
Constrained Key-Homomorphic PRFs
from Standard Lattice Assumptions

(Or: How to Secretly Embed a Circuit in Your PRF)�

Zvika Brakerski1,�� and Vinod Vaikuntanthan2,� � �

1 Weizmann Institute of Science, Rehovot, Israel
zvika.brakerski@weizmann.ac.il

2 Massachusetts Institute of Technology, Cambridge, MA, USA
vinodv@csail.mit.edu

Abstract. Boneh et al. (Crypto 13) and Banerjee and Peikert (Crypto
14) constructed pseudorandom functions (PRFs) from the Learning with
Errors (LWE) assumption by embedding combinatorial objects, a path
and a tree respectively, in instances of the LWE problem. In this work,
we show how to generalize this approach to embed circuits, inspired by
recent progress in the study of Attribute Based Encryption.

Embedding a universal circuit for some class of functions allows us
to produce constrained keys for functions in this class, which gives us
the first standard-lattice-assumption-based constrained PRF (CPRF)
for general bounded-description bounded-depth functions, for arbitrary
polynomial bounds on the description size and the depth. (A constrained
key w.r.t a circuit C enables one to evaluate the PRF on all x for which
C(x) = 1, but reveals nothing on the PRF values at other points.) We
rely on the LWE assumption and on the one-dimensional SIS (Short
Integer Solution) assumption, which are both related to the worst case
hardness of general lattice problems. Previous constructions for similar
function classes relied on such exotic assumptions as the existence of
multilinear maps or secure program obfuscation. The main drawback of
our construction is that it does not allow collusion (i.e. to provide more
than a single constrained key to an adversary). Similarly to the afore-
mentioned previous works, our PRF family is also key homomorphic.

Interestingly, our constrained keys are very short. Their length does
not depend directly either on the size of the constraint circuit or on the
input length. We are not aware of any prior construction achieving this
property, even relying on strong assumptions such as indistinguishability
obfuscation.

� An extended version of this manuscript can be found in [11].
�� Supported by the Israel Science Foundation (Grant No. 468/14) and by the Alon

Young Faculty Fellowship.
� � � Research supported by DARPA Grant number FA8750-11-2-0225, Alfred P. Sloan

Research Fellowship, NSF CAREER Award CNS-1350619, NSF Frontier Grant
CNS-1414119, Microsoft Faculty Fellowship, and a Steven and Renee Finn Career
Development Chair from MIT.

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 1–30, 2015.
c© International Association for Cryptologic Research 2015

2 Z. Brakerski and V. Vaikuntanthan

1 Introduction

A pseudorandom function family (PRF) [14] is a finite set of functions {Fs : D →
R}s, indexed by a seed (or key) s, such that for a random s, Fs is efficiently
computable given s, and is computationally indistinguishable from a random
function from D to R, given oracle access. Since the introduction of this concept,
PRFs have been one of the most fundamental building blocks in cryptography.
Many variants of PRFs with additional properties have been introduced and
have found a plethora of applications in cryptography. In this work, we will
focus on Constrained PRFs and Key-Homomorphic PRFs.

Constrained PRFs. Constrained PRFs (CPRFs) have been introduced simulta-
neously by Boneh and Waters [9], Kiayias et al. [18] (as “Delegatable PRFs”)
and by Boyle, Goldwasser and Ivan [10] (as “Functional PRFs”). Here an ad-
versary is allowed to ask for a constrained key which should allow it to evaluate
the PRF on a subset of the inputs, while revealing nothing about the values
at other inputs. It has been shown [9,18,10] how to construct CPRFs for func-
tion classes of the form x ∈ [i, j] (where the input is interpreted as an integer)
based on any one-way function. This in particular allows for the “puncturing”
technique of Sahai and Waters [26] that found many uses in the obfuscation
literature. Further, [9] showed how to achieve more complicated function classes
such as bit fixing functions and even arbitrary circuits, but those require use of
cryptographic multilinear maps. They also introduce a number of applications
for such CPRFs, including broadcast encryption schemes and identity based key
exchange. Hofheinz et al. [17] show how to achieve adaptively secure CPRFs
from indistinguishability obfuscation using a random oracle.

The original definition of CPRFs requires resilience to arbitrary collusion.
Namely, a constrained key for C1, C2 should give no more information than a
constrained key for C1 ∨ C2 and must not reveal anything about values where
C1(x) = C2(x) = false. Many of the applications of CPRFs (e.g. for broadcast
encryption and identity based key exchange) rely on collusion resilience. Unfor-
tunately, our construction in this work will not allow collusions, and therefore
will not be useful for these applications. We hope that future works will be able
to leverage our ideas into collusion resilient CPRFs.

Key-Homomorphic PRFs. In key-homomorphic PRFs, there is a group struc-
ture associated with the set of keys, and it is required that for any input x
and keys s, t, Fs(x) + Ft(x) = Fs+t(x). A construction in the random oracle
model was given by Naor, Pinkas and Reingold [22], and the first construction
in the standard model was given by Boneh et al. [8] based on the Learning
with Errors assumption (LWE), building on a (non key homomorphic) lattice-
based PRF of Banerjee, Peikert and Rosen [4]. This was followed by an improved
construction by Banerjee and Peikert [3] based on quantitatively better lattice
assumptions. The LWE based constructions achieved a slightly weaker notion,
namely “almost” key-homomorphism, in which ‖(Fs(x) + Ft(x)) − Fs+t(x)‖ is
small, for an appropriately defined norm. This notion is sufficient for the known

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 3

applications. Applications of key-homomorphic PRFs include distributed key-
distribution, symmetric proxy re-encryption, updatable encryption and PRFs
secure against related-key attacks [22,8,19].

Our Results. We view the main contribution of this work as showing how to im-
pose hidden semantics into the evaluation process of LWE-based PRFs. Namely,
we allow multiple computation paths for computing Fs(x), such that we can se-
lectively block some of these paths based on logic described by a circuit. This
is done by extending ideas from the ABE literature, and in particular the ABE
scheme of Boneh et al. [7] (see more about this connection below).

It is particularly interesting that previous constructions of PRFs [8,3] can be
viewed as a special case of our framework, but ones that only allow a single
computational path. Our work therefore highlights that the techniques used for
constructing PRFs and for constructing ABE are special cases of the same grand
schema. This could hopefully lead to new insights and constructions.

We employ our methods towards presenting a family of (single key secure)
constrained key-homomorphic PRFs based on worst-case general lattice assump-
tions. This is a first step in solving the open problem posed in [9] of achieving
(collusion resilient) CPRFs from standard assumptions.

Our construction is selectively secure in the constraint query, namely the
adversary needs to decide on the constraint before seeing the public parame-
ters, but is adaptive with regards to PRF oracle queries. We achieve the latter
without “complexity leveraging”, contrary to [9], and thus we do not require
sub-exponential hardness assumptions as they do. This is done by employing
our technique of embedding semantics into the evaluation process again. In par-
ticular, we embed the semantics of an admissible hash function, introduced by
Boneh and Boyen [6] into the PRF, which allows us to handle adaptive queries.

Our proofs rely on two closely related hardness assumptions: The Learning
with Errors (LWE) assumption, and the one-dimensional Short Integer Solution
(1D-SIS) assumption. Both assumptions can be tied to the worst case hardness
of general lattice problems such as GapSVP and SIVP, with similar parameters.
LWE is sufficient for proving pseudorandomness in the absence of a constrained
key. However, once the adversary is given a constrained key, the situation be-
comes more delicate. In particular, even showing correctness in this setting is
not straightforward. (Correctness refers to the property that evaluation using the
constrained key and using the actual seed result in the same output.) One can
show unconditionally that the value computed using the constrained key is close
(in norm) to the real value of the function but not that they are always equal.
A similar issue comes up in the security proof (since the reduction “fabricates”
oracle answers in a similar way to the constrained evaluation). Our solution is
to use computational arguments. Namely to show that it is computationally in-
tractable, under the 1D-SIS assumption, to come up with an input for which
the constrained evaluation errs. Therefore even the correctness of our scheme
relies on computational assumptions. We note that similar techniques can be

4 Z. Brakerski and V. Vaikuntanthan

used to strengthen the almost key-homomorphism property into computational
key-homomorphism where it is computationally hard to find an input for which
key homomorphism does not hold.

