Just Test What You Cannot Verify!*

Mike Czech, Marie-Christine Jakobs, and Heike Wehrheim

University of Paderborn, Germany
mczech@mail.upb.de, {marie.christine.jakobs,wehrheim}@upb.de

Abstract. Today, software verification is an established analysis method
which can provide high guarantees for software safety. However, the
resources (time and/or memory) for an exhaustive verification are not
always available, and analysis then has to resort to other techniques, like
testing. Most often, the already achieved partial verification results are
discarded in this case, and testing has to start from scratch.

In this paper, we propose a method for combining verification and
testing in which testing only needs to check the residual fraction of an
uncompleted verification. To this end, the partial results of a verification
run are used to construct a residual program (and residual assertions to be
checked on it). The residual program can afterwards be fed into standard
testing tools. The proposed technique is sound modulo the soundness
of the testing procedure. Experimental results show that this combined
usage of verification and testing can significantly reduce the effort for the
subsequent testing.

1 Introduction

Today, software verification has reached industrial size programs, with a large
number of tools providing an automatic analysis (see e.g. the annual software ver-
ification competition [5]). Still, verification tools might fail in analyzing the pro-
gram at hand. This might have two reasons: (1) the resources necessary for a
complete verification are not available, e.g. because an "on-the-fly" analysis is
needed, or (2) the property to be verified is beyond reach of the verification
technology, e.g. when complex structural properties are involved. In this case,
software engineers need to resort to other analysis techniques, for instance the
most widely used method of testing [4]. In this case, the work done in a prior,
but incomplete verification run is usually discarded, and testing is started from
scratch, again considering the complete program and set of properties to be
analyzed. This seems to be an unnecessary waste of time and effort.

In this paper, we present a method for combining verification and testing in
such a way that a testing run following an unfinished verification run need just
test those parts of the program which have not been verified. Prior combinations
of verification and testing most often follow other principles: either one of the
techniques is used to generate likely properties which the other technique then

* This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901).

© Springer-Verlag Berlin Heidelberg 2015
A. Egyed and I. Schaefer (Eds.): FASE 2015, LNCS 9033, pp. 100-114, 2015.
DOI: 10.1007/978-3-662-46675-9 7

Just Test What You Cannot Verify! 101

has to check (e.g. for likely invariants [29] or potential error locations [6]), or
information computed by one technique is used to enhance the other technique
(e.g. test data used for abstraction refinement [27]). Computation of residual
programs (or properties) is employed in none of these approaches. The only other
work aiming at a reduction of one parts of the analysis is [12]. They use a value
analysis to compute potential errors (so called alarms), and use program slicing
[32] on the statements occurring in alarms to reduce the effort of successive
testing. The first static analysis is therein executed on the whole program and
only the dynamic analysis has a reduced effort. Here, we introduce a true divide-
and-conquer type of combining static and dynamic analysis: verification is doing
one part (basically as much as it can under restricted resources) and testing is
then simply doing the rest.

Our technique is based on conditional model checking [7], which allows to save
the information computed in a verification run (complete or incomplete) in the
form of a so-called condition. In [7], this condition is given to a second, different
verifier to complete verification. Here, we will use the condition to compute a
residual program for a subsequently running testing tool. Two guiding principles
lead the construction of residual programs: on the one hand, we do not want
to test program parts which already have been verified w.r.t. the properties
under interest, and on the other hand, we need to generate syntactically correct
programs again such that these can be fed into standard testing tools. Here,
we will propose two techniques for this, both fulfilling these guidelines, which
have however different consequences for the testing step. Technique 1 uses the
condition itself to generate a residual program, building the synchronous product
of condition and original program thereby removing the already verified parts.
This usually leads to a residual program which is structurally different from the
original program. The second technique uses the condition to extract a slice of
the original program (thus obtaining a syntactic subprogram) which is then used
as residual program.

Our technique can be proven to be sound modulo soundness of the testing
tool, i.e., if the testing tool could faithfully show absence of errors our com-
bined technique would be able to definitely state safety of programs. We have
implemented our technique using the software analysis tool CPACHECKER [9]
as verification tool and the concolic testing tool KLEE [10] for dynamic analysis.
Using the results of our experiments we will also discuss which of the two residual
program construction techniques is more suitable for which type of program.

2 Background

For the description of our approach, we assume programs to be written in a
simple imperative language using assignments, assume and assert statements on
integer variables only.! Following [8] describing configurable program analysis
(the verification framework we employ later), we model programs as control-
flow automata (CFA) P = (L,G,ly), where L is the set of control locations,

! In our experiments we use programs written in C intermediate language (CIL) [28].

