy

xx

yy

xx

00
1

0
1

4

3
3

2

1
1

0

00
1

0
1

4

3
3

2

1
1

11

1)1()1(

11

1)1()1(

(a) An example of nonlinear hybrid sys-
tem model: off-treatment mode of the
prostate cancer treatment model [16]

(b) Visualization of a generated counterex-
ample. Change in the shade of colors rep-
resents discrete mode changes.

Fig. 1. An example of nonlinear dynamics and counterexample-generation

with reasonable complexity bounds [10]. This framework provides the formal
correctness guarantees of dReach.

Apart from solving δ-reachability, the following key features of dReach distin-
guish it from other existing tools in this domain [7,9,1,8,14,5,6].

1. Expressiveness. dReach allows the user to describe hybrid systems using
first-order logic formulas over real numbers with a wide range of nonlinear
functions. This allows the user to specify the continuous flows using highly
nonlinear differential equations, and the jump and reset conditions with com-
plex Boolean combinations of nonlinear constraints. dReach also faithfully
translates mode invariants into ∃∀ logic formulas, which can be directly
solved under certain restrictions on the invariants.

2. Property-guided search. dReach maintains logical encodings (the same ap-
proach as [6]), whose size is linear in the size of the inputs, of the reachable
states of a hybrid system [10]. The tool searches for concrete counterexamples
to falsify the reachability properties, instead of overapproximating the full
reachable states. This avoids the usual state explosion problem in reachable
set computation, because the full set of states does not need to be explicitly
stored. This change is analogous to the difference between SAT-based model
checking and BDD-based symbolic model checking.

3. Tight integration of symbolic reasoning and numerical solving. dReach del-
egates the reasoning on discrete mode changes to SAT solvers, and uses
numerical constraint solving to handle nonlinear dynamics. As a result, it
can combine the full power of both symbolic reasoning and numerical analy-
sis algorithms. In particular, all existing tools for reachable set computation
can be easily plugged-in as engines for solving the continuous part of the
dynamics, while logic reasoning tools can overcome the difficulty in handling
complex mode transitions.

The paper is structured as follows.We describe the system architecture in Section
2, and give some details about the logical encoding in the tool in Section 3. We
then explain the input format and usage in Section 4.

202 S. Kong et al.

dReach

Hybrid System
Model + Specification

(drh)

BMC
Encoder

dReal

SMT2
formula

Numerical Error (δ)

Maximum Jump Depth
(k)

δ-SAT

UNSAT

δ-reachable
+ Counterexample

(Visualization)

Unreachable
+ Proofs
 (partial)

DPLL<T>

SAT
Solver

ICP Solver

ODE
Solver

Fig. 2. Architecture of dReach: It consists of an bounded model-checking module and
an SMT solver, dReal. In the first phase, the Encoder module translates an input
hybrid system into a logic formula. In the second phase, an SMT solver, dReal, solves
the encoded δ-reachability problem using a solving framework that combines DPLL(T),
Interval Constraint Propagation, and reliable (interval-based) numerical integration.

2 System Description

The system architecture of dReach is given in Figure 2. We ask the user to
provide the following input file and two parameters:

– The input file specifies the hybrid system, the reachability properties in
question, and some time bounds on the continuous flow in each mode. The
grammar is described in Section 4.1.

– A bound on the number of mode changes.
– A numerical error bound δ.

From these inputs, dReach generates a logical encoding that involves existential
quantification and universal quantification on the time variables. The logical en-
coding is compact, always linear in the size of the inputs. The tool then makes
iterative calls to the underlying solver dReal [12] to decide the reachability prop-
erties. When the answer is δ-reachable, dReach generates a counterexample and
its visualization. When the answer is unreachable, no numerical error is involved
and a (partial, for now) logical proof of unsatisfiability can be provided [11].