The following theorem presents the simplest application of our method, we
explain how it can be extended below.

Theorem 1.1. Let C�,d be the class of size-� depth-d circuits. Then for all poly-
nomials �, d, there exists a C�,d-constrained (almost) key-homomorphic family of
PRFs without collusion, based on the (appropriately parameterized) LWE and
1D-SIS assumptions (and hence on the worst-case hardness of appropriately pa-
rameterized GapSVP and SIVP problems).

Interestingly, we can go beyond bounded size circuits. In fact, we can support
any function family with bounded length description, so long as there is a uni-
versal evaluator of depth d that takes a function description and an input, and
executes the function on the input. Namely, consider a sequence of universal cir-
cuits {Uk}k∈N, where Uk : {0, 1}�×{0, 1}k → {0, 1}. This sequence defines a class
of functions {0, 1}∗ → {0, 1}, where each function F in the class is represented
by a string f ∈ {0, 1}�, and for x ∈ {0, 1}k, it holds that F (x) = Uk(f, x). We
call such a function class �-uniform. We are only able to support Uk whose depth
is bounded by some a-priori polynomial in the security parameter d, however in
some cases this is sufficient to support all k’s that are polynomial in the security
parameter. The following theorem states our result with regards to such families.

Theorem 1.2. Let C�,d be a class of �-uniform functions with depth-d eval-
uator. Then for all polynomials �, d, there exists a C�,d-constrained (almost)
key-homomorphic family of PRFs without collusion, based on the (appropriately
parameterized) LWE and 1D-SIS assumptions (and hence on the worst case hard-
ness of appropriately parameterized GapSVP, SIVP).

Lastly, we show that the bit-length of the constrained keys in our scheme
can be reduced to poly(λ) for some fixed polynomial. Namely, completely inde-
pendent of all of the parameters of the scheme. This is done by using an ABE
scheme with short secret keys as a black box. In particular we resort to the same
scheme, namely the ABE scheme of Boneh et al. [7], which inspired our con-
strained PRF construction. This is done by encrypting all of the “components”
of the constrained key, and providing them in the public parameters of the con-
struction. Then, the actual constrained key is an ABE secret key which only
allows to decrypt the relevant components. We note that this short representa-
tion for constrained keys is not homomorphic (however the scheme is still almost
key homomorphic with respect to the seed). A theorem statement follows.

Theorem 1.3. There exists a constrained PRF scheme with the same proper-
ties as in Theorem 1.2, and under the same hardness assumptions, where the
constrained keys are of asymptotic bit-length poly(λ), for an a-priori fixed poly-
nomial.

See Section 2 for an extended overview of the construction.

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 5

Relation to the ABE Construction of Boneh et al. [7]. Our techniques are
greatly influenced by the aforementioned LWE-based ABE construction of Boneh
et al. [7]. Recall that in ABE, messages are encrypted relative to attributes and
decryption keys are drawn relative to functions. Decryption is possible only if
the function f of the decryption key accepts the attribute x of the ciphertext. In
order to decrypt a ciphertext, [7] first applies a public procedure that depends
on f, x on the ciphertext and then applies the decryption key on the resulting
value. Their construction makes sure that for any f , encryptions with regards
to all accepting x’s will derive a decryptable ciphertext (and all non-accepting
x’s cannot be decrypted).

Our constrained key for a circuit C is almost identical to an encryption of 0
with attribute C in [7]. The randomness in the encryption roughly corresponds to
the seed of the PRF. An application of the PRF on the constrained key includes
applying the public procedure of the ABE on the ciphertext, with respect to
the function f = U , the universal circuit for the function class to which C
belongs. However, there is the question of how to represent the input: We need
to be able to evaluate C on any possible input while preserving security. One of
our main technical ideas is in showing that this is possible, and in fact can be
achieved regardless of the input length. Combined with the framework from [7],
we can guarantees that for all x, regardless which C was used to generate the
“ciphertext”, the output of the public procedure will only depend on x and not
on C. The basic idea is therefore to use this value as the PRF value. This does not
work as is (for example, it does not imply pseudorandomness for non-accepting
x’s) and additional ideas are required.

As mentioned above, the PRFs of [8,3] that seem to stem from different ideas
and have quite different proofs than [7] can be shown to be special cases of the
above paradigm, except f is taken to be an arbitrary formula (a multiplication
tree). For details see Section 2.

The novelty in our approach is to show the extra power that is obtained
from generalizing these two approaches. We use the universal circuit as a way
to embed an undisclosed computation into an LWE instance, and show how to
achieve pseudorandomness using tools such as admissible hash functions (which
are also embedded into an LWE instance).

Relation with the Constrained PRF of Hofheinz et al. [17]. The work of [17]
constructs adaptively secure collusion-resistant CPRFs, namely ones where the
challenge x∗ needs not be provided ahead of time. Their building blocks are
“universal parameters” and adaptively secure ABE, which are used as black-
box. Note that we achieve adaptive security w.r.t the challenge (but not with
respect to the constraint) while relying on techniques which are only known to
imply selectively secure ABE. Further, whereas [17] use ABE only to implement
access control and therefore need to rely on strong assumptions to implement
the PRF so as to interface with the ABE, we use ABE techniques to achieve
both pseudorandomness and access control. On the flip side, our construction is
not collusion resistant, contrary to [17].

6 Z. Brakerski and V. Vaikuntanthan

Open Problems. The main drawback of our CPRF is its vulnerability to collusion,
which severely limits its applicability as a building block. It is an open problem
to achieve bounded collusion resilience, even for two constrained keys instead
of one and even at the cost of increasing the parameters. Any improvement on
this front should be very interesting. Another avenue for research is trying to
extend the construction so that there is no restriction on the constraint circuit
size, similarly to the multilinear map based construction of [9]. Finally, it would
also be interesting to apply this methodology of imposing semantics on a cryp-
tographic computation to other primitives in order to allow more fine-grained
access control.

2 Overview of Our Construction

We recall that the LWE assumption asserts that for a uniform vector s and
a matrix A of appropriate dimensions (over Zq for an appropriate q), it holds
that (A, sTA + eT), is indistinguishable from uniform, where e is taken from
an appropriate distribution over low norm vectors and referred to as the noise
vector. In this outline we will ignore the generation of eT and its evolution during
computation process, and just denote it by noise (but of course care will need to
be taken in the formal arguments).

The PRF of Banerjee and Peikert [3]. A high-level methodology for constructing
PRFs, taken by [8,3] and also in this work, is to take s as the seed, and to
generate for each PRF input x, an LWE matrix Ax such that the values sTAx+
noise for the different inputs x are jointly indistinguishable from uniform. Note
that almost key homomorphism follows naturally for any implementation of this
template, up to the accumulation of noise. The noise issue is handled by taking
the PRF value to be a properly scaled down and rounded version of the above,
so that the effect of the noise is minimal (and its norm can be bounded below
1). This property is also inherited by our scheme.

As a starting point for deriving our construction, let us revisit the key-
homomorphic PRF construction of [3]. Their PRF family was associated with
a combinatorial object – a binary tree. Each node v of the tree was associated
with an LWE matrix Av, where the PRF input x determined the matrices for
the leaves, and matrices for internal nodes are derived as follows. Given a node
v whose children are associated with Al,Ar, they define Av = Al · G−1(Ar).
In this notation, G−1(·) is the binary decomposition operator, which breaks
each entry in the matrix into the bit vector of length log(q) of its binary repre-
sentation. Note that G−1(·) will always have small norm, and that the inverse
operator G, representing binary composition, is linear so it can be represented
by a matrix. Thus for all A it holds that G ·G−1(A) = A.

Going back to the PRF of [3], the derivation procedure described above allows
to associate a matrix with the root of the tree, which depends only on the
input x (and on the topology of the tree which is fixed). We will use the root’s
matrix as our Ax. The proof hinges on the invariant that LWE instances will

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 7

be multiplied on the right only by low-norm matrices (of the form G−1(·)),
and therefore sTAlG

−1(Ar) + noise ≈ (sTAl + noise)G−1(Ar), which allows to
replace (sTAl + noise) with a new uniform vector and propagate to the right.

