
νZ - An Optimizing SMT Solver

Nikolaj Bjørner1, Anh-Dung Phan2, and Lars Fleckenstein3

1 Microsoft Research, Redmond, WA, USA
2 DTU Compute, Technical University of Denmark

3 Microsoft Dynamics, Vedbæk, Denmark
nbjorner@microsoft.com, padu@dtu.dk, LarsFleckenstein@outlook.com

Abstract. νZ is a part of the SMT solver Z3. It allows users to pose
and solve optimization problems modulo theories. Many SMT applica-
tions use models to provide satisfying assignments, and a growing num-
ber of these build on top of Z3 to get optimal assignments with respect
to objective functions. νZ provides a portfolio of approaches for solving
linear optimization problems over SMT formulas, MaxSMT, and their
combinations. Objective functions are combined as either Pareto fronts,
lexicographically, or each objective is optimized independently. We de-
scribe usage scenarios of νZ, outline the tool architecture that allows
dispatching problems to special purpose solvers, and examine use cases.

1 An Invitation to νZ

νZ extends the functionality of Z3 [7] to include optimization objectives. It allows
users to solve SMT constraints and at the same time formulate optimality criteria
for the solutions. It relieves users of Z3 from writing their own loops around the
solver to find optimal values. The solver integrates state-of-the-art algorithms
for optimization, and it extends some of these algorithms with its own twists: For
example, it includes direct support for difference logic solvers, it uses Simplex
over non-standard numbers to find unbounded constraints, and it applies an
incremental version of the MaxRes [11] algorithm for MaxSAT solving.

(declare-fun x () Int)

(declare-fun y () Int)

(assert (and (< y 5) (< x 2)))

(assert (< (- y x) 1))

(maximize (+ x y))

(check-sat)

(get-model)

To give a first idea, we can ask to
optimize the term x+y under the con-
straints y < 5 ∧ x < 2 and y − x < 1
using the SMT query to the right.
The optimal answer is given as 2 and
νZ returns a model where x = y =
1. The example shows the maximize

command that is added to the SMT-
LIB [13] syntax.

1.1 Optimization Commands

The full set of commands νZ adds to SMT-LIB are:

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 194–199, 2015.
DOI: 10.1007/978-3-662-46681-0_14



νZ - An Optimizing SMT Solver 195

(declare-fun x () Int)

(declare-fun y () Int)

(define-fun a1 () Bool (> x 0))

(define-fun a2 () Bool (< x y))

(assert (=> a2 a1))

(assert-soft a2 :dweight 3.1)

(assert-soft (not a1) :weight 5)

(check-sat)

(get-model)

Fig. 1. Maximize 3.1 · a2+ 5 · a1. νZ finds
a solution where y ≤ x ≤ 0

(declare-fun x () Int)

(declare-fun y () Int)

(assert (= (+ x y) 10))

(assert (>= x 0))

(assert (>= y 0))

(maximize x)

(maximize y)

(set-option :opt.priority box)

(check-sat)

Fig. 2. νZ produces two independent op-
tima x = 10, respectively y = 10

– (maximize t ) - instruct the solver to maximize t . The type of the term t

can be either Integer, Real or Bit-vector.
– (minimize t ) - instruct the solver to minimize t .
– (assert-soft F [:weight n | :dweight d ] [:id id ]) - assert soft con-

straint F , optionally with an integral weight n or a decimal weight d . If no
weight is given, the default weight is 1 (1.0). Decimal and integral weights
can be mixed freely. Soft constraints can be furthermore tagged with an
optional name id. This enables combining multiple different soft objectives.
Fig. 1 illustrates a use with soft constraints.

1.2 Combining Objectives

Multiple objectives can be combined using lexicographic, Pareto fronts or as
independent box objectives.

Lexicographic Combinations: By default, νZ maximizes objectives t1, t2
subject to the constraint F using a lexicographic combination. It finds a model
M , such that M satisfies F and the pair 〈M(t1),M(t2)〉 is lexicographically
maximal. In other words, there is no model M ′ of F , such that either M ′(t1) >
M(t1) or M

′(t1) = M(t1), M
′(t2) > M(t2).

