
Model-Based Adaptation of Software

Communicating via FIFO Buffers

Carlos Canal1 and Gwen Salaün2

1 University of Málaga, Spain
2 University of Grenoble Alpes, Inria, LIG, CNRS, France

Abstract. Software Adaptation is a non-intrusive solution for com-
posing black-box components or services (peers) whose individual
functionality is as required for the new system, but that present inter-
face mismatch, which leads to deadlock or other undesirable behaviour
when combined. Adaptation techniques aim at automatically generat-
ing new components called adapters. All the interactions among peers
pass through the adapter, which acts as an orchestrator and makes the
involved peers work correctly together by compensating for mismatch.
Most of the existing solutions in this field assume that peers interact syn-
chronously using rendezvous communication. However, many application
areas rely on asynchronous communication models where peers interact
exchanging messages via buffers. Generating adapters in this context be-
comes a difficult problem because peers may exhibit cyclic behaviour,
and their composition often results in infinite systems. In this paper, we
present a method for automatically generating adapters in asynchronous
environments where peers interact using FIFO buffers.

1 Introduction

The construction of new software in modern environments is mostly achieved
by reusing and composing existing software elements. These elements (peers in
this paper) can correspond to a large variety of software, such as Web servers,
databases, Graphical User Interfaces, Software-as-a-Service in the cloud, Web
services, etc. In order to make possible the composition of such heterogeneous
software pieces, all peers are equipped with public interfaces, which exhibit their
provided/required services as well as any other composition constraints that
must be respected to ensure the correct execution of the composition-to-be.
However, although a set of peers may appear as adequate for a new software
system under construction, it is likely that their interfaces present mismatch,
especially if they have been independently developed by third parties. Mismatch
takes different forms such as disparate operation names or unspecified message
receptions, and it prevents the direct assembly of the peers.

Software Adaptation [30,10] is a non-intrusive solution for composing black-
box software peers that present interface mismatch, leading to deadlock or other
undesirable behaviour when peers are combined. Adaptation techniques aim at
automatically generating new components called adapters, and usually rely on

c© Springer-Verlag Berlin Heidelberg 2015
A. Egyed and I. Schaefer (Eds.): FASE 2015, LNCS 9033, pp. 252–266, 2015.
DOI: 10.1007/978-3-662-46675-9_17

Model-Based Adaptation of Software Communicating via FIFO Buffers 253

an adaptation contract, which is an abstract description of how mismatch can be
worked out. All interactions pass through the adapter, which acts as an orches-
trator and makes the involved peers work correctly together by compensating for
mismatch. Many solutions have been proposed since the seminal work by Yellin
and Strom [30], see, e.g., [5,7,28,22,16,18].

These approaches vary in different aspects, such as expressiveness of interface
descriptions (signatures, behaviour, Quality-of-Service, semantics), abstraction
level (from abstract models to programming languages), algorithmic techniques
(discrete controller synthesis, planning, enumerative approaches, etc.), or appli-
cation areas (software components, Web services, agent-oriented systems etc.).
Most existing approaches assume that the peers interact using synchronous com-
munication, that is rendez-vous synchronizations. Nonetheless, asynchronous
communication, i.e., communication via buffers, is now omnipresent in areas
such as cloud computing and Web development.

Asynchronous communication highly complicates the adapter generation pro-
cess, because the corresponding systems are not necessarily bounded and may
result into infinite systems. It is known that in this context, the verification
problem and more particularly the boundedness property are undecidable for
communicating finite state machines [6]. Therefore, if we want to generate an
adapter in an asynchronous environment, how could we proceed? What bound
should we choose for buffers during the generation process? Arbitrarily bound-
ing buffers is an option, but we want to avoid imposing any kind of bounds on
buffers, cyclic behaviour, or the number of participants, since it may unneces-
sarily restrict the behaviour of the whole system.

Recent results introduced the notion of synchronizability [3] and showed how
to use it for checking certain properties on asynchronously communicating sys-
tems [24]. These results show that a set of peers is synchronizable if and only
if the system generates the same sequences of messages under synchronous and
unbounded asynchronous communication, considering only the ordering of the
output messages and ignoring the ordering of input messages. Focusing only on
output messages makes sense for verification purposes because: (i) output mes-
sages are the actions that transfer messages to the network and are therefore
observable, (ii) input messages correspond to local consumptions by peers from
their buffers and can therefore be considered to be local and private information.
Synchronizability can be verified by checking the equivalence of the synchronous
version of a given system with its 1-bounded asynchronous version (in which
each peer is equipped with one input FIFO buffer bounded to size 1). Thus,
this property can be verified using equivalence checking techniques on finite sys-
tems, although the set of peers interacting asynchronously can result in infinite
systems.