From Embedded Trees to Embedded Circuits. We show that the operation Av =
Al ·G−1(Ar) is in fact a special case of a more general operation, inspired by the
recent Attribute Based Encryption (ABE) construction of Boneh et al. [7]. We
will associate a matrix Av as well as a binary value xv with each node, and pay
special attention to the matrix (Av − xvG). In particular, considering a node v
with children l, r, it holds that

(Al − xlG) ·G−1(Ar) + (Ar − xrG) · xl = AlG
−1(Ar)− xrxlG .

This generalization associates the semantics of the multiplication operation with
the syntactic definition Av = AlG

−1(Ar), and it also maintains the invariant
that the matrices (Al − xlG) and (Ar − xrG) are only multiplied on the right
by low norm elements, so that

sT
(
(Al − xlG) ·G−1(Ar) + (Ar − xrG) · xl

)
+ noise ≈

(
sT (Al − xlG) + noise

)
·G−1(Ar) +

(
sT (Ar − xrG) + noise

)
· xl ,

which will play an important role in the security proof. Put explicitly, if the
evaluator holds sT (Al − xlG) + noise and sT (Al − xlG) + noise, then it can
compute sT (Av − xl · xrG) + noise (and we will obviously define xv = xl · xr).

This semantic relation can be extended beyond multiplication gates, and in
particular NAND gates can be supported in a fairly similar manner. Further-
more, there is no need to stick to tree structure and one can support arbitrary
DAGs, which naturally correspond to circuits. Extending the above postulate, if
our DAG corresponds to a circuit C, then having sT (Ai − xiG) + noise, for all
leaves (= inputs), allows to compute sT (Ax−C(x)G)+noise. Recalling that the
value of the PRF on input x is sTAx + noise, the aforementioned information
allows us to evaluate the PRF at points where C(x) = 0. It can also be shown
that it is computationally hard to compute the value at points where C(x) = 1.
We note that this process is practically identical to the public part of the de-
cryption procedure in the [7] ABE (as we explained in Section 1). We also note
that since [3] were trying to minimize the complexity of evaluating their PRF,
it made no sense in their construction to consider DAGs which only increase
the complexity. However, as we show here, there are benefits to embedding a
computational process in the PRF evaluation.

Utilizing the Universal Circuit. The tools we describe so far indeed seem to get
us closer to our goal of producing constrained keys, but we are still not quite
there. What we showed is that for any circuit C, we can devise a PRF with a
constrained key for C. Note that we use the negated definition to the one we
used before, and allow to evaluate when C(x) = 0 and not when C(x) = 1. This
will be our convention throughout this overview.

8 Z. Brakerski and V. Vaikuntanthan

In order to reverse the order of quantifiers, we take C to be the universal circuit
U(F, x), and the constrained keys will be of the form sT (Ai−fiG)+noise, where
the fi is the ith bit of the description of the constraint F , as well as values for
the x wires, which will be of the form sT (Âb − bG) + noise, for both b ∈ {0, 1}.
These values will allow us to execute F on any input x. Note that we can use
the same matrices Â0, Â1 for all input wires, hence we don’t need to commit to
the input size when we provide the constrained key.1 From this description it is
obvious why our construction is not collusion resistant: Given two constrained
keys for two non identical functions, there exists an i such that the adversary
gets both sTA+ noise and sT (Ai −G) + noise. Recovering sT from these values
is straightforward and hence all security is lost. Note that for the input values,
unlike the function description, we use two different matrices for 0 and 1: Â0, Â1,
so a similar problem does not occur.

The Problem with Correctness, and a Computational Solution. We introduced
two ways to compute the value of the PRF at x: One is to compute Ax and use
the seed sT to compute sTAx + noise, and the other is to use the constrained
key to obtain sT (Ax − F (x)G) + noise, which for F (x) = 0 gives sTAx + noise.
The problem is that the noise value in these two methods could differ. It is
possible to make the difference small by scaling down and rounding, but this is
not going to suffice for our purposes (mostly because a similar problem comes
up in the security proof). We solve this issue using the 1D-SIS assumption as
follows. We first note that the evaluation using the constrained key is essentially
evaluation of a linear function with small coefficients on the vectors constituting
the constrained key (essentially they get multiplied by bits and by low norm
matrices G−1(·)). Secondly, the only way for the two computation paths to not
agree is if the value sTAx is very close to an integer multiple of a number p (which
is part of the PRF description). Finally, we notice that by LWE, the vectors in
the constrained key are indistinguishable from uniform and independent. Thus,
if we encounter such x for which correctness does not work, we can also find a
short linear combination of random elements whose scaled down rounded value
is close to an integer. In other words, given a uniform vector v in Zq, we can
find z such that �〈v, z〉/p
 is “close” to an integer. This is similar to solving a
one-dimensional instance of the SIS problem, i.e. 〈v, z〉 = 0 (mod p). Indeed,
one can show that the 1D-SIS problem is as hard as standard worst-case hard
lattice problems via a reduction from [24].

Pseudorandomness and Adaptive Security. Given a constrained key for F , one
can compute sT (Ax − F (x)G) + noise, and indeed if F (x) = 1 it is hard to
compute PRFs(x) = sTAx + noise. However, we want to argue that this value
is pseudorandom and furthermore that it remains pseudorandom after adaptive
queries to the PRF. Namely, after the adversary sees as many values of the form
PRFs(x) = sTAx + noise as it wishes.

1 Recall that in [8,3] there are only two matrices altogether. This is sufficient here
for the input wires for the same reason, but we need additional matrices to encode
the constraint description.

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 9

To achieve these goals, we add another feature to the PRF. We consider a
new independent LWE matrix D, and define PRFs(x) = sTAx ·G−1(D)+ noise.
First of all, we note that given the constrained key, we can still compute the
PRF for values where C(x) = 0, by first computing (sTAx + noise) as before,
and then multiplying by G−1(D), which has low norm. However, in general we
have

PRFs(x) ≈
(
sT (Ax − F (x)G) + noise

)
·G−1(D) + F (x)

(
sTD+ noise

)
,

and it can be shown that for F (x) = 1, the second term randomizes the expres-
sion, by the LWE assumption.

This handles pseudorandomness for a single query, but not for the case of
adaptive queries (since we can only use the pseudorandomness of (sTD+ noise)
once). To handle adaptive queries we embed semantics into the matrix D itself.
Namely, D = Dx will be derived by an application of the universal circuit
to the input x and an admissible hash function h. Admissible hash functions,
introduced by Boneh and Boyen [6], allow (at a very high level) to partition the
input space such that with noticeable probability all of the adaptive queries have
value h(x) = 0, but the challenge query will have h(x) = 1. This means that in
the proof of security, we can hold a constrained key for h, which will allow us
to compute (sTDx + noise), for all the queries of the adversary, but leave the
challenge query unpredictable (to make it pseudorandom, we will multiply in
the end by another final D′). This concludes the security argument for adaptive
queries.

Key-Homomorphism. As we mention above, key-homomorphism follows since we
use the template PRFs(x) = sTAx + noise. We note that the existence of noise
means that homomorphism may not be accurate and with some low probability
(PRFs(x)+PRFs′(x)) will only be close to PRFs+s′(x) and not identical. However
this property is sufficient for many applications.

We point out that our constrained keys are a collection elements of the form
(sTAi + noise), and therefore the scheme is also homomorphic with respect to
constrained keys, i.e. constrained keys for the same F w.r.t different keys s, s′

can be added to obtain a constrained key w.r.t s + s′.

Reducing the Constrained Key Size. From the above, it follows that the con-
strained key contains � + 2 vectors, where � is the bit length of a description of
F relative to the universal circuit for the function class. Note that this does not
depend directly on the input size to the function. However, indirectly the depth
of the universal circuit affects the modulus q that needs to be used.

We show that we can remove the dependence on � altogether using an ABE
scheme with short secret keys, such as that of [7]. To do this, we notice that for
each constraint function F , the adversary gets either sTAi + noise or sT (Ai −
G)+ noise, according to the value of the bit fi. We can prepare for both options
by encrypting both vectors using the ABE, each with its own attribute (i, 0) and
(i, 1) respectively. All of these encryptions, for all i, will be placed in the public

10 Z. Brakerski and V. Vaikuntanthan

parameters. Then in order to provide a constrained key, we will provide an ABE
secret key for the function that takes (i, b) and returns 0 if and only if fi = b.
Given this key, the user can decrypt exactly those vectors that constitute its
constrained key. Note that this function can be computed by a depth O(log(�)) =
O(log(λ)) circuit, and thus the size of the secret key can be made asymptotically
independent of all parameters except λ, e.g. by setting the parameters to support
depth log2(λ) circuits.