Pareto Fronts: Again, given two maximization objectives t1, t2, the set of
Pareto fronts under F are the set of models M1, . . . ,Mi, . . . ,Mj, . . ., such that
either Mi(t1) > Mj(t1) or Mi(t2) > Mj(t2), and at the same time either
Mi(t1) < Mj(t1) or Mi(t2) < Mj(t2); and for each Mi, there is no M ′ that dom-
inates Mi. νZ uses the Guided Improvement Algorithm [14] to produce multiple
objectives. Fig. 3 illustrates a use where Pareto combination is specified.

Boxes: Box objectives, illustrated in Fig.2 are used to specify independent op-
tima subject to a formula F . They are used in the Symba tool [9]. The box
combination of objectives t1, t2 requires up to two models M1,M2 of F , such
that M1(t1) is the maximal value of t1 and M2(t2) is the maximal value for t2.



196 N. Bjørner, A.-D. Phan, and L. Fleckenstein

1.3 Programming Optimization

The optimization features are available over Z3’s programmatic APIs for C,
C++, Java, .NET, and Python. There is furthermore a library available as an
example that plugs into the Microsoft Solver Foundation (MSF). Fig. 3 shows
an example using the Python API to generate Pareto optimal solutions. Fig. 4
shows an OML model used by MSF.

x, y = Ints(’x y’)

opt = Optimize()

opt.set(priority=’pareto’)

opt.add(x + y == 10, x >= 0, y >= 0)

mx = opt.maximize(x)

my = opt.maximize(y)

while opt.check() == sat:

print mx.value(), my.value()

Fig. 3. Pareto optimization in Python.
νZ produces all 11 Pareto fronts.

Model[

Decisions[

Reals[-Infinity, Infinity], xs, xl],

Constraints[

limits -> 0 <= xs & 0 <= xl,

BoxWood -> xs + 3 * xl <= 200,

Lathe -> 3 * xs + 2 * xl <= 160],

Goals[

Maximize[$ -> 5 * xs + 20 * xl]]]

Fig. 4. OML model used by MSF

1.4 MILP, MaxSAT, CP and SMT

Efficient mixed integer linear solvers are backbones of several highly tuned tools,
such as CPLEX and Gurobi, used in operations research contexts. Being able to
state and solve optimization objectives in the context of logical constraints has
also been well recognized in the SMT community [12,5,15,8] and it is a recurring
feature request for Z3 as well. We briefly outline a use case in Section 4, and
through this experience we observed a need for more abstract and flexible ways of
modeling problems than exposed by OML used by the Microsoft Solver Founda-
tion (MSF), where flexible Boolean combinations of constraints, which empower
end-users to refine models, are afterthoughts. By making νZ generally available,
we hope to make it easier for existing users to use Z3, for instance [2], and to fuel
further applications that benefit from the flexibility and expressive power of Z3’s
SMT engines, including theory support and quantifiers, with the convenience of
built-in support for (reasonably tuned) optimization algorithms. In return, we
anticipate that new applications from SMT users can inspire advances in ar-
eas such as non-linear arithmetic, mixed symbolic/numerical algorithms, and
combinations with Horn clauses.

1.5 Resources

The full source code of νZ is available with Z3 from http://z3.codeplex.com,
the sources compile on all main platforms, there is an online tutorial on http://

rise4fun.com/z3opt/tutorial/, and a companion paper [3] describes details
of algorithms used in νZ.

http://z3.codeplex.com
http://rise4fun.com/z3opt/tutorial/
http://rise4fun.com/z3opt/tutorial/


νZ - An Optimizing SMT Solver 197

2 Architecture

Fig. 5 gives an architectural overview of νZ. The input SMT formulas and ob-
jectives are rewritten and simplified using a custom strategy that detects 0-1
integer variables and rewrites these into Pseudo-Boolean Optimization (PBO)
constraints. Objective functions over 0-1 variables are rewritten as MaxSAT
problems1. If there are multiple objectives, then νZ orchestrates calls into the
SMT or SAT cores. For box constraints over reals, νZ combines all linear arith-
metic objectives and invokes a single instance of the OptSMT engine; for lexico-
graphic combinations of soft constraints, νZ invokes the MaxSAT engine using
multiple calls.