In this paper, we rely on synchronizability for generating adapters for peers
interacting asynchronously via (possibly unbounded) FIFO buffers. Given a set
of peers modelled using Labelled Transition Systems and an adaptation contract,
we first reuse existing adapter generation techniques for synchronous communi-
cation, e.g., [12,22]. Then, we consider the system composed of the set of peers

254 C. Canal and G. Salaün

interacting through the generated adapter, and we check whether it satisfies the
synchronizability property. If this is the case, this means that the system will
behave exactly the same whatever bound we choose for buffers, therefore this
adapter is a solution to our composition problem. If synchronizability is not
preserved, a counterexample is returned, which is used for refining the adap-
tation contract. Our approach works iteratively by refining the contract un-
til preserving synchronizability. It is worth observing that the main reason for
non-synchronizability is due to output messages, which are uncontrollable in an
asynchronous environment, hence have to be considered properly in the adap-
tation contract. Our approach is supported by tools for generating the adapter
(Itaca [8]) and checking synchronizability (CADP [15]), and was applied to sev-
eral case studies for evaluation purposes. A very early version of this work was
sketched in [13] and is fully developed here.

The organization of this paper is as follows. Section 2 defines our models for
peers and introduces the basics on (synchronous) software adaptation. Section 3
defines the synchronizability property for adapted systems. Section 4 presents
our approach for generating adapters assuming asynchronous communication
semantics. Finally, Section 5 reviews related work, and Section 6 concludes.

2 Models

In this section, we first present the interface model through which peers are
accessed and used. Then, we define adaptation contracts and explain briefly
how adapters are generated from peer interfaces and contracts.

2.1 Interfaces

We assume that peers are described using a behavioural interface in the form of
a Labelled Transition System (LTS).

Definition 1 (LTS). A Labelled Transition System is a tuple (S, s0, Σ, T)
where: S is a set of states, s0 ∈ S is the initial state, Σ = Σ! ∪ Σ? ∪ {τ}
is a finite alphabet partitioned into a set Σ! (Σ?, resp.) of send (receive, resp.)
messages and the internal action τ , and T ⊆ S×Σ×S is the transition function.

The alphabet of the LTS is built on the set of operations used by the peer
in its interaction with the world. This means that for each operation p provided
by the peer, there is an event p? ∈ Σ? in the alphabet, and for each operation
r required from its environment, there is an event r! ∈ Σ!. Events with the
same name and opposite directions (a!, a?) are complementary, and their match
stands for inter-peer communication through message-passing. Additionally to
peer communication events, we assume that the alphabet also contains a special
τ event to denote internal (not communicating) behaviour.

Note that as usually done in the literature [19,2,26], our interfaces abstract
from operation arguments, types of return values, and exceptions. Nevertheless,
they can be easily extended to explicitly represent operation arguments and their

Model-Based Adaptation of Software Communicating via FIFO Buffers 255

associated data types, by using Symbolic Transition Systems (STSs) [22] instead
of LTSs. However, this would render the definitions and results presented in this
work much longer and cumbersome, without adding anything substantial to the
technical aspects of our proposal.

2.2 Adaptation Contracts

Typical mismatch situations between peers appear when event names do not
correspond, the order of events is not respected, or an event in one peer has
no counterpart or matches several events in another one. All these cases of be-
havioural mismatch can be worked out by specifying adaptation rules. Adapta-
tion rules express correspondences between operations of the peers, like bindings
between ports or connectors in architectural descriptions. Adaptation rules are
given as vectors, as defined below:

Definition 2 (Vector). An adaptation vector (or vector for short) for a set
of peers {P1, . . ., Pn} with Pi = (Si, s

0
i , Σi, Ti), is a tuple 〈e1, . . . , en〉 with

ei ∈ Σi ∪ {ε}, ε meaning that a peer does not participate in the vector.

In order to unambiguously identify them, event names may be prefixed by
the name of the peer, e.g., Pi : p?, or Pj : r!, and in that case ε can be omitted.
For instance, the vector 〈p1 : a!, p3 : b?, p4 : c?〉 represents an adaptation rule
indicating that the output event a! from peer p1 should match both input events
b? and c? in p3 and p4, respectively, while peer p2 does not participate in this
interaction.

In some complex adaptation scenarios, adaptation rules should be taken con-
textually (i.e., vectors cannot be applied at any time, but only in certain situa-
tions). For this purpose, we use regular expressions (regex) on vectors, indicating
a pattern for applying them that will constrain the adaptation process, enforc-
ing additional properties on the adapter. In this work we use standard regex
notation, where “|”, and “�” stand for alternation and Kleene star, respectively.
For instance, V1 (V2 | V3) � V4 states that the vector V1 should be applied first,
followed by several uses of V2 and V3, and always ending with V4. In the absence
of regex, we assume that adaptation rules are not contextually dependent and
can be applied at any time during the adaptation process.

Definition 3 (Adaptation Contract). An adaptation contract V for a set
of peers {P1, . . ., Pn} is a set of adaptation vectors for those peers, together with
a (possibly empty) regex describing a pattern for applying the vectors.

Writing the adaptation contract is the only step of our approach which is
not handled automatically. This step is crucial because an inadequate contract
would induce the generation of an adapter that will not make the composition
of peers to behave correctly (for instance, some expected interactions may be
discarded by the adapter, in order to avoid deadlock). However, the adaptation
methodology that we propose is iterative (see Figure 3 in Section 4), which helps
in writing the adaptation contract. For more details on the adaptation contracts
and the kinds of adaptations that can be resolved with them, we refer to [12].

