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Abstract. Model finders are very popular for exploring scenarios, help-
ing users validate specifications by navigating through conforming model
instances. To be practical, the semantics of such scenario exploration op-
erations should be formally defined and, ideally, controlled by the users,
so that they are able to quickly reach interesting scenarios.

This paper explores the landscape of scenario exploration operations,
by formalizing them with a relational model finder. Several scenario ex-
ploration operations provided by existing tools are formalized, and new
ones are proposed, namely to allow the user to easily explore very simi-
lar (or different) scenarios, by attaching preferences to model elements.
As a proof-of-concept, such operations were implemented in the popular
Alloy Analyzer, further increasing its usefulness for (user-guided) scenario
exploration.

1 Introduction

With the ever-growing adoption of model-driven engineering (MDE) practices
in software development, it becomes increasingly important to easily verify and
validate the evolving specifications. The first step of this “debugging” process
is typically scenario exploration [15], the generation of conforming model in-
stances that provide quick feedback about the specifications and help to flag
problems at early stages of development. Model finders, tools whose goal is pre-
cisely to find models that conform to given constraints, play an essential role in
such tasks. Among these, Alloy [7] and its underlying model finder Kodkod [17],
with a lightweight approach to formal methods, an object-oriented flavor and
the ability to provide quick feedback through the generation of snapshots, have
proven to be well-suited to handle MDE tasks. This is patent in the number
of techniques that have been proposed to verify and validate with such tools
essential MDE artifacts, like model specifications [1,8,10,3] and model transfor-
mations [5,2]. Unfortunately, model finders like Alloy have limited usefulness in
scenario exploration, since they do not enable the user to control the criteria
through which returned instances are selected from among those rendered con-
sistent. In fact, it is not even possible to formalize the order under which the
instances are enumerated, as this is typically imposed by the underlying opaque
solving procedure.

Consider, as an example, the OwnGrandpa Alloy module from [7], distributed
with the Alloy Analyzer and depicted in Fig. 1, designed to explore the pop-
ular song “I’m My Own Grandpa”. This module consists of Person elements
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1 abstract sig Person {
2 father : lone Man,
3 mother : lone Woman }
4 sig Man extends Person {
5 wife : lone Woman }
6 sig Woman extends Person {
7 husband : lone Man }
8 fact {
9 no p:Person | p in p.^(mother+father) // Biology

10 wife = ∼husband // Terminology
11 no (wife+husband) & ^(mother+father) // SocialConvention
12 Person in // NoSolitary
13 Person.(mother+father+∼mother+∼father+wife+husband) }
14 run {} for exactly 2 Man, exactly 2 Woman

Fig. 1. The OwnGrandpa Alloy module

(called atoms, in Alloy) that are either Man or Woman, introduced by signature
declarations (ll. 1–7). Each person may have another person with appropriate
gender as father or mother, as well as a wife or husband. These relations are
declared by fields within the signatures. An additional fact (ll. 8–13) imposes
some restrictions on these relations: the mother and father fields must not be
cyclic (Biology), wife and husband are each others inverse (Terminology), no
one is married to an ancestor (SocialConvention) and there are no solitary
persons (NoSolitary, not present in the original version but introduced to pro-
vide richer exploration scenarios). To validate this module and identify potential
problems, the user is able to generate model instances that conform to it. The
run command (l. 14) instructs the Analyzer to find instances with exactly 2 men
and 2 women. Once an initial model is calculated, the user is able to iterate
through others until there are no more valid instances left. Figure 2 presents a
possible sequence of returned instances (this procedure is non-deterministic but
the selected ones are representative of the result of multiple executions).

It is easy to grasp that these instances show little resemblance with one an-
other. In fact, there is no clear order in which they are produced, which hinders
the usefulness of the finder in the exploration of scenarios, since it is not pre-
dictable when problematic instances have not been generated. For instance, the
user could be interested in exploring variations of the family tree m1 (Fig. 2b), in
which case instances similar to the one from Fig. 3a should be calculated. Ideally,
the users should be able to go even further and customize the notion of “similar
instance” for each particular context. This would allow them, for instance, to ask
for models close to m1 but prioritizing changes on marital relations, resulting in-
stead in instances resembling the one at Fig. 3b, which quickly reveals a potential
problem: this version of the OwnGrandpa module allows siblings to marry each
other. Finding an instance that flags this problem using regular model findering
would require an arbitrary, and possibly large, number of steps.
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(a) Initial instance m0. (b) Succeeding instance m1. (c) Succeeding instance m2.