0-1 constraints
⇒ PBO

SMT formula
with objectives

Combination of
objective functions

OptSMT: Arithmetic MaxSMT: Soft Constraints

PB and
Cost solvers

SMT solver SAT solver

Fig. 5. νZ system architecture

3 Internals

OptSMT: We have augmented Z3’s dual Simplex core with a primal phase
that finds maximal assignments for reals. It also improves bounds on integers as
long as the improvements are integral. It is used, similarly to [15,9], to improve
values of objective functions. A similar primal Simplex solver is also accessible
to Z3’s difference logic engines. νZ discovers unbounded objectives by using
non-standard arithmetic: It checks if t ≥ ∞ is feasible, over the extension field
R∪{ε,∞ := 1/ε}. This contrasts the approach proposed in [9] that uses a search
through hyper-planes extracted from inequalities.

νZ also contains a Pseudo-Boolean theory solver. It borrows from [4,1] for
simplification, generating conflict clauses, and incrementally compiling into small
sorting circuits. It also adds an option to prune branches using dual simplex.

MaxSMT: νZ implements several engines forMaxSAT.These includeWMax [12],
MaxRes [11],BCD2 [10],MaxHS [6].WMaxuses a specialized theory solver ofcosts,
also explored in [5]. The solver associates penalties with a set of tracked proposi-
tional variables. It thenmonitors the truth assignments to these variables, as given

1 Using the correspondence: maximize c1 · x1 + c2 · x2 ≡ (assert-soft x1 :weight c1),
(assert-soft x2 :weight c2).



198 N. Bjørner, A.-D. Phan, and L. Fleckenstein

by the SAT solver. The cost is incremented when a tracked variable is assigned to
false. The solver creates a conflict clause when the cost exceeds the current opti-
mal value.WMax can be interrupted at any point with a current upper bound. Our
implementation of MaxRes generally performs much better than WMax. MaxRes
increments a lower boundwhen there is an unsatisfiable core of the soft constraints.
It then replaces the coreF1, . . . , Fk withnewsoft constraintsF ′

1, F
′
2, . . . , F

′
k−1 using

the equations:

F ′
1 = F2 ∨ F1, F ′

2 = F3 ∨ (F1 ∧ F2), . . . , F ′
k−1 = Fk ∨ ((F1 ∧ F2) ∧ . . .∧ Fk−1) .

SAT: νZ reduces Pseudo-Boolean formulas to propositional SAT by converting
cardinality constraints using sorting circuits, using a Shannon decomposition
(BDDs) of simple PB inequalities and falling back to bit-vector constraints on
inequalities where the BDD conversion is too expensive. This transformation is
available by ensuring that the option :opt.enable sat is true. For benchmarks
that can be fully reduced to propositional SAT, MaxRes uses Z3’s SAT solver.

4 A Use for νZ

As a driving scenario for νZ we used an experimental warehouse manager in the
context of Microsoft Dynamics AX. The objective is to reduce cost by optimizing
how shipments are distributed on trucks, reducing the number of trucks, the
distance traveled by the truck while maximizing the amount of goods delivered.
AX can deliver the standard constraints and cost functions, e.g., weight and
volume of a truck, but users often want to be more specific. For example, frozen
foods need to be in a cooled truck and cannot be packed together with chemicals.
The expressive power and convenience of SMT is useful: these constraints can
be formulated as a Boolean combination of linear constraints over 0-1 variables,
while the objective functions we considered could be expressed as lexicographic
combinations of a couple of cost functions. Such cost functions are expected to
evolve when users learn more about their usages. The abstraction layer of the
models provides this flexibility.