102 M. Czech, M.-C. Jakobs, and H. Wehrheim

10:if (flag)
11: if (x>=0)

13: r:=1;
else
14 : r:=0;
else

12: r:=x%2xx%2;
15:assert r>=0;

16 :
10:s:=0;
11:1if (x<=0)
12: assert s>=0;

else
13: i:=1;
14: while (i<=x)
15: s:=s+i; o
16 : i:=1+41; A
17: assert s>0; 2
18 : %

assert s > 0

Fig. 1. Example programs EVEN/SIGN and SUM and their CFAs

G C L x Ops x L the control flow edges and [y the program entry location. The
set Ops contains all assignments, assume and assert statements. Figure 1 shows
our example programs EVEN/SIGN and SUM and their CFAs. Program EVEN/SIGN
computes — depending on the value of variable flag — either the sign of variable
x or whether z is even or odd. Program SUM sums up all integer values in inter-
val [0; z]. The assert statement states the property to be checked. Indicator r
describing if x is even/odd is expected to be non-negative. Sum s is non-negative
and positive if > 0. Note, the property (sum positive if > 0) stated in line
7 of SUM is only true when neglecting overflows. Both CFAs contain two assume
edges per condition of an if- or while-statement (one per valuation), and one
assignment and assertion edge for each assignment and assertion, respectively.
The semantics of a program P = (L,G,lp) is given by a labeled transition
system T'(P) = (C, G, —) consisting of a set of concrete states C, the labels G

Just Test What You Cannot Verify! 103

(the control-flow edges of the program) and a transition relation -C C'x G x C.
We write ¢ % ¢ for (¢,g,¢) €. Let V denote the set of all integer variables
of program P. A concrete state c either assigns to any variable v € V' a value
¢(v) and to the program counter a control location ¢(pc) € L or it is the error

. (1,0p,l") .
state, ¢ = ¢, denoting that an assertion is violated. A transition ¢ ———= ¢’ is

contained in T'(P) if ¢ # cerr and ¢(pe) = I and either op is an assume statement,
cEop, d(pc) =1 and Vv € V : ¢(v) = (v), or op = v := expr is an assignment
and (pc) = U', ¢ = c[v — expr] or op = assert cond and either ¢ = cond
and d(pc) =1 and Yo € V : ¢(v) = d(v) or ¢ & cond and ¢ = cerp. We
call cg B ¢ & ... Int ¢n & path of program P if ¢g # Cerr, co(pc) = lp and
VO<i<n:egB ¢i+1. Intuitively, a path of a program describes a (partial)
execution of P. We denote the set of all paths of P by paths(P).

Finally, we are interested in program safety. In our case this means that none
of program P’s executions violates an assertion. All (partial) executions of P,

that are all paths in paths(P), are safe. Formally, a path ¢ Kooy B It
¢n € paths(P) is safe if ¢, # Cerr. Let pathssqse(P) C paths(P) denote the set
of safe program paths. Then, a program P is safe if pathssqfe(P) = paths(P).

Unfortunately, a verification tool may fail to prove a program safe, e.g. due
to resource limits it only proves that a subset of the program paths are safe. We
use conditional model checking (CMC) [7] to describe which paths are proven
safe by the verification tool and which paths still need to be verified. CMC can
be used with any verification tool that keeps track of its (abstract) state space
exploration in form of a reachability graph. Subtrees of the reachability graph
which are completely verified are aggregated into a single safe state. For all
other parts there is a one to one correspondence between the reachability graph
and the condition generated by CMC. Coming back to our example programs
EVEN/SIGN and SUM (Fig. 1), we assume that the verification tool only verified the
left branch of the (outer) if statements. Figure 2 shows the conditions for these
partial verifications. The rectangle node is the safe state. Since the left branch
of each program has already been verified, it directly ends in the safe state. For
the unproven right part of program EVEN/SIGN there is one automaton state per
CFA location and if two of these CFA locations are connected by an edge g, then
there is an edge between the corresponding automaton states and the label is
the CFA edge g. For the unproven right part of program SUM we see that the
verifier already revealed that the while loop is executed at least once and that
it unrolled the while loop once (see path g¢s, g4, g5, ¢6)-

Formally, a conditition can be defined as follows. For the details of the condi-
tion construction and the CMC approach we refer the reader to [7].2

Definition 1. A condition for a program P = (L,G,ly) is a four-tuple Cp =
(@, 0, q0,9s), where Q is a set of states, 6 C Q x G X Q a transition function, go
the initial state and qs the safe state. The transition function ensures that the
safe state is never left, i.e., Vg € G : (¢s,9,9s) € 6. A run of Cp is a sequence
of states qoqy - - - g such that V0 < i <n (g, -, qi+1) € 9.

% Note that, the condition is called assumption automaton in [7].

104 M. Czech, M.-C. Jakobs, and H. Wehrheim

(lo, ~flag, l2)

(1,2 <0,12) (l1,~z <0,13)

(Is,s:=s41,l6)

Fig. 2. Conditions showing partial verification result for programs EVEN/SIGN and SUM

We further assume that the verification tools produce conditions Cp for programs
P fulfilling the following well-formedness properties. These properties ensure that
the condition correctly summarizes the work done by the verification tool. Note,
our verification tool CPACHECKER always generates well-formed conditions.