Fig. 2. Regular model finding results

(a) Closest to m1. (b) Weighted closest to m1.

Fig. 3. Target-oriented model finding results

This paper explores this landscape of scenario exploration operations and for-
malizes them over relational model finding problems. While previous research on
controlled scenario exploration exists—particularly on the generation of minimal
instances [9,15,6] and on allowing the user to ask for similar instances through
the introduction of additional facts [15]—a systematic study of such operations
is still lacking. During this exploration it also becomes clear that many interest-
ing operations are not supported by any existing system. We advocate that a
Kodkod extension with support for weighted target-oriented model finding pro-
vides a formalism that is sufficiently flexible to support many interesting scenario
exploration operations, including those proposed in previous studies and user-
parametrizable ones that allow the generation of the instances from Fig. 3. As a
proof-of-concept, we instantiate and implement some of these operations in the
Alloy Analyzer, further improving its capabilities as a scenario exploration tool.

Section 2 introduces the notion of weighted target-oriented model finding,
essential to define interesting operations. Section 3 formalizes scenario explo-
ration operations on top of it, which are then deployed in an extension to the
Alloy Analyzer in Section 4. Section 5 compares our formalization with existing
work, while Section 6 draws conclusions and points directions to future work.

2 Relational Model Finding

The model finding formalism followed in this paper is inspired by the relational
model finder Kodkod [17]. While alternative formalizations could be followed,



304 N. Macedo, A. Cunha, and T. Guimarães

this one has proven to be simple and flexible enough to enable the formalization
of interesting scenario exploration operations. In this context, model finders are
deployed through the specification of problems P , which establish the search
space of the finder. A problem specifies a set of bounded relation variables R, and
solving it amounts to finding a binding B : R → T that assigns to each relation
r ∈ R a tuple set t ∈ T drawn from a fixed universe A. While relations may be
of arbitrary arity (greater than 0), its binding B(r) must be uniform, containing
only tuples of the same arity. This arity is imposed by its bounds, which must
themselves be uniform. Bindings are isomorphic to models by translating classes
as unary relations (i.e., sets) and attributes and associations as binary relations.

Definition 1 (model finding). A model finding problem P is a tuple
〈A,L,U , φ〉 where A is a universe of atoms, L,U : R → T assign to each
relation variable r ∈ R uniform lower- and upper-bounds, with L(r) ⊆ U(r),
and φ is a formula over R variables. A binding B : R → T is a solution of P ,
denoted by B |= P , if φ holds and B(r) ⊆ U(r)\L(r) for any r ∈ R.

Typically, each model finding problem P has multiple solutions. Throughout
this paper, we see model finding as a procedure that somehow selects a single
model from the solutions of P . We denote this selection by B ← P .

In previous work [4] we extended model finding problems to a target-oriented
version, that allowed a finer control over the range of solutions of a problem. Let
Δ : (R → T )× (R → T ) → N0 be a distance function over two bindings defined
as the symmetric difference between them, defined as

Δ(B,B′) =
∑

r∈RB∩RB′

|B(r) �B′(r)|

where RB denotes the set of relation variables bound by B. This is equivalent
to measuring the graph-edit distance between two models. Equipped with this
metric we can define model finding problems whose goal is to, besides producing
consistent model instances, approximate, according to Δ, a given target.