256 C. Canal and G. Salaün

2.3 Adapter Generation

Given a set of interfaces and an adaptation contract, an adapter can be auto-
matically derived using, e.g., [12,22]. This approach relies on an encoding into
process algebra together with on-the-fly exploration and reduction techniques.
The adapter is given by an LTS which, put into a non-deadlock-free system yields
it deadlock-free. All the exchanged events will pass through the adapter, which
can be seen as a coordinator for the peers to be adapted. Code generation is also
supported by our approach, thus BPEL adapters can be automatically synthe-
sised from adapter LTSs. All these steps are automated by the Itaca toolset [8].

In order to generate an adapter, not only event correspondences stated in the
adaptation rules must be taken into account, but also the LTSs describing the
behaviour of the peers. Blindly applying adaptation rules without taking into
account peers’ behaviour may lead the system to a deadlock state if any of the
events represented in a rule cannot be accepted by the corresponding peer in its
current state. Hence, the adapter has not only the responsibility of following the
adaptation rules and regex in the contract, but also to accommodate their use
to the LTSs describing the behaviour of the peers, reordering and remembering
events when required.

Notice that the adaptation algorithms in [12,22] generate synchronous
adapters, that is, they assume a synchronous communication model for peers.
In our present work we show how these results can be applied to asynchronous
adaptation, where peers communicate asynchronously and are equipped with an
input message buffer.

2.4 Case Study

This section describes the case study that will be used as running example
throughout this work. Let us consider a multi-cloud scenario for creating virtual
machines (VM) in IaaS clouds such as Google Compute Engine or Windows
Azure. These clouds offer different APIs for VM creation and management, which
allows us to show how adaptation can solve mismatch. The names of the events
used here are inspired by the actual names of the corresponding operations in
Google and Azure, although the scenario is conveniently simplified in order to
abstract from many details that would make it unnecessarily long and complex.

The core element of the system is a Deployment Manager (DM). The LTS
describing its behaviour is shown in Figure 1 (d). After receiving a request
(request?), the DM creates a new VM instance (instantiate!), checks its
status (status?) and returns it (instance!). Notice that the DM is not bound
to any particular cloud (Google or Azure), nor it is described in the LTS how one
of them is actually chosen. We will show later on how a specific cloud selection
policy can be enforced by the adaptation contract.

The behaviour of Google Compute Engine, is shown in Figure 1 (b). In
Google’s IaaS cloud, the operation for creating a VM is named addInstance,
and the status of a machine can be checked with getInstance. Additionally,
we assume that the cloud sends statistical information about CPU and memory

Model-Based Adaptation of Software Communicating via FIFO Buffers 257

Fig. 1. LTSs describing the interfaces of the different peers

usage (statistics!). Figure 1 (c) shows the LTS corresponding to Windows
Azure. We assume that some credentials must be received first (credentials?).
Then, machine creation is performed with the operation newAzureVM?, while
VM status is reported with getAzureVM!. The LTS describing the behaviour of
a possible client, requesting several VMs, is shown in Figure 1 (a).

Finally, the vectors for composing the whole system, adapting the Client, the
Deployment Manager, and Google’s and Azure’s clouds are as follows:

Vrequest = 〈c:vmRequest!, dm:request?〉
VinstantiateG = 〈dm:instantiate!, g:addInstance?〉
VstatusG = 〈dm:status?, g:getInstance!〉
VcredentialsA = 〈a:credentials?〉
VinstantiateA = 〈dm:instantiate!, a:newAzureVM?〉
VstatusA = 〈dm:status?, a:getAzureVM!〉
Vinstance = 〈c:vmInstance?, dm:instance!〉
These vectors mostly show correspondence of events with different names.

Note also that event a:credentials? has no correspondence in the DM, so it has
no counterpart in the VcredentialsA rule: this event will be issued by the adapter
when required by the cloud. Additionally, a vector for event g:statistics! is
omitted, since this event has no counterpart in the rest of the system. We can
now automatically generate an adapter using Itaca’s tools. The resulting adapter
is shown in Figure 2.

3 Synchronizability of Adapted Systems

In this section, we present a few definitions characterizing the synchronizability
property for adapted systems. The adapted synchronous composition of a set of

258 C. Canal and G. Salaün

Fig. 2. Adapter LTS

peers corresponds to the system where a communication occurs when one peer
can send (receive, resp.) an event and the adapter can receive (send, resp.) it.