Path Coverage. Every program path is described by a run of the condition.
Formally, for all paths co 23 ¢; % ... 73" ¢, € paths(P) there exists a run

qoq1 - - - Gn 8-t Y0 < i < n: (gis 94, Giv1) € 0.
Safety. If the tail of a program path is subsumed by the safe state of the con-
dition, then the program path is safe. Formally, all paths cg B s
¢n, € paths(P) are safe for which a run ¢oq ... ¢, exists s.t. V0 < @ < n :

(¢i, 9irqi+1) € 0 and Ik <nVk < j <n:gq; = gs.

If a program has been completely verified and is safe, then the condition consists
of two states only, namely gg and ¢s. Given a condition describing which program
paths are verified and which not, our idea is to provide to a test tool only the
non-proven program paths in form of a residual program. Next, we describe
two techniques to compute such a residual program, one based on subprogram
extraction and the other on slicing.

3 Extraction of Residual Program from Condition

Our first technique extracts a subprogram from program P which contains only
the unproven program paths. The idea is that the subprogram P’ results from

Just Test What You Cannot Verify! 105

(a) Residual program of EVEN/SIGN (b) Residual program of SUM

(10 ,90):s:=0;
(11 ,q1):if (x<=0)
—flag (12 ,qs):

(10 ,q0): if (flag) 5 o elsj‘il_
(11 ,as): (18,a2): i:=1;
else (14,493) lf(l<fx?

(15 ,q1): r:=x%2xx%2; T e e 82 ’3451; ?i?ill’
Eig,gzg assert r>=0; (14 .q6): while (i-—x)
’) (15 ,97): S:=s+1i;

assert v > 0 (16 ,(]8) i:=1+1;
(17 ,99) assert s>0;
(18 ,as)

Fig. 3. Source code of residual program constructed by synchronization of example
programs and respective condition, also CFA for residual program of EVEN/SIGN

the syntactic, synchronous composition of program P and condition Cp. Sub-
program P’ starts in the initial locations of P and Cp and may only execute
an operation if both P and Cp agree that the execution step is possible in
the current situation. Furthermore, executions of P’ stop if Cp determines that
all possible extensions of the execution are already proven safe (Cp reaches
safe state gs). The subprogram extracted this way is the residual program used
for further validation. Note, the residual program is not necessarily a syntactic
subprogram. Its branching structure may be different. Nevertheless, all verified
program executions are excluded from the residual program.

Figure 3 shows the source code for the residual programs extracted in the
described way for our example programs (Fig. 1) and the respective conditions
from Fig. 2. For program EVEN/SIGN also its CFA is given. The locations of
the residual programs are a product of original program location and condition
state. Moreover, the residual program contains an edge from location (I, ¢q) to
location (I, ¢’) if an edge g = (I, 0p,1’) in the original program and a transition
(¢,9,4¢") in the condition exist. Furthermore, it stops in locations (-, ¢gs). Both
residual programs remove the proven program part but since in the condition
for program SUM the while loop is unrolled already once, the residual program
of program SUM has more locations than program SUM. The following definition
now formally describes the explained construction of the residual program.

Definition 2. Let P = (L,G,ly) be a program and Cp = (Q,9,qo,qs) a well-

formed condition for P. The residual program eztracted from P and Cp,

denoted by residual _program_of(P,Cp), is a program P’ = (L' ,G',l})) in-

ductively defined as follows:

1. (lo,(]o) S L/,

2. if (l,q) e L', q# qs, g = (L,op,l') € G and (q,9,q") € 6, then (I',q') € L'
and ((1,9),0p, (',q')) € G

106 M. Czech, M.-C. Jakobs, and H. Wehrheim

Our goal is to validate the part of a program that has not yet been proven
safe by the verification tool. Since we plan to check the residual program, we
need a correspondence between safety of program P and residual program P’.
Especially, the residual program P’ may not lack any unsafe program path of
P. To prevent the user from being bothered by non-existing bugs, the residual
program P’ should not contain new unsafe program paths that are not contained
in program P. The following theorem guarantees these properties.

Theorem 1. Let P be a program and Cp a well-formed condition for P. Then,
program P is safe iff residual_program_of (P,Cp) is safe.

Proof (by contraposition). Denote P’ = residual _program _of(P,Cp)

. . (lo;0po;l1) (l1,0p1,l2) (ln—1,0Pn—1,ln)
“=” If P is unsafe, exists cg c1 L= P Cerr €

paths(P) and run qoqi ... ¢y 8.t. YO < i <n:qi # qs A (qi, (L opiy liv1), qig1) €

S (CP Well—formed). Consider p = 06 ((10,90),0p0,(11,q1)) Cll ((11,91),0p1,(12,92))

G T G D) Cerr 8.8. V0 < i < n: ci(pe) = (liyqi) NVv € V

¢i(v) = ¢;(v). By construction of P’ and definition p € paths(P’). P’ is unsafe.