Definition 2 (target-oriented model finding). A target-oriented model
finding problem PT is a tuple 〈A,L,U ,T , φ〉 where 〈A,L,U , φ〉 is a model find-
ing problem P and T : R → T assigns targets to a set of relation variables, with
L(r) ⊆ T (r) ⊆ U(r) for any r ∈ RT . A binding B : R → T is a solution of PT ,
denoted by B |= PT , if B |= P and, for any other solution B ′ |= PT :

Δ(B, T ) � Δ(B′, T )

If no targets are defined, this degenerates into a regular model finding problem.
Target-oriented problems do not have necessarily a single solution, but the set

of acceptable solutions is in general much smaller than the equivalent target-free
problem. Nonetheless, plain graph-edit distance is too rigid to allow the user
to finely control the generation of solutions. Thus, in this paper we propose a
new class of weighted model finding problems, where the user is able to assign
different weights to each relation variable, and thus control modifications over
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their valuation. Given a weight function w : R → N0, let Δw : (R → T )× (R →
T ) → N0 be defined as

Δw(B,B′) =
∑

r∈RB∩RB′

|w(r)(B(r) �B′(r))|

Given such distance function, the model finder will try to minimize the overall
weighted distance between the two bindings, and as a consequence prioritize
modifications on relations with smaller weight.

Definition 3 (weighted target-oriented model finding). A weighted
target-oriented model finding problem Pw is a tuple 〈A,L,U ,T ,w , φ〉 where
〈A,L,U , φ〉 is a model finding problem P , T : R → T assigns targets to a set of
relation variables, with L(r) ⊆ T (r) ⊆ U(r) for any r ∈ RT and w : R → N0

is a weight function with RT ⊆ Rw. A binding B : R → T is a solution of Pw,
denoted by B |= Pw, if B |= P and, for any other solution B ′ |= P :

Δw(B, T ) � Δw(B
′, T )

Weighted problems may still have multiple solutions. If w is a constant function,
such problems degenerate into regular target-oriented ones. We will denote such
weight function by 1. If a relation has weight 0, changes on it do not count
towards the update distance, meaning that these may change freely between the
target and the solutions. If all relations have weight 0, all solutions will be at
the same minimal distance 0 from the target, thus degenerating into a regular
model finding problem.

3 Scenario Exploration Operations

Relational model finding problems provide the base over which we formalize
scenario exploration operations. Two operations are typically supported: init :
S → P creates an initial model finding problem from a specification S ∈ S (for
instance, an Alloy module), and next:P×(R → T ) → P , that given the previously
produced instance, updates the problem to produce a succeeding solution. Each
model finding problem P that results from these operations may have multiple
solutions; a single one is typically drawn from them and presented to the user.
This section presents various instantiations of these two operations.

For any specification S, the embedding �S� derives an appropriate weighted
target-oriented model finding problem 〈AS,LS,US, { }, 1, φS〉 (which is equivalent
to a regular model finding problem 〈AS,LS,US, φS〉). The embedding of the mod-
ule OwnGrandpa from Fig. 1, which will be used as a running example, results in
the model finding problem presented in Fig. 4 for the scope provided in the run
command, 2 men and 2 women (atom names are abbreviated for readability).

Although model finding problems act upon relation variables, sometimes it
is useful to refer to the individual atoms of the universe, which requires the
reification of the atoms into relations. For instance, for universe {M0,M1,W0,W1},
this would give rise to 4 new singleton unary relations with exact bounds:
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{M0,M1,W0,W1}

Man : ({M0,M1},{M0,M1})
Woman : ({W0,W1},{W0,W1})
father : ({},{(M0,M0),(M0,M1),(M1,M0),(M1,M1),

(W0,M0),(W0,M1),(W1,M0),(W1,M1)})
mother : ({},{(M0,W0),(M0,W1),(M1,W0),(M1,W1),

(W0,W0),(W0,W1),(W1,W0),(W1,W1)})
wife : ({},{(M0,W0),(M1,W0),(M0,W1),(M1,W1)})
husband : ({},{(W0,M0),(W1,M0),(W0,M1),(W1,M1)})

all p:Man | lone p.wife && all p:Woman | lone p.husband
all p:Man+Woman | lone p.father && lone p.mother
all p:Man+Woman | !(p in p.^(mother+father))
wife = ∼husband
no ((wife+husband) & ^(mother+father))
Man+Woman in (Man+Woman).(father+mother+∼father+∼mother+wife+husband)