Definition 4 (Adapted Synchronous Composition). Given a set of peers
{P1, . . ., Pn} with Pi = (Si, s

0
i , Σi, Ti) and an adapter A = (S, s0, Σ, T),

their synchronous composition is the labelled transition system LTSas =
(Sas, s

0
as, Σas, Tas) where:

– Sas = S1 × . . .× Sn × S
– s0as ∈ Sas such that s0s = (s01, . . . , s

0
n, s

0)
– Σas = ∪iΣi ∪Σ
– Tas ⊆ Sas × Σas × Sas, and for s = (s1, . . . , sn, sa) ∈ Sas and s′ =

(s′1, . . . , s
′
n, s

′
a) ∈ Sas we have that

(p2a) s
m−→ s′ ∈ Tas if ∃i ∈ {1, . . . , n} : m ∈ Σ!

i ∩ Σ? where ∃ si
m!−−→ s′i ∈ Ti,

and sa
m?−−→ s′a ∈ T such that ∀k ∈ {1, . . . , n}, k �= i ⇒ s′k = sk

(a2p) s
m−→ s′ ∈ Tas if ∃j ∈ {1, . . . , n} : m ∈ Σ! ∩ Σ?

j where ∃ sa
m!−−→ s′a ∈ T ,

and sj
m?−−→ s′j ∈ Tj such that ∀k ∈ {1, . . . , n}, k �= j ⇒ s′k = sk

(int) s
τ−→ s′ ∈ Tas if ∃i ∈ {1, . . . , n}, ∃ si

τ−→ s′i ∈ Ti such that ∀k ∈
{1, . . . , n}, k �= i ⇒ s′k = sk and s′a = sa

Model-Based Adaptation of Software Communicating via FIFO Buffers 259

However, in an asynchronous scenario, peers communicate with the adapter
asynchronously via FIFO buffers. Hence, each peer Pi is equipped with an un-
bounded input message buffer Qi, and the adapter A with an input buffer Q.
A peer can either send a message m ∈ Σ! to the tail of the adapter buffer Q
at any state where this send message is available, read a message m ∈ Σ? from
its buffer Qi if the message is available at the buffer head, or evolve indepen-
dently through an internal τ transition. The adapter works in the same way. We
recall that we focus on output events, since reading from the buffer is private
non-observable information, which is encoded as an internal transition in the
asynchronous system.

Definition 5 (Adapted Asynchronous Composition). Given a set of peers
{P1, . . ., Pn} with Pi = (Si, s

0
i , Σi, Ti), Qi being its associated input buffer, and

an adapter A = (S, s0, Σ, T) with input buffer Q, their asynchronous composition
is the labelled transition system LTSaa = (Saa, s

0
aa, Σaa, Taa) where:

– Saa ⊆ S1 ×Q1 × . . .× Sn ×Qn × S ×Q where ∀i ∈ {1, . . . , n}, Qi ⊆ (Σ?
i)∗

and Q ⊆ (Σ?)∗
– s0aa ∈ Saa such that s0aa = (s01, ε, . . . , s

0
n, ε, s

0, ε) (where ε denotes an empty
buffer)

– Σaa = ∪iΣi ∪Σ
– Taa ⊆ Saa × Σaa × Saa, and for s = (s1, Q1, . . . , sn, Qn, sa, Q) ∈ Saa and

s′ = (s′1, Q
′
1, . . . , s

′
n, Q

′
n, s

′
a, Q

′) ∈ Saa we have that

(p2a!) s
m!−−→ s′ ∈ Taa if ∃i ∈ {1, . . . , n} : m ∈ Σ!

i ∩ Σ?, (i) si
m!−−→ s′i ∈ Ti,

(ii) Q′ = Qm, (iii) s′a = sa, (iv) ∀k ∈ {1, . . . , n} : Q′
k = Qk, and

(v) ∀k ∈ {1, . . . , n} : k �= i ⇒ s′k = sk

(p2a?) s
τ−→ s′ ∈ Taa if m ∈ Σ?, (i) sa

m?−−→ s′a ∈ T , (ii) mQ′ = Q, (iii) ∀k ∈
{1, . . . , n} : Q′

k = Qk, and (iv) ∀k ∈ {1, . . . , n} : s′k = sk

(a2p!) s
m!−−→ s′ ∈ Taa if ∃j ∈ {1, . . . , n} : m ∈ Σ! ∩ Σ?

j , (i) sa
m!−−→ s′a ∈ T ,

(ii) Q′
j = Qjm, (iii) Q′ = Q, (iv) ∀k ∈ {1, . . . , n} : k �= j ⇒ Q′

k = Qk,
and (v) ∀k ∈ {1, . . . , n} : s′k = sk

(a2p?) s
τ−→ s′ ∈ Taa if ∃i ∈ {1, . . . , n} : m ∈ Σ?

i , (i) si
m?−−→ s′i ∈ Ti, (ii) mQ′

i =
Qi, (iii) ∀k ∈ {1, . . . , n} : k �= i ⇒ Q′

k = Qk, (iv) ∀k ∈ {1, . . . , n} : k �=
i ⇒ s′k = sk, (v) Q′ = Q, and (vi) s′a = sa

(int) s
τ−→ s′ ∈ Taa if ∃i ∈ {1, . . . , n}, (i) si

τ−→ s′i ∈ Ti, (ii) ∀k ∈ {1, . . . , n} :
Q′

k = Qk, (iii) ∀k ∈ {1, . . . , n} : k �= i ⇒ s′k = sk (iv) Q′ = Q, and
(v) s′a = sa

We use LTSk
aa to define the bounded adapted asynchronous composition, where

each message buffer is bounded to size k. The definition of LTSk
aa can be obtained

from Definition 5 by allowing send transitions only if the message buffer of the
receiving peer has less than k messages in it. Otherwise, the sender is blocked,
i.e., we assume reliable communication without message losses.