((10,90),0p0,(11,q1)) C ((l1,91),0p1,(12,92))
1

“<” If P’ is unsafe, exists a path ¢

ln—1,9n—1),0Pn—1,(ln,qn . lo,0po,!
(Un—1,0n-1),0Pn -1, (I 0n)) Cerr € paths(P'). Now, consider p = ¢, M
I1,0p1,1 ln—1,0pn—1,ln
c’l(loplz). (10pl)cewst‘70<z<n:’()—l/\VUEV

ci(v) = ¢;(v). By construction of P’ and definition p € paths(P). P is unsafe.

4 Residual Program via Slicing

Our second technique uses program slicing [32] to compute the residual program
that describes the unproven part of the program. Program slicing is a technique
for extracting those parts of a program which may affect a so-called slicing
criterion. Slicing usually computes executable subprograms which is important
since we want to give the residual program to a testing tool. We use slicing in the
following way: First, we use the condition to identify those assertions of program
P that have not been fully proven by the verification tool. Then, we take these
assertions as slicing criteria to get those program parts of P which influence the
unproven assertions. The obtained program slice is the residual program.

Next, we are coming to the details. First, we need to identify the set of
unproven assertions. Given a well-formed condition Cp, we only know that
assertions which at most occur in transitions of the form (gs,-,qs) € 0 are
not violated. Hence, any assertion assert cond that occurs in a transition
(q, (,assert cond,-),q') € §,q # qs must be in the set of unproven assertions.?
Looking at our example conditions (Fig. 2), we see that one unproven asser-
tion in each condition, assert r > 0 and assert s > 0, respectively, exists.

3 Our implementation represents assert cond by if (~cond) __assert_fail(...).
We only add assertions if a transition with __assert_fail(...) exists. Thus, we
do not add proven assertions which are on a program path that is not completely
proven.

Just Test What You Cannot Verify! 107

To distinguish between same assertions (same operation) used on different CFA
edges, we use the CFA edge to describe an assertion. Hence, for our examples
the sets of unproven assertions are Scypae = {(l6,assert r > 0,l7)} and
Scew = {(l7,assert s > 0,lg)}. Generally, the set of unproven assertions is
defined as follows.

Definition 3. Let P be a program and Cp = (Q, 9, qo,qs) a well-formed con-
dition for P. The set S¢, of unproven assertions is defined as

Scr ={913(¢,9.¢) €dNq#qs Ng = (-, assert -,-)} .

To ensure that we do not miss any bug, we must assure that the computed set
of unproven assertions S¢,, is complete. This means that if an unsafe path in
the original program exists that violates assertion a, then a is contained in the
set of unproven assertions. The following lemma gives us this property.

Lemma 1. Let P be a program and Cp a well-formed condition for P. If P is
unsafe, then an assertion g € Sc, from the set of unproven assertion is violated.

Proof (by contradiction). Let P be unsafe. By definition an unsafe program
path exists. Let p = ¢g ” c1 EIGR e Cerr € paths(P) be an arbitrary unsafe
path. Since p unsafe, g,—1 = (-, assert -,-). Assume g,_1 ¢ Sc,. Since Cp well-
formed, exists run gog - . . gn 8.t. V0 <@ < n: (¢, gi, @i41) € 6. Since gn—1 ¢ Scp,

it follows that ¢,—1 = ¢, = ¢s. Contradiction to well-formedness (safety) of Cp.

After computation of the set S¢, of unproven assertions from condition Cp,
we now generate the residual program via slicing. The general idea of slicing is
to delete those statements from the program that do not influence the semantic
property defined by the slicing criteria. Typical slicing criteria are the variable
values at certain program location. We are interested in the evaluation of the
computed, unproven assertions at the location they are defined. Slicing should
delete those statements which do not influence evaluation of any assertion in S¢,..
Looking at our example programs (Fig. 1) and the sets of unproven assertions
SCevmsan = {(lg;assert r > 0,17)} and Scg, = {(l7,assert s > 0,lg)}, we see
that we cannot delete any statement in program EVEN/SIGN. Every statement
influences the evaluation of the assertion. In program SUM only the right branch
of the if statement influences the assertion in Sc,. Hence, slicing deletes the
statements of the left branch. The resulting program slice, the residual program,
for SUM and Scy,, = {(l7,assert s > 0,lg)}, is the residual program shown in
Fig. 4. Here, we refrain from defining the computation of program slices but
just define constraints on the constructed slice, which standard slicing technique
will however give us. Slicing only removes program statements (CFA edges).
Technically, a statement is removed by deleting the respective CFA edge (I, op,).
To keep the initial location Iy, we do not relink [’s predecessors. Instead, we relink
successors of I’ to [. Furthermore, locations without predecessors and successors
are removed. The following definition describes the structural appearance of
a program slice obtained from a program by deletion of some the program’s
statements.