Fig. 4. Kodkod embedding of the OwnGrandpa problem

M0 : ({M0},{M0}) W0 : ({W0},{W0})
M1 : ({M1},{M1}) W1 : ({W1},{W1})

Since these are bound exactly, they do not affect the performance of the solver.
Throughout this section, every model finding problem is assumed to have the
atoms from its universe A reified into relations in R, which allow concrete B
instances to be referred in its formula φ. Given an operator ≈ that compares
tuple sets, formula [B ]≈ compares the valuation of relation variables R with
their binding in B. For instance, for model m1 (Fig. 2b), this takes the shape:

M0 + M1 ≈ Man && W0 + W1 ≈ Woman &&
M1->M0 + W1->M0 ≈ father && M1->W0 ≈ mother &&
none->none ≈ wife && none->none ≈ husband

Relation none represents the empty set in Kodkod, and none->none the empty
binary relation. Instantiating the operation with equality as [B ]= results in a
formula that holds iff the relations are assigned the exact same valuation as B .

3.1 Generation Operations

Regular generation. The most basic instantiation of the generation operation,
offered by Kodkod and most model finders, simply defines a problem that returns
every consistent instance, amounting to a regular model finding problem:

init(S) = 〈AS,LS,US, { }, 1, φS〉

That is, the regular embedding �S�. Figure. 2a already presented a possible solu-
tion drawn from init(OwnGrandpa), but since the generation followed no criteria,
any other model B |= �S� could have been returned instead.
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(a) i0 ← init⊥(OwnGrandpa). (b) i1 ← init�(OwnGrandpa).

(c) i2 ← initw⊥(OwnGrandpa). (d) i3 ← initi1(OwnGrandpa
′).

Fig. 5. Instantiations of the generation operation init

Minimal generation. Equipped with target-oriented problems, we are able to
define more refined scenario exploration operations. For instance, we can define
a version of init that always returns minimal solutions according to the Δ distance
function, which is useful since, often, the problems of the specification are patent
in even small examples. This may be achieved by trying to approximate the
minimal model accepted by the problem’s bounds:

init⊥(S) = 〈AS,LS,US,LS, 1, φS〉

Note that the target cannot simply be an empty model, as that could fall below
the lower bounds of �S�. Thus, the problem should instead try to approximate
LS. For instance, in OwnGrandpa, the smallest potential instance amounts to:

Man �→ {M0,M1}
Woman �→ {W0,W1}
father,mother,wife,husband �→ {}

Figure 5a shows a solution that results from applying init⊥ to OwnGrandpa, which
must relate some of its elements due to the NoSolitary constraint (without
this constraint, there would be a single minimal solution, with the four persons
unconnected). Since constraint Terminology forces wife and husband tuples
to be paired, minimal generation will always prioritize parenthood relations.

Maximal generation. A dual instantiation of minimal generation, is that of the
generation of maximal solutions according to Δ, which forces the binding to
assign as many tuples as possible to the relations. This is useful because it
allows the exploration of boundary scenarios. Likewise to minimal generation,
the largest potential instance of �S� is represented by the problem’s upper-bound:
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init�(S) = 〈AS,LS,US,US, 1, φS〉

In OwnGrandpa, the largest target would take the shape:

Man �→ {M0,M1}
Woman �→ {W0,W1}
father �→ {(M0,M0),(M0,M1),(M1,M0),(M1,M1),

(W0,M0),(W0,M1),(W1,M0),(W1,M1)}
mother �→ {(M0,W0),(M0,W1),(M1,W0),(M1,W1),

(W0,W0),(W0,W1),(W1,W0),(W1,W1)}
wife �→ {(M0,W0),(M1,W0),(M0,W1),(M1,W1)}
husband �→ {(W0,M0),(W1,M0),(W0,M1),(W1,M1)}

This results in solutions resembling the one from Fig. 5b, where problems like
married siblings are immediately exposed.