3 Preliminaries

We first recall some background. For an integer modulus q, let Zq = Z/qZ denote
the ring of integers modulo q. For an integer p ≤ q, we define the modular
“rounding” function

�·�p : Zq → Zp that maps x → �(p/q) · x�

and extend it coordinate-wise to matrices and vectors over Zq. We denote the
elements of the standard basis by u1,u2, . . ., where the dimension will be clear
from the context.

We denote distributions (or random variables) that are computationally in-

distinguishable by X
c≈ Y . This refers to the standard notion of negligible dis-

tinguishing gap for any polynomial time distinguisher. Our reductions preserve
the uniformity of the adversary so by assuming the hardness of our assump-
tion for uniform adversary we get security for our construction against uniform
adversaries, and likewise for non-uniform assumptions and adversaries.

The Gadget Matrix. Let � =
log q� and define the “gadget matrix”G = g⊗In ∈
Z
n×n�
q where

g = (1, 2, 4, . . . , 2�−1) ∈ Z
�
q

We will also refer to this gadget matrix as the “powers-of-two” matrix. We define
the inverse function G−1 : Zn×m

q → {0, 1}n�×m which expands each entry a ∈ Zq

of the input matrix into a column of size � consisting of the bit decomposition
of a. We have the property that for any matrix A ∈ Z

n×m
q ,

G ·G−1(A) = A

Norms for Vectors and Matrices. We will always use the infinity norm for vectors
and matrices. Namely for a vector x, the norm ‖s‖ is the maximal absolute value
of an element in x. Similarly, for a matrix A, ‖A‖ is the maximal absolute value
of any of its entries. If x is n-dimensional and A is n × m, then

∥∥xTA
∥∥ ≤

n · ‖x‖ · ‖A‖. We remark that L1 or L2 norms can also be used and even achieve
somewhat tighter parameters, but the proofs become more complicated.

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 11

3.1 Constrained Pseudorandom Function: Definition

In a constrained PRF family [9,10,18], one can compute a constrained PRF key
KC corresponding to any Boolean circuit C. Given KC , anyone can compute
the PRF on inputs x such that C(x) = 0. Furthermore, KC does not reveal any
information about the PRF values at the other locations. Below we recall their
definition, as given by [9].

Syntax A constrained pseudo-random function (PRF) family is defined by a
tuple of algorithms (KeyGen,Eval,Constrain,ConstrainEval) where:

– Key Generation KeyGen(1λ, 1kin , 1kout) is a ppt algorithm that takes as
input the security parameter λ, an input length kin and an output length
kout, and outputs a PRF key K;

– Evaluation Eval(K,x) is a deterministic algorithm that takes as input a
key K, a string x ∈ {0, 1}kin and outputs y ∈ {0, 1}kout;

– Constrained Key Generation Constrain(K,C) is a ppt algorithm that
takes as input a PRF key K, a circuit C : {0, 1}kin → {0, 1} and outputs a
constrained key KC ;

– Constrained Evaluation ConstrainEval(KC , x) is a deterministic algorithm
that takes as input a constrained key KC and a string x ∈ {0, 1}kin and
outputs either a string y ∈ {0, 1}kout or ⊥.

We define the notion of (single key) selective-function security for constrained
PRFs.

Definition 3.1. A family of PRFs (KeyGen,Eval,Constrain,ConstrainEval) is a
single-key selective-function constrained PRF (henceforth, referred to simply as
constrained PRF) if it satisfies the following properties:

– Functionality computationally preserved under constraining. For
every ppt adversary (A0, A1), consider an experiment where we choose K ←
KeyGen(1λ, 1kin , 1kout), (C, σ0) ← A0(1

λ), and KC ← Constrain(K,C). Then:

Pr

[
x∗ ← A

Eval(K,·)
1 (1λ,KC , σ0); :

C(x∗) = 0 ∧
Eval(K,x∗) �= ConstrainEval(KC , x

∗)

]

is negligible in the security parameter, where C,K,KC are selected as de-
scribed above.
In words, it is computationally hard to find an x∗ such that C(x∗) = 0,
and yet the result of the constrained evaluation differs from the actual PRF
evaluation.

– Pseudorandom at constrained points. For every ppt adversary
(A0, A1, A2), consider an experiment where K ← KeyGen(1λ, 1kin , 1kout),
(C, σ0) ← A0(1

λ), and KC ← Constrain(K,C). Then:

Pr

⎡
⎢⎢⎣

b ← {0, 1};
:(x∗, σ1) ← A

Eval(K,·)
1 (1λ,KC , σ0); C(x∗) = 1 ∧

If b = 0, y∗ = Eval(K,x∗), A2(1
λ, y∗, σ1) = b

Else y∗ ← {0, 1}kout

⎤
⎥⎥⎦ ≤ 1

2
+ negl(λ)

12 Z. Brakerski and V. Vaikuntanthan

The correctness and security properties could potentially be combined into one
game, but we choose to present them as two distinct properties for the sake of
clarity.

3.2 Learning with Errors

The Learning with Errors (LWE) problem was introduced by Regev [25] as a
generalization of “learning parity with noise” [5,2]. We now define the decisional
version of LWE. (Unless otherwise stated, we will treat all vectors as column
vectors in this paper).

Definition 3.2 (Decisional LWE (DLWE) [25]). Let λ be the security pa-
rameter, n = n(λ), m = m(λ), and q = q(λ) be integers and χ = χ(λ) be
a probability distribution over Z. The DLWEn,q,χ problem states that for all
m = poly(n), letting A ← Z

n×m
q , s ← Z

n
q , e ← χm, and u ← Z

m
q , the following

distributions are computationally indistinguishable:

(
A, sTA+ eT

) c≈ (
A,uT

)

There are known quantum (Regev [25]) and classical (Peikert [23]) reductions
between DLWEn,q,χ and approximating short vector problems in lattices. Specif-
ically, these reductions take χ to be a discrete Gaussian distribution DZ,αq for
some α < 1. We write DLWEn,q,α to indicate this instantiation. We now state a
corollary of the results of [25,23,20,21]. These results also extend to additional
forms of q (see [20,21]).

Corollary 3.3 ([25,23,20,21]). Let q = q(n) ∈ N be either a prime power q =
pr, or a product of co-prime numbers q =

∏
qi such that for all i, qi = poly(n),

and let α ≥ √
n/q. If there is an efficient algorithm that solves the (average-case)

DLWEn,q,α problem, then:

– There is an efficient quantum algorithm that solves GapSVP
˜O(n/α) (and

SIVP
˜O(n/α)) on any n-dimensional lattice.

– If in addition q ≥ Õ(2n/2), there is an efficient classical algorithm for
GapSVPÕ(n/α) on any n-dimensional lattice.

Recall that GapSVPγ is the (promise) problem of distinguishing, given a basis
for a lattice and a parameter d, between the case where the lattice has a vector
shorter than d, and the case where the lattice doesn’t have any vector shorter
than γ · d. SIVP is the search problem of finding a set of “short” vectors. The

best known algorithms for GapSVPγ ([27]) require at least 2Ω̃(n/ log γ) time. We
refer the reader to [25,23] for more information.

In this work, we will only consider the case where q ≤ 2n. Furthermore, the
underlying security parameter λ is assumed to be polynomially related to the
dimension n.

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 13

3.3 One-Dimensional Short Integer Solution (SIS) and Variants

We present a special case of the well known Short Integer Solution (SIS) prob-
lem [1].

Definition 3.4. The One-Dimensional Short Integer Solution problem, denoted

1D-SISq,m,t, is the following problem. Given a uniformly distributed vector v
$←

Z
m
q , find z ∈ Z

m such that ‖z‖ ≤ t and also 〈v, z〉 ∈ [−t, t] + qZ.

For appropriately chosen moduli q, the 1D-SISq,m,t problem is as hard as
worst-case lattice problems. This follows from the techniques in the classical
worst-case to average-case reduction of Ajtai [1]. We state below the version due
to Regev [24].