108 M. Czech, M.-C. Jakobs, and H. Wehrheim

10:s:=0;
11:if (x<=0)
12:

else
13: i:=1;
14: while (i<=x)
15: s:=s+1i;
16 : ir=1i+1;
17: assert s>0;
18 :

assert s > 0

Fig.4. C code and CFA of residual program constructed by slicing of program SUM
using slicing criterion Scgy, = {(I7,assert s > 0,13)}

Definition 4. Let P = (L,G,ly) be a program. A slice of P is a program
P =(L',G'I}) with L' C L, I = lo and if (I,op,l') € G', then a sequence
of locations 1y ...l,, n > 2, exists with Iy = 1, I, = U/, (l,—1,0p,l') € G,
V1§i<n—1:(li,~,li+1) e GANI; ¢Ll.

So far, we defined the structural appearance of a program slice. In addition we
require that the behavior of program slice and original program is identical w.r.t.
the slicing criterion. In general, a slicing criterion is a set of program statements
of interest. Since program statements are defined by CFA edges and we are
only interested in unproven assertions, the slicing criterion is a set of assertion
edges, namely the set of unproven assertions. In this case, original program and a
program slice behave identically w.r.t. the slicing criterion — we call the program
slice sound w.r.t. the slicing criterion — if the following holds. If an arbitrary
execution of the original program violates an assertion g, in the slicing criterion,
then an execution of the program slice exists, that violates the corresponding
assertion g/, in the program slice. Formally, this is stated as follows.

Definition 5. Let P = (L,G,ly) be a program and SC a slicing criterion,
SC C Gussert = {9 | g € GAg = (-, assert -,-)}. Then, a program slice
P = (L',G'ly) of program P is sound w.r.t. the slicing criterion SC if for any
concrete state cg € C the following holds: if there is a path cg Ry ngt Cerr €

paths(P) A gn—1 = (I, assert expr,l') € SC in program P, then there is also a

’ ’

9q 4 Im—1
path co =% ¢y -+
slice P'.

Cerr € paths(P') A gh,_1 = (-, assert expr,l’) in program

We use dependence based slicing [23] to compute a program slice w.r.t a slicing
criterion SC. The work in [2] ensures that the computed slice obtained from

Just Test What You Cannot Verify! 109

dependence based slicing is sound w.r.t. SC. That is why, in the latter we assume
that the residual program, the program slice computed from program P and
slicing criterion S¢, is sound w.r.t. Sc,.

Remember, our goal is the validation of the non-proven part of the original
program. Validating the residual program obtained from slicing the original pro-
gram using the set of unproven assertions as slicing criterion is planned as one
option. That is why, we need some correspondence between the original program
and this residual program. Especially, the residual program must only be safe if
the original program is safe. The following theorem ensures this property

Theorem 2. Let P be a program, Cp a well-formed condition for P and P’ a
slice of program P which is sound w.r.t. the set of unproven assertions Sc, (the
slicing criterion). P is safe if P’ is safe.

(lo,0po,l1) (l1,0p1,l2)
C1

Proof (by contraposition). If P is unsafe, exists a path ¢y

ln— bl n— 7ln
. % Cerr € paths(P) and op,_1 = assert cond. Due to lemma 1

(ln—1,0Pn—1,1n) € Scp. Since slice P’ is sound, P’ is unsafe.

Note that the two presented residual program construction techniques can be
combined as follows. Given a program P and a condition Cp for P, first, use the
technique extraction of residual program from condition and compute program
P = (L',G"1})) = residual _program_of(P,Cp). Take all assertions in P’ as
unproven assertions, Scr, = {g | g € G' Ag = (,assert -,-)}, and apply the
technique residual program via slicing to get program slice P” sound w.r.t. Scr,-
Program P” is the input for testing in the combined approach.

5 Experimental Results

In our experiments, we studied the actual benefits of our techniques for combined
verification and testing. For that, we examined whether a partial verification
run with subsequent testing is faster than a complete verification. Furthermore,
we determined whether a residual program reduces the test effort. Finally, we
compared all three techniques, the two techniques for construction of residual
programs as well as their combination, with the naive approach always testing
the complete program.

For (partial) verification we used the configurable software analysis tool
CPACHECKER (svn r13520). We configured CPACHECKER to use predicate
analysis* and to produce a condition after partial verification. Also, the residual
program from condition is generated by CPACHECKER. We sliced the original
program and the residual program from condition with the help of the source
code analysis platform Frama-C (v.Neon-20140301) [17]. Finally, we utilized the
concolic test tool KLEE (v.git-20140327) [10] to generate the test-case suites.
We evaluated our techniques on our examples, on two programs called search

4 OQur technique allows the usage of arbitrary analyses, e.g. value analysis or even
sequential combinations of analyses as illustrated in [7].