Weighted generation. The notion of minimality greatly varies from context to
context, and may not be embodied by the simple graph-edit distance represented
by Δ. Supporting weighted distances tames this strictness to a degree, allowing
the user to customize the notion of minimal or maximal solution. This allows
a controlled generation of boundary solutions, that can more easily trigger the
detection of problems. Given a weight function w and support for weighted
target-oriented model finding, this can be simply defined as:

initw⊥(S) = 〈AS,LS,US,LS,w , φS〉
initw�(S) = 〈AS,LS,US,US,w , φS〉

For instance, the order proposed in Section 1 for OwnGrandpa, that prioritizes
the ancestry tree, could be embodied by the following weight function:

Man,Woman,father,mother �→ 3
wife,husband �→ 1

Applying initw⊥ to OwnGrandpa using this weight function would only yield the
solutions with persons connected by marriage rather than parenthood, as de-
picted in Fig. 5c, because a pair of tuples wife/husband weighs less than a
single parenthood tuple; if instead parenthood relations were assigned weight 2,
minimal solutions would combine both parenthood and marriage connections.

Generation from instance. Imagine that the developer found the problematic
instance i1 (Fig. 5b) and as a consequence modified the module to a OwnGrandpa′

version by adding a constraint that supposedly forbids siblings from marrying
each other. When returning to exploration, the developer could want to search
for instances that resemble i1, to make sure that no similar problems persist.
Of course in this simple scenario an assertion could be defined to check that
there are no marriages between siblings, but as the complexity of the properties
increases, it may be simpler to explore the solutions around the problematic
instance before defining assertions. This is not possible in regular model finding,
but is straight-forward in target-oriented model finding, for a binding B : R → T
representing a pre-existing model:



Exploring Scenario Exploration 309

initB(S) = 〈AS,LS,US,B , 1, φS〉

If B is still a valid solution, it is guaranteed to be returned; otherwise the one
closest to it will, allowing the user to assess whether the fix to the specification
was successful. If OwnGrandpa′ is well defined, then the instance from Fig. 5d
will be returned, which is the solution closest to i1 without married siblings. This
scenario hints at the application of such operation in the context of model repair,
restoring the consistency of inconsistent instances through minimal updates.

3.2 Iteration Operations

Regular iteration. The most basic iteration operation, as provided by Kodkod and
most existing model finders, generates arbitrary fresh solutions, i.e., solutions
that have not been previously returned. This can be defined as:

next(〈A,L,U , , , φ〉,B0) = 〈A,L,U , { }, 1, φ ∧ ¬ [B0]=〉

Recall that [B0]= is a formula that tests whether the relation variables have the
valuation of B0; negating it removes such instance from the search space. This
basic instantiation of next returns arbitrary solutions, for instance the sequence
already presented in Fig. 2.

Least-change iteration. Target-oriented model finding can greatly benefit itera-
tion operations. The most evident instantiation is to always search for instances
that are close to each other. This can be easily instantiated by setting the pre-
vious instance as the target of the problem for the succeeding solution:

next⊥(〈A,L,U , , , φ〉,B0) = 〈A,L,U ,B0, 1, φ ∧ ¬ [B0]=〉

Essentially, the target is now updated at each iteration to the current bind-
ing. Like the standard next operation, next⊥ negates the current solution in φ,
guaranteeing that the iteration will not loop between two close instances. Fig-
ures 6a and 6b exemplify this for OwnGrandpa, assuming m1 was returned by
the preceding generation problem.

Most-change iteration. In scenario exploration it is sometimes useful to iterate
through solutions that greatly differ from each other, in order to explore the
whole search space. Using target-oriented problems, this can be specified as:

next�(〈A,L,U , , , φ〉,B0) = 〈A,L,U ,B0, 1, φ ∧ ¬ [B0]=〉

Binding B0 represents the complement of B0 in relation to the upper-bound of
the problem, i.e., for any r ∈ R, B0(r) = U(r)\B0(r), which is the potential
solution further away from B0. A possible run for OwnGrandpa is depicted in
Figs. 6c and 6d, assuming m1 as the previous solution.
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(a) n0 ← P0 = next⊥(init(OwnGrandpa),m1). (b) n′
0 ← next⊥(P0, n0).

(c) n1 ← P1 = next�(init(OwnGrandpa),m1). (d) n′
1 ← next�(P1, n1).

(e) n2 ← P2 = nextT (initm1(OwnGrandpa),m1). (f) n′
2 ← nextT (P2, n2).