Corollary 3.5 (Section 4 in [24] and Proposition 4.7 in [13]). Let n ∈ N

and q =
∏

i∈n pi, where all p1 < p2 < . . . < pn are co-prime. Let m ≥ c · n log q
(for some universal constant c). Assuming that p1 ≥ t · ω(√mn logn), the one-
dimensional SIS problem 1D-SISq,m,t is at least as hard as SIVPt· ˜O(

√
mn) and

GapSVPt· ˜O(
√
mn).

Proof. The hardness of a closely related problem is established by combining the

techniques in [24, Section 4] and [13, Proposition 4.7]: Given a
$← Z

m+1
q , find y

with ‖y‖ ≤ t such that 〈a,y〉 = 0 (mod q).
We now show how to convert an instance for this problem into an instance

of 1D-SIS. Given an instance a ∈ Z
m+1
q , we consider the first component a1.

If this element is not a unit (i.e. invertible) in Zq, then the reduction aborts.
Otherwise it defines v = a−1

1 · [a2, . . . , am+1]. Given a solution z for 1D-SIS on
input v, we define y by letting y = [−〈v, z〉, x1, . . . , xm]. It is easy to verify that
〈a,y〉 = a1 · (−〈v, z〉 + 〈v, z〉) = 0 (mod q). Further, by definition, ‖y‖ ≤ t.

Next, we define a related problem which will be useful for our reductions.

Definition 3.6. Let q = p · ∏i∈n pi, where all p1 < p2 < . . . < pn are all
co-prime and co-prime with p as well. Further let m ∈ N. The 1D-SIS-Rq,p,t,m

problem is the following: Given v
$← Z

m
q , find z ∈ Z

m with ‖z‖ ≤ t such that
〈v, z〉 ∈ [−t, t] + (q/p)Z.

The following corollary establishes the hardness of 1D-SIS-R based on 1D-SIS.

Corollary 3.7. Let q, p, t,m be as in Definition 3.6. Then 1D-SIS-Rq,p,t,m is at
least as hards as 1D-SISq/p,t,m.

Proof. The reduction works in the obvious way: Given an input v ∈ Z
m
q/p for

1D-SISq/p,t,m, we embed v in v′ ∈ Z
m
q , using CRT representation. Namely v′ = v

(mod q/p) and v′ = r (mod p), where r
$← Z

m
p . Then given a solution z for

1D-SIS-Rq,p,t,m with input v′, we claim that z is also a solution for 1D-SISq/p,t,m
with input v. This follows since by definition ‖z‖ ≤ t, and since 〈v, z〉 ≡ 〈v′, z〉
(mod q/p).

14 Z. Brakerski and V. Vaikuntanthan

3.4 Admissible Hash Functions

The concept of admissible hash functions was defined by Boneh and Boyen [6]
to convert selectively secure identity based encryption (IBE) schemes into fully
secure ones. In this paper, we use admissible hash functions for our PRF con-
struction. Our definition of admissible hash functions below will follow that of
Cash, Hofheinz, Kiltz and Peikert [12] with minor changes (in particular, note
that we do not require that the bad set is efficiently recognizable).

Definition 3.8 ([6,12]). Let H = {Hλ}λ be a family of hash functions such
that Hλ ⊆ ({0, 1}∗ → {0, 1}�) for some � = �(λ). We say that H is a family
of admissible hash functions if for every H ∈ H there exists a set badH of “bad
string-tuples” such that the following two properties hold:

1. For every PPT algorithm A, there is a negligible function ν such that

Pr[(x(0), . . . , x(t)) ∈ badH | H ← Hλ, (x
(0), . . . , x(t)) ← A(1λ, H)] ≤ ν(λ)

where the probability is over the choice of H ← Hλ and the coins of A.
2. Let L = {0, 1}2�, and for all L ∈ L define ΠL : {0, 1}� → {0, 1} to be

the string comparison with wildcards function. Namely, write L as a pair of
strings (α, β) ∈ {0, 1}�, and define

ΠL=(α,β)(w) = 1 ⇔ ∀i ∈ [�]
(
(αi = 0) ∨ (βi = wi)

)
.

Intuitively, Π is a string comparison function with wildcards. It compares
w and β only at those points where αi = 1. Note that this representation is
somewhat redundant but it will be useful for our application.
Then, we require that for every polynomial t = t(λ) there exists a noticeable
function Δt(λ) and an efficiently sampleable distribution Lt over L such
that for every H ∈ Hλ and sequences (x(0), . . . , x(t)) /∈ badH with x(0) /∈
{x(1), . . . , x(t)}, we have:

Pr
L←Lt

[ΠL(H(x(0))) ∧ΠL(H(x(1))) ∧ · · · ∧ΠL(H(x(t)))] ≥ Δt(λ)

It has been shown by [6] that a family of admissible hash functions can be
constructed based on any collision resistant hash function. In particular one can
instantiate it based on the SIS problem (for virtually any parameter setting
for which the problem is hard), which is at least as hard as LWE. Therefore
throughout this manuscript we assume the existence of an LWE-based family of
admissible hash functions, which will not add an additional assumption to our
construction.

3.5 Attribute-Based Encryption

We define (leveled) attribute-based encryption, following [16,15]. An attribute-
based encryption scheme for a class of predicate circuits C (namely, circuits with a
single bit output) consists of four algorithms (ABE .Setup,ABE .KeyGen,ABE.Enc,
ABE.Dec).

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 15

ABE.Setup(1λ, 1�, 1d) → (pp,msk) : The setup algorithm gets as input the se-
curity parameter λ, the length � of the attributes and the maximum depth
of the predicate circuits d, and outputs the public parameter (pp,mpk), and
the master key msk. All the other algorithms get pp as part of their input.

ABE.KeyGen(msk, C) → skC : The key generation algorithm gets as input msk
and a predicate specified by C ∈ C (of depth at most d). It outputs a secret
key (C, skC).

ABE.Enc(pp,x,m) → ct : The encryption algorithm gets as inputmpk, attributes
x ∈ {0, 1}� and a messagem ∈ M. It outputs a ciphertext (x, ct).

ABE.Dec((C, skC), (x, ct)) → m : The decryption algorithm gets as input a cir-
cuit C and the associated secret key skC , attributes x and an associated
ciphertext ct, and outputs either ⊥ or a message m ∈ M.

Correctness. We require that for all �, d, all (x, C) such that x ∈ {0, 1}�, C has
depth at most d and C(x) = 1, for all (pp,msk) ← ABE .Setup(1λ, 1�, 1d), all
skC ← ABE .KeyGen(msk, C), all ct ← ABE .Enc(pp,x,m), and all m ∈ M,

Dec((C, skC), (x, ct)) = m) .

Security Definition. We define selective security of ABE, which is sufficient
for our purposes. We allow the adversary to make multiple challenge message
queries, which is equivalent to the single query case but will be easier for us to
work with.

Definition 3.9. For a stateful adversary A, we define the advantage function
AdvABE

A to be

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣
b = b′ :

b
$← {0, 1};

x1, . . . ,xQ ← A(1λ, 1�, 1d);
(pp,msk) ← ABE.Setup(1λ, 1�, 1d);
{(m0,i,m1,i)}i∈[Q] ← AABE.KeyGen(msk,·)(pp), ∀i.|m0,i| = |m1,i|;
cti ← ABE.Enc(pp,xi,mb,i);
b′ ← AABE .KeyGen(msk,·)(ct1, . . . , ctQ)

⎤
⎥⎥⎥⎥⎥⎥⎦
− 1

2

with the restriction that all queries C that A makes to ABE .KeyGen(msk, ·) satis-
fies C(xi) = 0 for all i (that is, skC does not decrypt the ciphertext corresponding
to any of the xi). An attribute-based encryption scheme is selectively secure if
for all PPT adversaries A, the advantage AdvABE

A is a negligible function in λ.

We will use a special type of attribute-based encryption scheme with succinct
keys, namely one where |skC | does not grow with the size of the circuit C, but
rather only its depth.