110 M. Czech, M.-C. Jakobs, and H. Wehrheim

Table 1. Experimental Results

Verification Verification+Testing Program Size #Tests
Program vV pVvV P C S C+S P C S C+SP C S C+S
EVEN/SIGN 2.71 2.71 2.8 3.15 345 359 51 43 51 34 3 2 3 2

SUM 3.66 3.48 454 468 552 564 49 51 48 49 2 3 1 3
search 7.55 4.17 5.51 573 5.73 5.29 217 243 201 167 14 17 14 8
sort 16.28 11.23 11.8812.94 12.32 13.61 760 780 569 574 1919 15 14

get tag 9.71 4.11 471 464 5.1 535415 248159 19916 8 6 8
mim7to8 21.58 14.34 20.8 23.18 17.07 20.16 939 1142 538 966 48 79 28 48
esc_ uri 72.07 49.91 50.56 52.5 51.35 53.61 808 1052 638 757 29 51 26 38

and sort, which allow the user to select one from popular array search and
array sort algorithms, as well as 3 programs constructed from the Verisec bench-
mark [26]. Each of the three programs looks at one test case in the benchmark
and allows to select between the different variants of that test case available
in the benchmark. Except for our examples, all assert statements checked the
absence of buffer-overflows. Furthermore, every program was preprocessed with
CIL [28]. All programs are error free excluding overflows which the verification
tool assumes not to happen. Moreover, the test tool found the errors regarding
overflows if they are part of the test tool’s input program. Our experiments were
performed on a 2.4 Ghz Intel Core 2 Duo Arch Linux system with 4GB memory
and statement coverage, measured with gcov from the GNU Compiler Collection
(v.4.8.2) [1], was always about 90-100% for all generated test-case suites.

Table 5 shows our results. All times are given in seconds. Columns V and p.V
show the times for complete and partial verification. The times for EVEN/SIGN are
the same because due to the modulo operator used in EVEN/SIGN CPACHECKER
was not able to prove the full program using predicate analysis. The next four
columns show the total times for partial verification and subsequent testing
for all four approaches: testing complete program (P), residual program from
condition (C), residual program constructed via slicing (S) and the combination
of the latter two (C+S). Total time includes the time for partial verification,
construction of residual program (if any, e.g. slicing time) and test generation
time. The last 8 columns reflect the test effort. First, the sizes of the programs
put into the test tool are given in number of control locations. Thereafter, the
number of generated test cases per test suite is depicted. The smallest total
time, program size and number of tests for each evaluated benchmark program
is presented in bold.

Our experiments show that in most cases, partial verification with subsequent
testing is faster than a complete verification and thus, enables “on-the-fly” analysis.
Surprisingly, the naive approach testing always the complete program performs
best in half of the cases. We believe that this is not a general weakness of our
approaches. In fact, KLEE performs well even for large programs (much larger
than ours) and currently constructing the residual program takes a significant
amount of time. The following comparison of program size and number of tests

Just Test What You Cannot Verify! 111

will support our position. In contrast to total execution times, program size and
number of tests are usually lower for the two residual program approaches based
on slicing (S,C+S) than for the complete program but this is rarely true for
the residual program from condition (C). In case of the slicing approaches, test-
ing following a partial verification benefits from residual program construction.
Moreover, none of the two slicing approaches (S, C+S) always outperforms the
other. As already seen for our example programs EVEN/SIGN and SUM which
approach performs better depends on the partial verification, e.g. do assertions
exist which are only partially verified or do loops exist which are only partially
verified. Hence, strategies choosing the correct technique need to be developed
considering e.g. the program structure and the condition.

6 Related Work

There are a number of different approaches combining verification and testing
which we shortly discuss here. VART [29] uses testing to identify likely invariants
and exclude intentionally invalidated invariants after update. Bounded model
checking determines the invariants from the likely invariants and checks the
non-invalidated invariants on the updated program. In unit checking [20] a LTL
formula specifies program paths being suspicious. A model checker explores these
paths. A satisfying assignment to the respective path condition is used for test
generation. Approaches like [31,30] check if a model satisfies a property and then
verify that the implementation is consistent with the model.