Fig. 6. Instantiations of the iteration operation next

Circular iteration. The user may find one of the returned instances interesting
and wish to explore all solutions that are similar to it. Such kind of iteration that
“circulates” an instance is specified by simply fixing the target of the problem:

nextT (〈A,L,U ,T , , φ〉,B0) = 〈A,L,U ,T , 1, φ ∧ ¬ [B0]=〉

Pairing this operation with init⊥ will iteratively produce minimal solutions by
circulating the minimal model, while pairing it with initB will enumerate all so-
lutions that resemble model B. While not formalized, this would be the behavior
embodied by the iteration operation in [4]. Figures 6e and 6f present a possible
trace created by this operation for OwnGrandpa and m1. As one circulates around
the fixed target, solutions may begin to show little resemblance with each other.

Weighted iteration. The scenario exploration operations presented hitherto allow
the generation of solutions in an ordered manner, but do not allow the user
to control that order. Equipped with weighted target-oriented model finding
problems, the user is able to fine-tune the generation of solutions. Each of the
above presented operations may be adapted to a weighted scenario, like:

nextw⊥(〈A,L,U , , , φ〉,B0) = 〈A,L,U ,B0,w , φ ∧ ¬ [B0]=〉
nextw�(〈A,L,U , , , φ〉,B0) = 〈A,L,U ,B0,w , φ ∧ ¬ [B0]=〉

For instance, once initw⊥ kickstarts a problem with weights generating a minimal
solution, iteration using nextw⊥ can be used to search for the next minimal ones.
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Note that such formalization allows the weight function to be modified at each it-
eration. Considering the same weight function from Section 3.1 for OwnGrandpa,
searching for close instances prioritizes changes in the marital status, while pre-
serving the biological characteristics of the model; searching for far instances
would have the opposite effect, modifying the latter as much as possible.

Cone iteration. Other works on scenario exploration consider a notion of min-
imality that differs from ours [15]. In these, the order on solutions is defined
by inclusion, i.e., a binding B is considered smaller than B′ if for every r ∈ R,
B(r) ⊆ B′(r). Minimal solutions are thus those where further removing any tuple
results in an inconsistent solution. Thus, each minimal solution B has a “cone” of
augmented solutions, containing instances obtained by introducing elements in
B. To generate minimal solutions, the technique from [15] finds arbitrary solu-
tions and then iteratively removes tuples until finding a minimal solutions from
its cone. In our setting, this is simulated by a target-oriented problem:

next 	⊆(〈A,L,U , , , φ〉,B0) = (〈A,L,U ,L, 1, φ ∧ ¬ [B0]⊆〉

Clause ¬ [B0]⊆ introduced in each iteration guarantees that no more solutions
from the cone of B0 will be produced (this differs from ¬ [B0]=, where B0 will
not be produced but other solutions from its cone may). The smallest target L
guarantees that the minimal solution from the new cone is selected. The solutions
generated by init⊥ are guaranteed to be the minimum of a cone, thus it can
be used to kickstart the iteration with next 	⊆. In OwnGrandpa, this results in
solutions other than the ones considered minimal by Δ: besides those similar to
i0 (Fig. 5a), connected by parenthood tuples, those connected by marriage would
also be considered minimal, since removing any of those tuples would render the
solutions inconsistent (in fact, it will return the same solutions as initw⊥ with
weight 1 and 2 for marriage and parenthood links, respectively).

Extended iteration. Once a problem is being explored, it may be useful to control
the generation of the next solution by introducing additional constraints without
restarting the model finding procedure. For a formula ψ, this is formalized as:

nextψ(〈A,L,U , , , φ〉,B0) = 〈A,L,U ,B0, 1, φ ∧ ψ〉

This generates the solutions closest to B0 where ψ also holds, including itself:
the negation of B0 is left out of the formula because the user may be assessing
whether B0 remains a solution with ψ. Since the atoms are assumed to be rei-
fied in the problem, this operation can also be used to perform the augmentation
operation proposed in [15] through the insertion of tuples into relations. How-
ever, since their notion of minimality differs from ours, the resulting solutions
could vary in certain scenarios. This operation is related to the generation from
instance: nextψ may be used when the user wishes to explore solutions without
persisting ψ in the original specification; initB must be used if the specification
is effectively updated, requiring the restart of the iteration process.
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4 Deployment in the Alloy Analyzer

Some of the proposed scenario exploration operations were implemented in an
extension to the Alloy Analyzer. The Analyzer is built over Kodkod, which only
supports regular model finding. Thus, first, Kodkod was extended to support
weighted target-oriented model finding, and second, Analyzer was modified to be
able to communicate with that extended version of Kodkod.