The synchronizability property applies here by considering the adapter as a
peer whose peculiarity is to interact with all the other participants.

260 C. Canal and G. Salaün

Definition 6 (Branching Synchronizability). A set of peers {P1, . . . ,Pn}
and an adapter A are branching synchronizable if ∀k ≥ 1, LTSas ≡br LTSk

aa.

It was proved that checking the equivalence between the synchronous compo-
sition and the 1-bounded asynchronous composition, i.e., LTSas ≡br LTS1

aa, is
a sufficient and necessary condition for branching synchronizability [24].

Theorem 1 (Deadlock-freeness). A synchronizable system consisting of a set
of peers {P1, . . . ,Pn} and an adapter A is deadlock-free when all participants
communicate asynchronously via k-bounded or unbounded FIFO buffers.

Proof. An adapter generated using synchronous synthesis techniques is deadlock-
free (DF) according to [12,22], that is, LTSas |= DF . The system (peers inter-
acting via an adapter) being synchronizable, we have LTSas ≡br LTSaa. Since
branching equivalence [17] preserves deadlock-freeness, if LTSas is deadlock-free
then LTSaa is deadlock-free, thus LTSas |= DF ⇔ LTSaa |= DF . �

4 Asynchronous Adaptation

In this section, we present our approach for adapter synthesis when peers interact
via FIFO buffers, its application to our running example, and a short overview
of tool support.

4.1 Methodology

Figure 3 shows how our approach works for generating adapter LTSs in asyn-
chronous environments. First of all, we apply compatibility checking techniques,
e.g., [24], for understanding whether the set of selected peers can be reused and
composed directly, that is, without using adaptation techniques for compensat-
ing mismatch. If an adapter is required, the user needs to provide an adaptation
contract. Note that this is the only step of our approach that requires human
intervention. Given a set of peer LTSs and an adaptation contract, an adapter
LTS is automatically synthesised by means of synchronous adapter generation
techniques, e.g., [12,22]. Then, we check whether the adapted synchronous com-
position and the 1-bounded adapted asynchronous composition are equivalent.
If this is the case, it means that the system is synchronizable and its observable
behaviour will remain the same whatever bound is chosen for buffers. Thus, the
adapter generated using generation techniques relying on synchronous commu-
nication can be used as is in an asynchronous context.

If the system is not synchronizable, the user should refine the adaptation
contract using the diagnostic returned by equivalence checking. This counterex-
ample indicates the additional behaviour present in the asynchronous composi-
tion and absent in the synchronous one, which invalidates synchronizability. The
violation of this property has two main causes: either the adapter does not cap-
ture/handle all reachable output messages, or the adapter is too restrictive wrt.
message orderings, e.g., the adapter requires a sequence of two messages, which

Model-Based Adaptation of Software Communicating via FIFO Buffers 261

cannot be ensured in the asynchronous composition because both messages can
be executed simultaneously. This latter case particularly arises when the adap-
tation contract enforces additional constraints by the use for instance of regex
on vectors. This iterative process always terminates because these issues can be
solved by modifying the adaptation contract, and the number of problems is
finite since the input models are finite. It is worth emphasizing that the reasons
for non-synchronizability can be used as guidelines when writing the adaptation
contract. Keeping that in mind should help the user to converge more rapidly
to a synchronizable system.

Fig. 3. Approach overview

4.2 Application to the Case Study

Let us go back to our multi-cloud running example. Given the participant LTSs
and the set of vectors presented in Section 2, we can generate automatically
the corresponding adapter. We first check synchronizability for this adapter
composed with the peer LTSs. As a result, the verdict is false and we obtain
the following counterexample: c:vmRequest!, dm:request!, dm:instantiate!,
g:addInstance!, and g:statistics!, where the very last event appears in the
asynchronous system but not in the synchronous one. Note that synchronizability
checking focuses on output messages, hence the counterexample above contains
only events sent by a peer to the adapter (c:vmRequest!, dm:instantiate!,
g:statistics!) or by the adapter to a peer (dm:request!, g:addInstance!).
This violation is due to the fact that the emission of statistics is not captured
by a vector (yet), and this emission is inhibited in the synchronous system, while
it is possible in the asynchronous system because reachable output messages can-
not be inhibited under asynchronous communication.

In order to correct this problem, we extend the adaptation contract by adding
the following vector: VstatisticsG = 〈g:statistics!〉. The corresponding adapter
(not shown here) is generated and it consists of 25 states and 41 transitions.
We check again synchronizability and the system composed of the four peers
interacting through the adapter is synchronizable, which means that the adapter
can be used under asynchronous communication and the system will behave
exactly the same whatever bound is chosen for buffers.