Table 1. Evaluation of νZ on selected examples

Source Category Solved instances Time

MaxSAT 2014 wpms industrial track MaxSAT 361/410 0.5-1800s

MaxSAT 2014 pms industrial track MaxSAT 406/568 0.5-1800s

Longest Paths MaxSAT bb 8/8 <0.05s

Longest Paths MaxSAT chat 34/34 1-36s

DAL Allocation challenge PBO SampleA&B 96/96 0.02-6s

Symba [9] LRA 2435/2435 0.2s-36s

OptiMathSAT [15] LRA 9 non-random 0.5-20s

http://maxsat.ia.udl.cat/benchmarks/
http://maxsat.ia.udl.cat/benchmarks/
http://www.lifl.fr/LION9/challenge.php


νZ - An Optimizing SMT Solver 199

4.1 Experience

We evaluated νZ on a cross-section of benchmarks used in MaxSAT competi-
tions, from Z3 users, and from recent publications. Table 1 summarizes a se-
lected evaluation. Motivating examples from users included strategy scheduling
for Vampire (MaxSAT) that are easy with the new MaxSAT engine, but used to
be hard for the bisection search used by Vampire. Likewise, Cezary Kaliszyk has
used Z3 to tune his portfolio solver using linear arithmetic constraints. His sys-
tems are significantly more challenging (take days to run). In this case WMax
offers partial solutions during search. Elvira Albert tried using Z3 for finding
longest paths, her benchmarks are called bb (≈300 clauses), chat (≈3K clauses)
and p2p (≈30K clauses), and we summarize timing for bb and chat below; the
p2p category times out.

References

1. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Carbonell, E.R.: A parametric approach
for smaller and better encodings of cardinality constraints. In: CP (2013)

2. Becker, K., Schätz, B., Armbruster, M., Buckl, C.: A formal model for constraint-
based deployment calculation and analysis for fault-tolerant systems. In: SEFM,
pp. 205–219 (2014)

3. Bjørner, N., Phan, A.-D.: νZ - Maximal Satisfaction with Z3. In: SCSS (2014)
4. Chai, D., Kuehlmann, A.: A fast pseudo-boolean constraint solver. IEEE Trans.

on CAD of Integrated Circuits and Systems 24(3), 305–317 (2005)
5. Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability

modulo the theory of costs: Foundations and applications. In: TACAS (2010)
6. Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT solving.

In: CP, pp. 247–262 (2013)
7. de Moura, L.M., Bjørner, N.: Z3: An Efficient SMT Solver. In: TACAS (2008)
8. Larraz, D., Nimkar, K., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Proving

Non-termination Using Max-SMT. In: CAV, pp. 779–796 (2014)
9. Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic opti-

mization with SMT solvers. In: POPL, pp. 607–618 (2014)
10. Morgado, A., Heras, F., Marques-Silva, J.: Improvements to Core-Guided Binary

Search for MaxSAT. In: SAT, pp. 284–297 (2012)
11. Narodytska, N., Bacchus, F.: Maximum Satisfiability Using Core-Guided MaxSAT

Resolution. In: AAAI, pp. 2717–2723 (2014)
12. Nieuwenhuis, R., Oliveras, A.: On SAT Modulo Theories and Optimization Prob-

lems. In: SAT, pp. 156–169 (2006)
13. Ranise, S., Tinelli, C.: The SMT Library, SMT-LIB (2006), http://www.SMT-LIB.

org

14. Rayside, D., Estler, H.-C., Jackson, D.: The Guided Improvement Algorithm. Tech-
nical Report MIT-CSAIL-TR-2009-033. MIT (2009)

15. Sebastiani, R., Tomasi, S.: Optimization in SMT with LA(Q) Cost Functions. In:
IJCAR, pp. 484–498 (2012)

http://www.SMT-LIB.org
http://www.SMT-LIB.org

	Z - An Optimizing SMT Solver
	An Invitation to Z
	1.1
Optimization Commands
	1.2
Combining Objectives
	1.3
Programming Optimization
	1.4
MILP, MaxSAT, CP and SMT
	1.5
Resources

	2
Architecture
	3
Internals
	4
A Use for Z 
	4.1
Experience