4.1 Weighted Kodkod

Regular Kodkod problems 〈A,L,U , φ〉 are solved through an embedding into
boolean logic and the deployment of SAT solvers. This embedding is performed
by interpreting each n-ary relation r ∈ R as a matrix with n dimensions of size
|A |. For each tuple 〈Ai1 , ..., Ain〉 in the lower-bound L(r), the value in r[i1, ..., in]
is set to 1; for those outside the upper-bound U(r), the value in r[i1, ..., in] is
set to 0. For each tuple 〈Ai1 , ..., Ain〉 in-between the bounds (U(r)\L(r)), a new
boolean variable ri1,...,in is created, that establishes the presence of that tuple
in r. Formula φ is then embedded by translating operations over relations to
the corresponding matrix operations. If the SAT solver is able to find a valid
valuation for the variables, it represents a valid model instance of the problem.

In [4] we extended this procedure to deal with targets using maximum satisfi-
ability (Max-SAT) problems, whose goal is to find an assignment that maximizes
the number of satisfied clauses. Since clauses emerging from constraint φ should
be prioritized over those introduced by the targets, we relied on partial maxi-
mum satisfiability (PMax-SAT) problems, where two kinds of clauses, soft and
hard, can be defined: the solver must satisfy all hard clauses and maximize the
number of soft clauses satisfied. Hard clauses consist of those emerging from
the standard Kodkod embedding of φ into boolean logic; soft clauses consist of
a clause ri1,...,in for every tuple 〈Ai1 , ..., Ain〉 in the target T (r) and a clause
¬ri1,...,in for every tuple 〈Ai1 , ..., Ain〉 outside the target but within the bounds
U(r)\T (r). Maximizing the number of soft clauses satisfied amounts to finding
solutions that differ as little as possible from the target.

Max-SAT solvers typically support weighted clauses, in which case the solver
maximizes the weighted sum of satisfied clauses (in fact, hard clauses in PMax-
SAT are enforced by assigning them weights greater than the weighted sum
of all soft clauses). Thus, given a weight function w : R → N0, it is easy to
deploy weighted target-oriented model finding problems. For each n-ary relation
r ∈ R with w(r) �= 0, for every tuple 〈Ai1 , ..., Ain〉, either a soft clause ri1,...,in
or ¬ri1,...,in with weight w(r) is introduced, depending on the tuple belonging
to T (r) or U(r)\T (r) respectively. The targets of relations whose weight is 0 are
simply ignored, as their valuation does not affect the target-oriented procedure.
We implemented such procedure on top of SAT4J (http://www.sat4j.org), a
pure Java SAT solver that natively handles weighted PMax-SAT problems.

http://www.sat4j.org
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4.2 Scenario Exploration in Alloy

The Alloy Analyzer is built on top of Kodkod, so implementing interesting sce-
nario exploration operations in it requires only an adaptation to the introduced
weighted target-oriented Kodkod. The current prototype has support for minimal
and maximal instance generation (init⊥ and init�) as well as weighted minimal
and maximal iterations (nextw⊥ and nextw�). These are triggered by buttons intro-
duced alongside those for issuing regular init and next commands in the Analyzer.

One of the main advantages of the Alloy Analyzer over plain Kodkod is its
ability to automatically present the solutions as graphs through an embedded
visualizer. Moreover, the user is able to easily customize the presentation of
the solutions through the definition of themes. In order to provide a seamless
experience to the user, we extend the theme editor to also support the assignment
of weights to each signature and field (which are both translated into relations
in Kodkod), which is retrieved every time the iteration commands are called.
By default, all weights are set to 1, representing a regular target-oriented model
finding problem. The user is able to increase them, or set them to 0, in which
case the atoms corresponding to that relation are discarded from the target.