Theorem 3.10 ([7]). Let λ be the security parameter, and d ∈ N. Let n =
n(λ, d), q = q(λ, d) = nO(d), and let χ be a poly(n)-bounded error distribution.
Then, there is a selectively secure ABE scheme for the class of depth-d-bounded
circuits, based on the hardness of DLWEn,q,χ. Furthermore, the secret key skC
for a circuit C has size poly(λ, n, d).

16 Z. Brakerski and V. Vaikuntanthan

4 Embedding Circuits into Matrices

In this section, we present the core techniques that we use in our construction.
In essence, we use a method, developed in a recent work by Boneh et al. [7] to
“embed” bits x1, . . . , xk into matrices A1, . . . ,Ak and compute a circuit F on
these matrices. This is done through a pair of algorithms (ComputeA,ComputeC)
satisfying the following properties:

1. The deterministic algorithm ComputeA takes as input a circuit F : {0, 1}k →
{0, 1} and k matrices A1, . . . ,Ak, and outputs a matrix AF ; and

2. The deterministic algorithm ComputeC takes as input a bit string x =
(x1, . . . , xk) ∈ {0, 1}k, and k LWE samples sT (Ai + xiG) + ei, and out-
puts an LWE sample sT (AF + F (x) · G) + eF associated to the output
matrix AF and the output bit F (x).

These algorithms are closely modeled on the work of Boneh et al. [7]. We now
describe how these algorithms work, and what their properties are.

The Algorithm ComputeA. Given a circuit F , input matrices A1, . . . ,Ak (cor-
responding to the k input wires) and an auxiliary matrix A0, the ComputeA
procedure works inductively, going through the gates of the circuit F from the
input to the output. Assume without loss of generality that the circuit F is
composed of NOT and AND gates. For every AND gate g = (u, v;w), assume
inductively that we have computed matrices Au and Av for the input wires u
and v. Define

Aw = −Au ·G−1(Av)

For every NOT gate g = (u;w), define

Aw = A0 −Au

The Algorithm ComputeC. Given a circuit F , an input x ∈ {0, 1}k and LWE
samples (Ai,yi), the ComputeC algorithm works as follows. For each AND
gate g = (u, v;w), assume that we have computed LWE samples (Au,yu) and
(Av,yv) for the input wires u and v. Define

yw = xu · yv − yu ·G−1(Av)

where xu and xv are the bits on wires u and v when evaluating the circuit F on
input x. For every NOT gate g = (u;w), define

yw = y0 − yu

We will need the following lemma about the behavior of ComputeA and ComputeC.
(We remind the reader that we use || · || to denote the �∞ norm).

Lemma 4.1. Let F be a depth-d Boolean circuit on k input bits, and let x ∈
{0, 1}k be an input. Let A0,A1, . . . ,Ak ∈ Z

n×m
q and y0, . . . ,yk ∈ Z

m
q be such

that
||yi − sT (Ai + xiG)|| ≤ B for i = 0, 1, . . . , k.

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 17

for some s ∈ Z
n
q and B = B(λ). Let AF ← ComputeA(F,A0, . . . ,Ak) and

yF ← ComputeC(F, x,A0, . . . ,Ak,y0, . . . ,yk). Then, ||yF − sT (AF + F (x) ·
G)|| ≤ mO(d) · B.

Furthermore, yF is a “low-norm” linear function of y0, . . . ,yk. That is, there
are matrices Z0, . . . ,Zk (which depend on the function F , the input x, and the

input matrices A0, . . . ,Ak) such that yF =
∑k

i=0 yiZi and ||Zi|| ≤ mO(d) · B.

Proof. We show this by induction on the levels of the circuit F , starting from
the input. Consider two cases.

AND gate. Consider an AND gate g = (u, v;w) where the input wires are at
level L, and assume that yu = sT (Au+xuG)+eu and yv = sT (Av+xvG)+ev,
with ||eu||, ||ev|| ≤ (m+ 1)L · B. Now,

yw = xu · yv − yu ·G−1(Av)

= xu · (sT (Av + xvG) + ev
)−

(
sT (Au + xuG) + eu

)
·G−1(Av)

= sT
(
xuAv + xuxvG−AuG

−1(Av)− xuAv

)
+

(
− euG

−1(Av) + xuev

)

= sT (Aw + xwG) + ew

where Aw = −Au ·G−1(Av), xw = xuxv, and

||ew|| ≤ m · ||eu||+ ||ev|| ≤ (m+ 1) · (m+ 1)L · B ≤ (m+ 1)L+1 · B

NOT gate. In a similar vein, for a NOT gate g = (u;w), assume that yu =
sT (Au + xuG) + eu, with ||eu|| ≤ (m+ 1)L ·B. Then,

yw = y0 − yu = sT (A0 +G−Au − xuG) + (e0 − eu)

= sT (Aw + (1 − xu)G) + ew

where Aw = A0 −Au, xw = 1− xu, and

||ew|| ≤ ||e0||+ ||eu|| ≤ B + (m+ 1)L ·B ≤ (m+ 1)L+1 ·B

Thus, yF = sTAF + eF where ||eF || ≤ mO(d) · B. Furthermore, both transfor-
mations are linear functions on yu and yv, as required.

5 Constrained PRF

5.1 Construction

A family of functions F ⊆ ({0, 1}∗ → {0, 1}) is z-uniform if each function F ∈ F
can be described by a string in {0, 1}z (we associate F with its description), and
there exists a uniform circuit family {Uk}k∈N such that Uk : {0, 1}z × {0, 1}k →

18 Z. Brakerski and V. Vaikuntanthan

{0, 1} such that for all x ∈ {0, 1}k it holds that Uk(F, x) = F (x). We assume for
the sake of simplicity that the depth of Uk grows monotonically with k and for
all d we let kd to be the maximal input size for which Uk has depth at most d.
We define Fd to be such that F ∈ F is undefined for inputs of length k > kd.
We call such a family d-depth-bounded.

Our constrained PRF for a z-uniform d-depth-bounded family F works as
follows.

– KeyGen(1λ, 1z, 1d): The key generation algorithm takes as input the maxi-
mum size z and depth d of the constraining circuits. Let H be a family of
admissible hash functions (see Section 3.4) and let � = �(λ) be the output
length of hash functions in the family.
Let n = n(λ, d), q = q(λ, d), p = p(λ, d) be parameters chosen as described
in Section 5.2 below, let m = n
log q�.
Generate z+2�+3 matrices as follows: let A0 and A1 be the “input matri-
ces”, let B1,B2, . . . ,Bz be the “function matrices”, let C1, . . . ,C2� be the
“partitioning matrices”, and let D be an “auxiliary matrix”. All of these
matrices are uniform in Z

n×m
q (note that the “gadget matrix” G has the

same dimensions). In addition sample an admissible hash function H
$← Hλ.

The public parameters consist of

PP = (H,A0,A1,B1, . . . ,Bz,C1, . . . ,C2�,D)

The seed of the PRF is a uniformly random vector s ∈ Z
n
q .

– Eval(s,PP,x) takes as input the PRF seed s, the public parameters PP,
and an input x ∈ {0, 1}k such that k ≤ kd (i.e. Uk is of depth ≤ d), and
works as follows.
Recall that Uk : {0, 1}z×{0, 1}k → {0, 1} is the universal circuit that takes a
description of a function F and an input x and outputs Uk(F, x) = F (x). Let
Π : {0, 1}2� × {0, 1}� → {0, 1} denote the circuit that computes Π(L,w) =
ΠL(w) from Definition 3.8. Note that Π can be implemented by a binary
circuit of depth log(�) +O(1).
Let (x1, . . . , xk) denote the bits of x. Let w = H(x), and let w1, . . . , w� be
its bits. Compute

BU ← ComputeA
(Uk,B1, . . . ,Bz,Ax1 ,Ax2 , . . . ,Axk

)
(1)

CΠ ← ComputeA
(
Π,C1, . . . ,C2�,Aw1 ,Aw2 , . . . ,Aw�

)
(2)

and output
PRFs(x) =

⌊
sTBU ·G−1(CΠ) ·G−1(D)

⌉
p

– Constrain(s,PP, F) takes as input the PRF key s and a circuit F (of size at
most z) and does the following. Compute

ab = sT (Ab + b ·G) + eT1,b ∈ Z
m
q for b ∈ {0, 1}

bi = sT (Bi + fi ·G) + eT2,i ∈ Z
m
q for all i ∈ [z]

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 19

where the vectors e are drawn from an error distribution χ to be specified
later (in Section 5.2).
The constrained seed KF is the tuple

(
a0, a1,b1, . . . ,bz

) ∈ (Zm
q)z+2.