3 Logical Encoding of Reachability

The details of our encoding scheme is given in [10]. Here we focus on explaining
how differential equations and the universal quantifications generated by mode
invariants are encoded, as an extension of the SMT-LIB [4] standard. Although
such formulas are automatically generated by dReach from the hybrid system
descrpition, the explanation below can be helpful for understanding the inner
mechanism of our solver.

dReach: δ-Reachability Analysis for Hybrid Systems 203

Encoding Integrations. In each mode of a hybrid system, we need to specify
continuous flows defined by systems of ordinary differential equations. We extend
SMT-LIB with a command define-ode to define such systems. For instance, we
use define-ode as follows to assign a name flow1 to a group of ODE, dx

dt = v

and dv
dt = −x2.

(define-ode flow1 ((= d/dt[x] v) (= d/dt[v] (- 0 (ˆ x 2)))))

We then allow integration terms in the formula. We view the solution of system
of differential equations as a constraint between the initial-state variables, time
duration, and the end-state variables. We can then write

(= [x_t_1 ... x_t_n] (integral 0 t [x_0_1 ... x_0_n] flow_i)),

to represent x = x0 +
∫ t

0 flow i(x(s))ds. Note that we do not need to explicitly
mention x(s) as a function in the encoding, which can be inferred by the solver.

Universal Quantification for Mode Invariant Constriants. To encode mode in-
variants in hybrid systems, we need ∃∀t-formulas [13] which is a restricted form of
∃∀ formula where the universal quantifications are limited to the time variables.
In drh, we introduce a new keyword forall t to encode ∃∀t formulas. Given a
time bound [0, timei], mode invariant f at mode n is encoded into (forall t n

[0 time i] f).

4 Using dReach

4.1 Input Format

The input format for describing hybrid systems and reachability properties con-
sists of five sections: macro definitions, variable declarations, mode definitions,
and initial condition, and goals. We focus on intuitive explanations here. Figure 3
shows how to describe a small example hybrid system, an inelastic bouncing ball
with air resistance.

– In macro definitions, we allows users to define macros in C preprocessor style
which can be used in the following sections. Macro expansions occur before
the other parts are processed.

– A variable declaration specifies a real variable and its domain in a real in-
terval. dReach requires special declaration for time variable, to specify the
upperbound of time duration.

– A mode definition consists of mode id, mode invariant, flow, and jump. id is
a unique positive interger assigned to a mode. An invariant is a conjuction
of logic formulae which must always hold in a mode. A flow describes the
continuous dynamics of a mode by providing a set of ODEs. The first formula
of jump is interpreted as a guard, a logic formula specifying a condition to
make a transition. Note that this allows a transition but does not force it.
The second argument of jump, n denotes the target mode-id. The last one is
reset, a logic formula connecting the old and new values for the transition.

204 S. Kong et al.

1 #define D 0.45
2 #define K 0.9
3 [0, 15] x; [9.8] g; [-18, 18] v; [0, 3] time;
4 { mode 1;
5 invt: (v <= 0); (x >= 0);
6 flow: d/dt[x] = v; d/dt[v] = -g - (D * v ˆ 2);
7 jump: (x = 0) ==> @2 (and (x’ = x) (v’ = - K * v)); }
8 { mode 2;
9 invt: (v >= 0); (x >= 0);

10 flow: d/dt[x] = v; d/dt[v] = -g + (D * v ˆ 2);
11 jump: (v = 0) ==> @1 (and (x’ = x) (v’ = v)); }
12 init: @1 (and (x >= 5) (v = 0));
13 goal: @1 (and (x >= 0.45));

Fig. 3. An example of drh format: Inelastic bouncing ball with air resistance. Lines
1 and 2 define a drag coefficient D = 0.45 and an elastic coefficient K = 0.9. Line 3
declares variables x, g, v, and time. At lines 4 - 7 and 8 - 11, we define two modes –
the falling and the bouncing-back modes respectively. At line 12, we specify the hybrid
system to start at mode 1 (@1) with initial condition satisfying x ≥ 5 ∧ v = 0. At line
13, it asks whether we can have a trajectory ending at mode 1 (@1) while the height of
the ball is higher than 0.45.