The other scenario exploration operations could have also been implemented
in Alloy in a straight-forward way. Since the theme is persisted through iterations,
initw⊥ and initw� could have been implemented instead of plain init⊥ and init�; the
Analyzer allows the persistence of generated solutions as XML files, which could
be used to implement initB. Extended iteration nextψ could be deployed by
allowing the specification to be updated in a controlled way during the iteration
of solutions. The implementation of these operations is left as future work.

It is worth noting that, instead of reifying the atoms into the Kodkod problem,
the Analyzer short-circuits the introduction of constraint ¬ [B0]= at each next
step directly into the SAT problem where tuples can be directly referred to,
avoiding the creation of additional relations. Our implementation follows the
same approach on the introduction of targets into the PMax-SAT solver.

5 Related Work

A large number of techniques have been proposed for the generation of model
instances from first-order logic constraints. The most relevant to this work are
those following the “MACE-style” [14], where finite models are found through an
embedding of problems into propositional logic and the deployment of off-the-
shelf SAT solvers, of which Kodkod is a paradigmatic example. However, while
techniques for the efficient generation of models abound, few allow the user to
control how they are selected. Among the operations explored in Section 3, the
best-studied one is the generation of minimal models. Such techniques [9,15,6]
usually rely on an iterative procedure that removes elements from found solu-
tions, until a minimal model is reached (according to the inclusion order pre-
sented in Section 3), that can be simulated by our “cone iteration”.

More closely to our work is Aluminum [15], a tool built over Alloy whose focus
is precisely to allow the user to guide the solver through scenario exploration.
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Two exploration operations are proposed: the generation of minimal instances
and their augmentation through introduction of tuples into relations. While the
proposed nextψ operation also allows the introduction of elements (since atoms
are reified), our notion of distance varies from theirs, and thus the set of gen-
erated solutions may differ. Nonetheless, its behavior could be simulated by an
embedding similar that of “cone iteration” next 	⊆, that minimizes solutions within
independent cones. Thus, the proposed operations subsume those of Aluminum.

Relational model finders have been applied in model repair, where the ability
to enforce least-change iteration is essential. The authors from [16] assess the
suitability of Kodkod to repair inconsistencies. Given an inconsistent solution, a
consistent one is found by relaxing the bounds of the original to allow the addi-
tion or removal of tuples suspected of causing the inconsistencies. However there
is no control over how close the new model is to the original one and the authors
do not reason on how to manage the creation of new atoms. Our next⊥ oper-
ation, based on previous work on target-oriented model finding [4] guarantees
that the closest solution is returned. Previously, we had attempted to produce
models with least-change directly over Alloy using an iterative procedure, which
was applied in the context of model repair [13] and inter-model consistency man-
agement [11,12]. While less scalable, working at the Alloy level rather than at
Kodkod’s directly allowed for more expressive model distance functions.

6 Conclusion

In this paper we explored scenario exploration operations, formalizing them on
top of weighted target-oriented model finding problems. To assess the usefulness
of the defined operations in real MDE scenarios, an in-depth empirical study
would be needed. At any rate, we believe that our formalism has shown to
be sufficiently expressive and flexible to allow the specification of interesting
operations, including those proposed in previous work.

We have extended Kodkod to support such class of problems by relying on
PMax-SAT solver with weights, and implemented some of the proposed sce-
nario exploration operations in the Alloy Analyzer as to prove their feasibility.
In the future we intend to expand this set, converting the Analyzer into a fully
fledged scenario exploration tool, as well as to assess the performance of this em-
bedding. Nonetheless, [4] shows that such approach is viable for medium-sized
models, which would be adequate for this kind of application. Managing the user
expectations is also a concern. While the proposed operations allow the user to
customize the order of generation by assigning weights to relations, the connec-
tion between the weights and the resulting order may not be completely clear.
We are studying mechanisms to automatically derive those weights through user
input of what exactly is considered a “close” solution.
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