262 C. Canal and G. Salaün

However, in this system the Deployment Manager may always decide to in-
stantiate the same kind of VM (Google or Azure). If we want to enforce the DM
to instantiate a VM in one of the two clouds alternatively, we have to impose
a specific sequence in the application of vectors during the adapter generation
process. This can be specified by means of the following regex:

(Vrequest VinstantiateG VstatisticsG VstatusG Vinstance

Vrequest VcredentialsA VinstantiateA VstatusA Vinstance) �

The adapter generated using the aforementioned vectors and this regex con-
tains 21 states and 24 transitions. However, when we check synchronizability
with this new adapter, the check returns false with a counterexample containing
18 events. The problem in that case is that Windows Azure works in connected
mode, in the sense that it receives credentials once, and then several new VM
instances can be created. Nonetheless, the regular expression requires creden-
tials to be submitted before any new instantiation. Therefore, when we arrive
at the second instantiation of an Azure VM, the adapter submits again the
credentials! event whereas the Azure peer does not expect it: this emission
appears in the asynchronous system but not in the synchronous version.

To solve this problem, we need to relax the regular expression by avoiding the
strict sequence of vectors. A simple idea is to say that after each request, we can
execute in any order the vectors where one of the two VM providers (Google or
Azure) is involved. This discards the problem encountered with the credentials,
whose rule is executed the first time only. Here is the new regex:

(Vrequest (VinstantiateG | VstatisticsG | VstatusG | Vinstance) �
Vrequest (VcredentialsA | VinstantiateA | VstatusA | Vinstance) �) �

The corresponding adapter consists of 32 states and 38 transitions. When we
check synchronizability with this new adapter, the system is synchronizable and
accordingly this adapter can be used under asynchronous communication.

4.3 Tool Support

Tool support consists of two parts: a set of tools for generating adapters and some
automated techniques for checking synchronizability. As for adapter synthesis,
we reuse the Itaca toolbox [8]. Itaca takes as input a set of Symbolic Transition
Systems (LTSs are STSs without message parameters) and an adaptation con-
tract, and generates an adapter LTS, from which BPEL code can be generated,
see [22] for details. As for synchronizability, we rely on process algebra encodings
and equivalence checking. More precisely, we developed a Python script, which
generates for all input LTSs (peers and adapter) some code in the LNT process
algebra. Then, we use the CADP toolbox [15], which accepts LNT specifica-
tions as input. Particularly, we rely on CADP exploration tools for computing
the required (synchronous/asynchronous) compositions and CADP equivalence
checker for checking synchronizability.

Table 1 presents experimental results for some real-world examples. The ta-
ble gives for each example the number of peers (P), the total number of states

Model-Based Adaptation of Software Communicating via FIFO Buffers 263

(S) and transitions (T) involved in these examples, the size of the 1-bounded
asynchronous system (minimised modulo branching reduction), and the over-
all time for checking synchronizability (including composition generations, min-
imisations, and equivalence checking). It is worth noting that out of these 14
examples, 7 of the adapters generated for synchronous communication can be
directly reused as they are in asynchronous environments, while 7 require to
use our approach in order to replay adapter synthesis techniques until obtaining
an adapter which satisfies synchronizability. Computation times are quite short
since all the examples found in the literature are quite small.

Table 1. Experimental results

Example |P|+1 |S|/|T | LTS1
a (|S|/|T |) Synchro. Time

FTP Transfer [5] 3 20/17 13/15 × 52s

Client/Server [11] 3 14/13 8/7
√

54s

Mars Explorer [7] 3 34/34 19/22 × 49s

Online Computer Sale [14] 3 26/26 11/12
√

53s

E-museum [12] 3 33/40 47/111 × 53s

Client/Supplier [9] 3 31/33 17/19
√

49s

Restaurant Service [1] 3 15/16 10/12
√

55s

Travel Agency [28] 3 32/38 18/21
√

52s

Vending Machine [16] 3 15/14 8/8
√

49s

Travel Agency [4] 3 42/57 23/34 × 45s

Client/Server [29] 4 19/24 18/32 × 64s

SQL Server [27] 4 32/38 20/27 × 62s

SSH Protocol [20] 4 26/28 16/18
√

56s

Booking System [21] 5 45/53 27/35 × 85s

5 Related Work

In this section, we present the most relevant and recent results in the soft-
ware adaptation area. First of all, notice that adaptation differs from automatic
software composition approaches, particularly studied in the Web services area,
where services involved into a new composition are assumed to perfectly match
altogether with respect to certain compatibility property.

Van der Aalst et al. [1] propose a solution to behavioural adaptation based
on open nets, a variant of Petri nets. Their generation algorithm produces an
adapter which is obtained through several steps. First, a message transforma-
tion net, called engine, is generated from a set of message transformation rules.
Then, a behavioural controller (a transition system) is synthesised for the prod-
uct net of the services and the engine. Adapters are finally implemented in
the BPEL orchestration language. In [23], the authors identify several kinds of
mismatch between Web service interfaces. They provide a method for identi-
fication of the split/merge class of interface mismatch and a semi-automated,

264 C. Canal and G. Salaün

behaviour-aware approach for interface-level mismatch that results in identify-
ing parameters of mapping functions that resolve that mismatch. They use and
extend approaches in ontology matching for static matching of service interfaces
to identify split/merge mismatch. In addition, they propose depth-based and
iterative reference-based approaches that incorporate behavioural information
during interface matching.