Like us, many approaches use collaboration of verification and testing to either
verify a program or find bugs. The approaches in [25,33,19,3,13,21,27] describe
(interleaved) collaboration of verification and testing in which testing assists to
find a proof. [33] generalizes test observations to a likely abstraction. A theorem
prover checks the abstraction. If this check fails, the counterexample is used
to compute the next input for testing and generalization starts again. [27] uses
testing to choose a good abstraction configuration for the analysis. [21] uses test
data to simplify invariant constraints. [25,19,3,13] including Synergy [19] and
Dash [3] search for errors and proofs at the same time. Test information (e.g.
unavailability of concrete counterexample) is used for refinement of abstraction
in case of spurious abstract counterexamples. Abstract counterexamples are used
to derive a test for a concrete counterexample. In our approaches collaboration
is purely sequential, first verification, then testing, and testing does not assist
verification.

A different class of collaborating approaches [6,15,16,18,12] uses static analysis
to detect potential bugs and then test if the bugs really exist in the program.
DyTa [18] first detects potential defects with a static analyzer, then identifies
branching conditions which must be valid to trigger a defect, and adds an assume
statement for this condition to guide test input generation via symbolic exe-
cution. BLAST [6] reports error locations considered reachable and computes
a test input for every error path, a satisfying assignment for the symbolic er-
ror path. Check’'n’Crash [15] and DSD-Crasher [16] use ESC/Java to identify

112 M. Czech, M.-C. Jakobs, and H. Wehrheim

potential errors and compute a satisfying assignment to the error condition for
every potential error. These assignments are given to JCrasher to generate JUnit
tests. SANTE [12] uses a static abstract interpretation based value analysis to
compute alarms. Then, it instruments the program with special error branches
to enable alarm guided test generation and computes one or more program slices,
depending on the configuration. These program slices are subject to test gener-
ation. Our second approach can be understood as testing potential defects. Any
unproven assertion is a potential defect. In contrast to all the other approaches,
we do not verify the whole program and we believe that an error found by our
verification tool is a real bug. Nevertheless, similar to SANTE [12] in configur-
ation ALL (computing a single slice) we also apply slicing using the non-verified
assertions instead of the alarms as slicing criteria.

Further approaches [24,7,14] divide the program like we do. One part of the
program is verified, the other is tested. Program partitioning [24] takes the op-
posite direction. It first tests. Then, it removes the sufficiently tested paths and
verifies the residual program. In contrast to our approaches the residual program
in [24] is always a subgraph of the original one. Conditional model checking [7]
produces an assumption automaton to sum up the verification work and thus
partitions the program. In [7] the technique is used to verify the non-verified
partition by a second verifier. It is only mentioned that the technique can be
used to guide test generation. We describe two approaches for actual guidance.
Christakis et al. [14] instrument the program with assumptions and assertions
describing the verification effort already done. The subsequent testing tool is
guided to test the assumptions or the validated property but in contrast to our
approaches, the tested program is not simplified by slicing or deletion of program
paths.

Conditioned program slicing [11] and its extension [22] provide a general model
for the extraction of those program parts which keep the behavior of a program
statement w.r.t. a set of program executions. Hence, their idea is similar to our
extraction of a residual program from condition and our combined approach. An
important difference between our approaches and [11,22] is that we use a struc-
tural description of the program executions (the condition) and [11,22] require
a logic formula on a subset of the input variables. We think that it is non-trivial
to transform our condition into a logic formula needed for conditioned program
slicing.

7 Conclusion

In this paper we presented a new way of combining verification and testing.
The approach divides the labor of safety checking onto verification and testing,
testing only having to analyze those parts of the program which have not been
verified. To this end, we presented two ways of constructing residual programs
for testing. We implemented both techniques and experimentally evaluated them
on a number of example programs. The experiments showed that in almost all

Just Test What You Cannot Verify! 113

cases the subsequent testing following an incomplete verification could benefit
from residual program construction.

As future work we in particular would like to work on strategies for dividing

the available amount of time into the part for verification and that for test-
ing. Furthermore, the experiments so far indicate that the program’s syntactical
structure might influence what residual program construction technique works
better, so that the choice for the technique could be based on the program at
hand. Another line of improvement could be a parallelization of the two tech-
niques since they are completely independent.

References

1.

Gnu compiler collection, https://gcc.gnu.org (accessed: October 13, 2014)

2. Barraclough, R.W., Binkley, D., Danicic, S., Harman, M., Hierons, R.M., Kiss, A.,

10.

11.

12.

13.

Laurence, M., Ouarbya, L.: A trajectory-based strict semantics for program slicing.
Theoretical Computer Science 411(11-13), 1372-1386 (2010)

Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests. In:
ISSTA 2008, pp. 3-14. ACM (2008)

Bertolino, A.: Software testing research: Achievements, challenges, dreams. In:
Briand, L.C., Wolf, A.L. (eds.) International Conference on Software Engineer-
ing, ISCE 2007, Workshop on the Future of Software Engineering, FOSE 2007,
Minneapolis, MN, USA, May 23-25, pp. 85-103 (2007)

Beyer, D.: Status report on software verification. In: Abraham, E., Havelund, K.
(eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 373-388. Springer, Heidelberg
(2014)

Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: ICSE 2004, pp. 326-335. IEEE Computer Society
(2004)

Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: A technique to pass information between verifiers. In: FSE 2012,
pp. 1-11. ACM (2012)

Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: Con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504-518. Springer, Heidelberg
(2007)

Beyer, D., Keremoglu, M.E.: CPAcHECKER: A Tool for Configurable Software
Verification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184-190. Springer, Heidelberg (2011)

Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: OSDI 2008, pp. 209-224.
USENIX Association (2008)

Canfora, G., Cimitile, A., De Lucia, A.: Conditioned program slicing. Information
and Software Technology 40(11-12), 595-607 (1998)

Chebaro, O., Kosmatov, N., Giorgetti, A., Julliand, J.: Program slicing enhances
a verification technique combining static and dynamic analysis. In: SAC 2012,
pp. 1284-1291. ACM (2012)

Chen, J., MacDonald, S.: Towards a better collaboration of static and dynamic
analyses for testing concurrent programs. In: PADTAD 2008, pp. 8:1-8:9. ACM
(2008)

https://gcc.gnu.org

114

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

M. Czech, M.-C. Jakobs, and H. Wehrheim

Christakis, M., Miiller, P., Wiistholz, V.: Collaborative verification and testing with
explicit assumptions. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS,
vol. 7436, pp. 132-146. Springer, Heidelberg (2012)

Csallner, C., Smaragdakis, Y.: Check 'N’ Crash: Combining static checking and
testing. In: ICSE 2005, pp. 422-431. ACM (2005)

Csallner, C., Smaragdakis, Y.: DSD-Crasher: A hybrid analysis tool for bug finding.
In: ISSTA 2006, pp. 245-254. ACM (2006)

Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-c. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS,
vol. 7504, pp. 233-247. Springer, Heidelberg (2012)

Ge, X., Taneja, K., Xie, T., Tillmann, N.: DyTa: Dynamic symbolic execution
guided with static verification results. In: ICSE 2011, pp. 992-994. ACM (2011)
Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: SYN-
ERGY: a new algorithm for property checking. In: SIGSOFT FSE 2006, pp. 117—
127. ACM Press (2006)

Gunter, E., Peled, D.: Model checking, testing and verification working together.
Formal Aspects of Computing 17(2), 201-221 (2005)

Gupta, A., Majumdar, R., Rybalchenko, A.: From tests to proofs. In:
Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, wvol. 5505,
pp. 262-276. Springer, Heidelberg (2009)

Harman, M., Hierons, R., Fox, C., Danicic, S., Howroyd, J.: Pre/post conditioned
slicing. In: ICSM 2001, pp. 138-147 (2001)

Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
In: PLDI 1988, pp. 35-46. ACM (1988)

Jalote, P., Vangala, V., Singh, T., Jain, P.: Program partitioning: A framework for
combining static and dynamic analysis. In: WODA 2006, pp. 11-16. ACM (2006)
Kroening, D., Groce, A., Clarke, E.: Counterexample guided abstraction refinement
via program execution. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004.
LNCS, vol. 3308, pp. 224-238. Springer, Heidelberg (2004)

Ku, K., Hart, T.E., Chechik, M., Lie, D.: A buffer overflow benchmark for software
model checkers. In: ASE 2007, pp. 389-392. ACM (2007)

Naik, M., Yang, H., Castelnuovo, G., Sagiv, M.: Abstractions from tests. In: POPL
2012, pp. 373-386. ACM (2012)

Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language
and tools for analysis and transformation of C programs. In: Nigel Horspool, R.
(ed.) CC 2002. LNCS, vol. 2304, pp. 213-228. Springer, Heidelberg (2002)
Pastore, F., Mariani, L., Hyvérinen, A.E.J., Fedyukovich, G., Sharygina, N., Se-
hestedt, S., Muhammad, A.: Verification-aided regression testing. In: ISSTA 2014,
pp. 37-48. ACM (2014)

Rusu, V., Marchand, H., Tschaen, V., Jéron, T., Jeannet, B.: From safety verifi-
cation to safety testing. In: Groz, R., Hierons, R.M. (eds.) TestCom 2004. LNCS,
vol. 2978, pp. 160-176. Springer, Heidelberg (2004)

Sharygina, N., Peled, D.: A combined testing and verification approach for software
reliability. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 611-
628. Springer, Heidelberg (2001)

Tip, F.: A survey of program slicing techniques. Journal of Programming Lan-
guages 3(3) (1995)

Yorsh, G., Ball, T., Sagiv, M.: Testing, abstraction, theorem proving: Better to-
gether? In: ISSTA 2006, pp. 145-156. ACM (2006)

	Just Test What You Cannot Verify

	1
Introduction
	2
Background
	3
Extraction of Residual Program from Condition
	4
Residual Program via Slicing
	5
Experimental Results
	6
Related Work
	7
Conclusion
	References