– ConstrainEval(KF ,PP,x) takes as input the constrained key KF and an
input x. It computes

bU ,x ← ComputeC

(
U , (b1, . . . ,bz, ax1 , . . . , axk

), (f1, . . . , fz, x1, . . . , xk)

)

and outputs
⌊
bU ,x ·G−1(CΠ) ·G−1(D)

⌉
p
, where CΠ is defined as above.

5.2 Setting the Parameters

Let us start by providing a typical parameter setting, and then explain how
parameters can be modified and the effect on security.

Consider setting n(λ, d) = (λ · d)c, for a constant c that will be discussed
shortly. We will set χ to be a discrete Gaussian distribution DZ,αq s.t. αq =
Θ(

√
n). We define n′ = λ and let p1, . . . , pn′ = mO(d+log �) be all primes, and

p = poly(λ) (in fact, there is a lot of freedom in the choice of p, and it can be
as large as mO(d+log �) under the same asymptotic hardness). Finally, let q =

p · (αq) ·∏i∈[n′] pi = mn′·O(d+log �) = 2
˜O(λ·d) = 2

˜O(n1/c) (recall that � = poly(λ)).

This parameter setting translates into a PRF with m = n
log q� · Θ(log λ)
output bits per input, whose security is based (as we show in the next section)

on the hardness of approximating lattice problems to within a factor of 2
˜O(n1/c).

Taking larger values of c will increase the hardness of the underlying lattice
problem, but at the cost of considerably increasing the element sizes.

5.3 Security

Throughout this section, we let F be a family of z-uniform functions and let d
be a depth bound (both can depend on λ). We let n = n(λ, d), m = m(λ, d),
q = q(λ, d), p = p(λ, d) and the noise distributions χ = χ(λ, d) be as defined in
Section 5.2. We let H be the family of admissible hash functions as described in
Section 3.4, with range {0, 1}�.
Theorem 5.1. Let F be a family of z-uniform functions and let d be a depth
bound (both can depend on λ). Let n = n(λ, d), m = m(λ, d), q = q(λ, d),
p = p(λ, d) and the noise distributions χ = χ(λ, d) be as defined in Section 5.2.
Further let m′ = m · (z + 2� + 3), and γ = ω(

√
n logλ) · p · mO(d+log �). As-

suming the hardness of DLWEn,q,χ, 1D-SIS-Rq,p,γ,m′ and the admissible hash
function family H, the scheme CPRF = (KeyGen,Eval,Constrain,ConstrainEval)
is a single-key secure selective-function secure constrained PRF for F .

We note that the hardness of all three assumptions translates to the worst
case hardness of approximating lattice problems such as GapSVP and SIVP to
within sub-exponential factors.

20 Z. Brakerski and V. Vaikuntanthan

Proof. Let A be a PPT selective-constraint adaptive-input adversary against
CPRFz,d. Let t = poly(λ) be the (polynomial) number of input queries made
by A (w.l.o.g). Let ε be the advantage of A in the constrained PRF game. We let
B = αq ·ω(√logλ). It holds that with all but negligible probabilities, all samples
that we take from χ will have absolute value at most B. For the duration of the
proof we assume that this is indeed the case.

The proof will proceed by a sequence of hybrids (or experiments) where the
challenger samples a bit b ∈ {0, 1} and interacts with A. We let AdvH(A) denote
the probability that A outputs b in hybrid H.

Hybrid H0. This hybrid is the legitimate constrained PRF security game. The
challenger generates (s,PP)←KeyGen(1λ, 1z, 1d). It gets F ∈ {0, 1}z from A and
produces a constrained key KF←Constrain(s,PP, F). It then sends PP,KF to
A. At this point A adaptively makes queries x(i) ∈ {0, 1}∗, and the challenger
computes y(i)←Eval(s,PP, x(i)) and returns it to A. Finally, A outputs x∗ ∈
{0, 1}∗. If b = 0 then the challenger returns y∗←Eval(s,PP, x∗), and if b = 1 it
returns a random y∗. Therefore, we have

AdvH0(A) ≥ 1/2 + ε .

Hybrid H1. This is the notorious “artificial abort” phase. Let Δt = Δt(λ) be the
noticeable function from Definition 3.8. This hybrid is identical to the previous
one, except in the last step the challenger flips a coin and with probability
1 −Δt/2 aborts the experiment (hence giving the adversary no information on
b).

The adversary’s advantage thus degrades appropriately:

AdvH1(A) ≥ (Δt/2) · (1/2 + ε) + (1−Δt/2) · (1/2) = 1/2 + ε ·Δt/2 .

Hybrid H2. In this hybrid, we associate some meaning with the artificial abort.
Intuitively, the abort will be associated with a failure of the admissible hash
function to partition the queries correctly. We are guaranteed that correct par-
titioning happens with probability ≥ Δt (except for sequences that are hard
to generate), but we would like to make it (almost) exactly Δt/2 so as to not
correlate the adversary’s success probability with the string L (the loss of the 2
factor is due to probability estimation).

Specifically, in this hybrid, rather than flipping a coin at the end of the ex-
periment, the challenger does the following. For all �x = (x(1), . . . , x(t), x∗), we
define the event GoodPartitionL,�x to be the event in which ΠL(H(x(1))) = · · · =
ΠL(H(x(t))) = 0 andΠL(H(x∗)) = 1, and define δ�x = Pr

L
$←Lt

[GoodPartition�x,L].

The challenger will first compute an estimate δ̃�x of δ�x by sampling multiple val-
ues of L from Lt and using Chernoff (both additive and multiplicative). Using
poly(λ)-many samples we can compute δ̃�x such that

Pr
[∣∣∣δ�x − δ̃�x

∣∣∣ > Δt/4
]
≤ 2−λ .

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 21

and in addition if δ�x ≥ Δt/2 then

Pr

[∣∣∣∣
δ�x

δ̃�x
− 1

∣∣∣∣ > ε/2

]
≤ 2−λ .

The challenger will then perform as follows: (i) It first verifies that δ̃�x ≥ 3
4Δt,

and aborts if this is not the case. (ii) It then samples L
$← Lt and aborts if

GoodPartition�x,L did not occur (note that by our definitions above, this happens
with probability 1 − δ�x over the choice of L). (iii) Then it flips a coin with

probability δ̃�x−Δt/2

δ̃�x
and aborts if the outcome is 1. Otherwise it carries out the

experiment towards completion.
To analyze the effect on the success probability, we first notice that the proba-

bility that δ̃�x < 3
4Δt (abortion is step (i)) is negligible. This is since, except with

2−λ probability, this indicates that δ�x < Δt, which implies that �x ∈ badH . Defi-
nition 3.8 guarantees that this happens with probability at most ν(λ) = negl(λ).

If the above abort did not occur, we know that δ�x ≥ Δt/2 (except with
probability 2−λ), we first notice that the total probability of abort in steps
(ii) + (iii)

1−δ�x+δ�x · δ̃�x −Δt/2

δ̃�x
= 1− δ�x

δ̃�x
Δt/2 ∈ [

(1−Δt/2)− εΔt/4, (1−Δt/2)+ εΔt/4
]

It therefore follows that if there was no abort in step (i), then the adversary’s
view in H2 is within statistical distance 2−λ + εΔt/4 from its view in H1.

Putting all steps together, we get that

AdvH2(A) ≥ 1/2+ ε ·Δt/2− ν(λ)−O(2−λ)− εΔt/4 = 1/2+ ε ·Δt/4− negl(λ) .

Hybrid H3. In this hybrid, the challenger first samples L
$← Lt, and then, for each

x(i) in turn, it checks whether ΠL(H(x(i))) = 0, and immediately aborts if not.
Similarly, upon receiving x∗, it checks whether ΠL(H(x∗)) = 1 and immediately
aborts if not. Otherwise it continues the same as H2.