In [12,22], the authors proposed automated techniques for generating an
adapter model from a set of service interfaces and a contract. The approach
relies on an encoding into process algebra together with on-the-fly exploration
and reduction techniques. Verification of contracts is also possible by using model
checking techniques. Last, code is automatically generated from the adapter
model to BPEL, which may finally be deployed. Inverardi and Tivoli [18] for-
malise a method for the automated synthesis of modular connectors. A modular
connector is structured as a composition of independent mediators, each of them
corresponding to the solution of a recurring behavioural mismatch. The paper
proves that the connector decomposition is correct and shows how it promotes
connector evolution on a case study. Bennaceur et al. [4] propose a technique
for automated synthesis of mediators using a quotient operator, that is based on
behavioural models of the components and an ontological model of the data do-
main. The method supports both off-line and run-time synthesis. The obtained
mediator is the most general component that ensures deadlock-freedom and the
absence of communication mismatch.

It is worth observing that, although all these papers present interesting
approaches tackling software adaptation from different points of view, they as-
sume that peers interact synchronously. There were a few attempts to gener-
ate adapters considering asynchronous communication. Padovani [25] presents
a theory based on behavioural contracts to generate orchestrators between two
services related by a subtyping (namely, sub-contract) relation. This is used to
generate an adapter between a client of some service S and a service replacing S.
An interesting feature of this approach is its expressiveness as far as behavioural
descriptions are concerned, with support for asynchronous orchestrators and infi-
nite behaviour. The author resorts to the theory of regular trees and imposes two
requirements on the orchestrator, namely regularity and contractivity. However,
this work does not support name mismatch nor data-related adaptation. Seguel
et al. [28] present automatic techniques for constructing a minimal adapter for
two business protocols possibly involving parallelism and loops. The approach
works by assigning to loops a fixed number of iterations, whereas we do not
impose any restriction, and peers may loop infinitely. Gierds and colleagues [16]
present an approach for specifying behavioural adapters based on domain-specific
transformation rules that reflect the elementary operations that adapters can
perform. The authors also present a novel way to synthesise complex adapters
that adhere to these rules by consistently separating data and control, and by
using existing controller synthesis algorithms. Asynchronous adaptation is sup-
ported in this work, but buffers/places must be arbitrarily bounded for ensuring
computability of the adapter.

Model-Based Adaptation of Software Communicating via FIFO Buffers 265

6 Conclusion

Software adaptation is the only solution for building new systems by combining
black-box services that are relevant from a functional point of view, but do not
exactly match one with another and therefore require adjustments during the
composition process. Most existing approaches focus on systems relying on syn-
chronous communication. In this paper, we tackle the adapter generation ques-
tion from a different angle by assuming that peers interact asynchronously via
FIFO buffers. This highly complicates the synthesis process because we may have
to face infinite systems when generating the adapter behaviour. Our approach
provides a solution to this problem by using the synchronizability property and
adapter generation techniques for synchronous communication. This enables us
to propose an iterative approach for synthesising adapters, which work properly
in asynchronous environments. Our approach is tool-supported and has been
applied to a large variety of real-world examples found in the literature.

References

1. van derAalst,W.M.P., Mooij, A.J., Stahl, C.,Wolf, K.: Service Interaction: Patterns,
Formalization, and Analysis. In: Bernardo, M., Padovani, L., Zavattaro, G. (eds.)
SFM 2009. LNCS, vol. 5569, pp. 42–88. Springer, Heidelberg (2009)

2. de Alfaro, L., Henzinger, T.A.: Interface Automata. In: Proc. of ESEC/FSE 2001,
pp. 109–120. ACM Press (2001)

3. Basu, S., Bultan, T., Ouederni, M.: Deciding Choreography Realizability. In: Proc.
of POPL 2012, pp. 191–202. ACM (2012)

4. Bennaceur, A., Chilton, C., Isberner, M., Jonsson, B.: AutomatedMediator Synthe-
sis: Combining Behavioural and Ontological Reasoning. In: Hierons, R.M., Merayo,
M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 274–288. Springer, Hei-
delberg (2013)

5. Bracciali, A., Brogi, A., Canal, C.: A Formal Approach to Component Adaptation.
Journal of Systems and Software 74(1), 45–54 (2005)

6. Brand, D., Zafiropulo, P.: On Communicating Finite-State Machines. Journal of the
ACM 30(2), 323–342 (1983)

7. Brogi, A., Popescu, R.: Automated Generation of BPEL Adapters. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 27–39. Springer, Heidel-
berg (2006)

8. Cámara, J.,Mart́ın, J.A., Salaün,G., Cubo, J., Ouederni,M.,Canal, C.,Pimentel, E.:
ITACA: An Integrated Toolbox for the Automatic Composition and Adaptation of
Web Services. In: Proc. of ICSE 2009, pp. 627–630. IEEE (2009)