– initial-condition specifies the initial mode of a hybrid system and its initial
configuration. goal shares the same syntactic structure of initial-condition.

4.2 Command Line Options

dReach follows the standard unix command-line usage:

dReach <options> <drh file>

It has the following options:

– If -k <N> is used, set the unrolling bound k asN (Default: 3). It also provides
-u <N> and -l <N> options to specify upper- and lower-bounds of unrolling
bound.

– If --precision <p> is used, use precision p (Default: 0.001).
– If --visualize is set, dReach generates extra visualization data.

We have a web-based visualization toolkit1 which processes the generated visu-
alization data and shows the counterexample trajectory. It provides a way to
navigate and zoom-in/out trajectories which helps understand and debug the
target hybrid system better.

1 The detailed instructions are available at https://github.com/dreal/dreal/blob/
master/doc/ode-visualization.md

https://github.com/dreal/dreal/blob/master/doc/ode-visualization.md
https://github.com/dreal/dreal/blob/master/doc/ode-visualization.md

dReach: δ-Reachability Analysis for Hybrid Systems 205

References

1. Althoff, M., Krogh, B.H.: Reachability analysis of nonlinear differential-algebraic
systems. IEEE Trans. Automat. Contr. 59(2), 371–383 (2014)

2. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: An algo-
rithmic approach to the specification and verification of hybrid systems. In: Gross-
man, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS,
vol. 736, pp. 209–229. Springer, Heidelberg (1993)

3. Asad, H.U., Jones, K.D., Surre, F.: Verifying robust frequency domain properties
of non linear oscillators using SMT. In: 17th International Symposium on Design
and Diagnostics of Electronic Circuits Systems, pp. 306–309 (April 2014)

4. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories, Edinburgh, UK (2010)

5. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construction
for non-linear hybrid systems. In: RTSS, pp. 183–192 (2012)

6. Cimatti, A., Mover, S., Tonetta, S.: Smt-based verification of hybrid systems.
In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence,
Toronto, Ontario, Canada, July 22-26 (2012)

7. Fränzle, M., Teige, T., Eggers, A.: Engineering constraint solvers for automatic
analysis of probabilistic hybrid automata. J. Log. Algebr. Program. 79(7), 436–466
(2010)

8. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past hyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005)

9. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

10. Gao, S., Kong, S., Chen, W., Clarke, E.M.: Delta-complete analysis for bounded
reachability of hybrid systems. CoRR, abs/1404.7171 (2014)

11. Gao, S., Kong, S., Clarke, E.: Proof generation from delta-decisions. In: SYNASC
(2014)

12. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over
the reals. In: CADE, pp. 208–214 (2013)

13. Gao, S., Kong, S., Clarke, E.M.: Satisfiability modulo ODEs. In: FMCAD,
pp. 105–112 (2013)

14. Herde, C., Eggers, A., Fränzle, M., Teige, T.: Analysis of hybrid systems using
hysat. In: ICONS, pp. 196–201 (2008)

15. Kapinski, J., Deshmukh, J.V., Sankaranarayanan, S., Arechiga, N.: Simulation-
guided lyapunov analysis for hybrid dynamical systems. In: HSCC 2014, Berlin,
Germany, April 15-17, pp. 133–142 (2014)

16. Liu, B., Kong, S., Gao, S., Zuliani, P., Clarke, E.: Parameter identification using
delta-decisions for biological hybrid systems. In: CMSB (2014)

	dReach: -Reachability Analysis for Hybrid Systems
	1
Introduction
	2
System Description
	3
Logical Encoding of Reachability
	4
Using dReach
	4.1
Input Format
	4.2
Command Line Options