9. Cámara, J., Mart́ın, J.A., Salaün, G., Canal, C., Pimentel, E.: Semi-Automatic Spec-
ification of Behavioural ServiceAdaptationContracts. Electr. NotesTheor. Comput.
Sci. 264(1), 19–34 (2010)

10. Canal, C.,Murillo, J.M., Poizat, P.: Software Adaptation. L’Objet 12(1), 9–31 (2006)
11. Canal, C., Poizat, P., Salaün, G.: Synchronizing Behavioural Mismatch in Software

Composition. In: Gorrieri, R.,Wehrheim,H. (eds.) FMOODS 2006. LNCS, vol. 4037,
pp. 63–77. Springer, Heidelberg (2006)

12. Canal,C.,Poizat,P., Salaün,G.:Model-BasedAdaptation ofBehaviouralMismatch-
ing Components. IEEE Trans. on Software Engineering 34(4), 546–563 (2008)

266 C. Canal and G. Salaün

13. Canal, C., Salaün, G.: Adaptation of Asynchronously Communicating Software. In:
Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831,
pp. 437–444. Springer, Heidelberg (2014)

14. Cubo, J., Salaün, G., Canal, C., Pimentel, E., Poizat, P.: AModel-Based Approach to
the Verification and Adaptation of WF/.NET Components. In: Proc. of FACS 2007.
ENTCS, vol. 215, pp. 39–55. Elsevier (2007)

15. Garavel, H., Lang, F., Mateescu, R., Serwe,W.: CADP 2010: A Toolbox for the Con-
struction and Analysis of Distributed Processes. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011)

16. Gierds, C., Mooij, A.J., Wolf, K.: Reducing Adapter Synthesis to Controller Synthe-
sis. IEEE T. Services Computing 5(1), 72–85 (2012)

17. van Glabbeek, R.J., Weijland, W.P.: Branching Time and Abstraction in Bisimula-
tion Semantics. Journal of the ACM 43(3), 555–600 (1996)

18. Inverardi, P., Tivoli, M.: Automatic Synthesis of Modular Connectors via Composi-
tion of Protocol Mediation Patterns. In: Proc. of ICSE 2013, pp. 3–12. IEEE / ACM
(2013)

19. Magee, J., Kramer, J., Giannakopoulou, D.: Behaviour Analysis of Software Archi-
tectures, pp. 35–49. Kluwer Academic Publishers (1999)

20. Mart́ın, J.A., Pimentel, E.: Contracts for Security Adaptation. J. Log. Algebr. Pro-
gram. 80(3-5), 154–179 (2011)

21. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of Service Protocols using Process
Algebra and On-the-Fly Reduction Techniques. In: Bouguettaya, A., Krueger, I.,
Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 84–99. Springer, Heidelberg
(2008)

22. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of Service Protocols Using Process
Algebra and On-the-Fly Reduction Techniques. IEEE Trans. on Software Engineer-
ing 38(4), 755–777 (2012)

23. Nezhad, H.R.M., Xu,G.Y., Benatallah, B.: Protocol-AwareMatching ofWeb Service
Interfaces for Adapter Development. In: Proc. of WWW 2010, pp. 731–740. ACM
(2010)

24. Ouederni, M., Salaün, G., Bultan, T.: Compatibility Checking for Asynchronously
CommunicatingSoftware. In:Fiadeiro, J.L., Liu, Z.,Xue, J. (eds.) FACS2013.LNCS,
vol. 8348, pp. 310–328. Springer, Heidelberg (2014)

25. Padovani, L.: Contract-Based Discovery and Adaptation of Web Services. In:
Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569,
pp. 213–260. Springer, Heidelberg (2009)

26. Plasil, F., Visnovsky, S.: Behavior Protocols for Software Components. IEEE Trans.
on Software Engineering 28(11), 1056–1076 (2002)

27. Poizat, P., Salaün, G.: Adaptation of Open Component-based Systems. In:
Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 141–
156. Springer, Heidelberg (2007)

28. Seguel, R., Eshuis, R., Grefen, P.W.P.J.: Generating Minimal Protocol Adaptors for
Loosely Coupled Services. In: Proc. of ICWS 2010, pp. 417–424. IEEE Computer So-
ciety (2010)

29. Tivoli, M., Inverardi, P.: Failure-Free Coordinators Synthesis for Component-Based
Architectures. Sci. Comput. Program. 71(3), 181–212 (2008)

30. Yellin, D.M., Strom, R.E.: Protocol Specifications and Components Adaptors. ACM
Trans. on Programming Languages and Systems 19(2), 292–333 (1997)

	Model-Based Adaptation of Software Communicating via FIFO Buffers
	1 Introduction
	2 Models
	2.1 Interfaces
	2.2 Adaptation Contracts
	2.3 Adapter Generation
	2.4 Case Study

	3 Synchronizability of Adapted Systems
	4 Asynchronous Adaptation
	4.1 Methodology
	4.2 Application to the Case Study
	4.3 Tool Support

	5 Related Work
	6 Conclusion