It is rather straightforward to see that the A’s advantage does not change.
The cases in which we abort are exactly the same as the ones in the previous
hybrid (since it is sufficient that a single x(i) does not give the required value
in order to abort). Further, the sampling of L has been completely independent
of all the other randomness in the experiment so it might as well happen in the
beginning. We conclude that

AdvH3(A) = AdvH2(A) ≥ 1/2 + ε ·Δt/4− negl(λ) .

Hybrid H4. In this hybrid, the challenger changes the way the matrices A,B,C
are generated. Recall that our security game is constraint-selective, namely A
produces the constraint F before seeing the public parameters.

Therefore, here, the challenger waits until receiving F from A and only gener-
ates the public parameters at that point (note that by then L has also been spec-
ified). To generate the public parameters, the matrix D is produced identically

22 Z. Brakerski and V. Vaikuntanthan

to before. In addition, the challenger samples matrices {Âβ}β∈{0,1}, {B̂i}i∈[z],

{Ĉi}i∈[2�] It then sets

Aβ = Âβ − βG

Bi = B̂i − fiG

Ci = Ĉi − LiG

The remainder of the experiment remains unchanged.
Since the distributions of the A,B,C matrices is identical to their original

uniform distributions, it follows that

AdvH4(A) = AdvH3(A) .

Hybrid H5. In this hybrid, the adversary changes the way it computes the outputs
y(i). Recall that KF = (a0, a1,b1, . . . ,bz) is the constrained key given to A. Let
us denote

ci = sT (Ci + LiG) + eT3,i for all i ∈ [z]

d = sTD+ eT4

where e3,i are sampled coordinate-wise from χ, and e4 is sampled coordinate-
wise from χ′.

In this hybrid, in order to answer input queries, the challenger first computes

bU ,x(i) ← ComputeC

(
U , (b1, . . . ,bz, ax1 , . . . , axk

), (f1, . . . , fz, x
(i)
1 , . . . , x

(i)
k)

)

and then, letting w(i) = H(x(i))

cΠ,w(i) ← ComputeC

(
Π, (c1, . . . , c2�, aw1 , . . . , aw�

), (L1, . . . , L2�, w
(i)
1 , . . . , w

(i)
�)

)

We recall that by Lemma 4.1 it holds that

bT
U ,x(i) = sT (BU ,x(i) + F (x(i)) ·G) + eTU

cTΠ,w(i) = sT (CΠ,w(i) +ΠL(w
(i)) ·G) + eTΠ ,

for some eU , eΠ for which ‖eU‖ ≤ B ·mO(d), ‖eΠ‖ ≤ B ·mO(log �).

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 23

We recall that by definition

PRFs(x
(i)) =

⌊
sTBU ,x(i) ·G−1(CΠ,w(i))G−1(D)

⌉
p

=

⌊
sT (BU ,x(i) + F (x(i))G) ·G−1(CΠ,w(i))G−1(D)

− F (x(i))sTCΠ,w(i)G−1(D)

⌉

p

=
⌊
sT (BU ,x(i) + F (x(i))G) ·G−1(CΠ,w(i))G−1(D)

−F (x(i))sT (CΠ,w(i) +ΠL(w
(i))G)G−1(D)

+F (x(i))ΠL(w
(i))sTD

⌉
p

=
⌊
bT
U ,x(i) ·G−1(CΠ,w(i))G−1(D) − F (x(i))cTΠ,w(i)G

−1(D)

+F (x(i))ΠL(w
(i))dT + e′T

⌉
p
, (3)

where

e′T = −eTUG
−1(CΠ,w(i))G−1(D) + F (x(i))eTΠG−1(D)− F (x(i))ΠL(w

(i))eT4
(4)

which implies that ‖e′‖ ≤ E for some E = (mO(d) +mO(log �)) ·B.
To analyze the distinguishing probability between these hybrids, for any input

x (and w = H(x)) we define the event Borderlinex as the event where there exists
j ∈ [m] such that:

(bT
U ,x ·G−1(CΠ,w) ·G−1(D)−F (x) · cTΠ,w ·G−1(D)

+ F (x) ·ΠL(w) · dT) · uj ∈ [−E,E] + (q/p)Z ,

where we recall that uj is the jth indicator vector. Namely, this is the prob-
ability that one of the coordinates of the vector bT

U ,x · G−1(CΠ,w)G
−1(D) −

F (x)cTΠ,wG
−1(D) + F (x)ΠL(w)d

T is “dangerously close” to being rounded in
the wrong direction.

By definition of rounding, if ¬Borderlinex(i) , then

PRFs(x
(i)) = �bT

U ,x(i) ·G−1(CΠ,w(i))G−1(D)− F (x(i))cTΠ,w(i)G
−1(D)

+ F (x(i))ΠL(w
(i))dT �p .

The challenger in this hybrid, given a query x(i), will first check whether
Borderlinex(i) . If the event happens, the challenger aborts. Otherwise it returns
PRFs(x

(i)) as defined above. Note that the challenger only needs to respond to
queries x(i) for which ΠL(w

(i)) = ΠL(H(x(i))) = 0, which do not depend on d,
a fact that will be important later on.

24 Z. Brakerski and V. Vaikuntanthan

Finally, on the challenge query x∗, unless abort is needed, it holds that
F (x∗) = 1 and ΠL(w

∗) = 1 (where w∗ = H(x∗)) and therefore, unless the
event Borderlinex∗ happens, it holds that

PRFs(x
∗) =

⌊
bT
U ,x∗ ·G−1(CΠ,w(i))G−1(D)− cTΠ,w∗G−1(D) + dT

⌉
p
.

The challenger will therefore abort if Borderlinex∗ and return the aforementioned
value otherwise (that is if the bit b is 0; if b = 1 then of course a uniform value
is returned).

It follows that if we define Borderline = (∨iBorderlinex(i)) ∨ Borderlinex∗ , then

|AdvH5(A)−AdvH4(A)| ≤ Pr
H5

[Borderline] .

We will bound PrH5
[Borderline] as a part of our analysis in the next hybrid.

As a final remark on this hybrid, we note that in order to execute this hybrid,
the challenger does not need to access s itself, but rather only the aβ ,bi, ci,d
vectors. This will be useful in the next hybrid.

Hybrid H6. In this hybrid, all aβ ,bi, ci,d are sampled from the uniform distri-
bution. Everything else remains the same. We note that by definition, in hybrid
H5:

aTβ = sT Âβ + eT1,β

bT
i = sT B̂i + eT2,i

cTi = sT Ĉi + eT3,i

dT = sTD+ eT4 ,

where all Âβ , B̂i, Ĉi,D are uniformly distributed, and all eT1,β , e
T
2,i, e

T
3,i, e

T
4 are

sampled coordinate-wise from χ. The DLWEn,q,χ assumption therefore asserts
that:

|AdvH6(A) −AdvH5(A)| ≤ negl(λ) .

Furthermore, since Borderline is an efficiently recognizable event, it also holds
that ∣∣∣∣∣PrH6

[Borderline]− Pr
H5

[Borderline]

∣∣∣∣∣ = negl(λ) . (5)

In H6, the probability of Borderline can be bounded under the 1D-SIS-R as-
sumption.

Claim. Under the 1D-SIS-Rq,p,γ,m′ assumption, it holds that PrH6
[Borderline] =

negl(λ), where m′ = m · (2 + z + 2�+ 1), and γ = p · B ·mO(d+log �).

Proof. Let v ∈ Z
(2+z+2�+1)m
q be an input to 1D-SIS-Rq,p,γ,m′ . Then define

aβ ,bi, ci,d be so that their concatenation is v.

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 25

The reduction executes H6 as the challenger, using the vectors defined above.
We claim that if Borderline occurs, then we solve 1D-SIS-R. This follows since if
Borderline occurs then we found x, j such that

(bT
U ,x ·G−1(CΠ,w)G

−1(D) − F (x(i))cTΠ,wG
−1(D) + F (x)ΠL(w)d

T)uj

∈ [−E,E] + (q/p)Z .

However, by Lemma 4.1, it follows that

bT
U ,x =

∑
β∈{0,1}

aTβR
′
1,β +

∑
i∈[z]

bT
i R

′
2,i

cTΠ,x =
∑

β∈{0,1}
aTβR

′′
1,β +

∑
i∈[2�]

cTi R
′′
3,i

where
∥∥∥R′

1,β

∥∥∥ , ∥∥R′
2,i

∥∥ ≤ mO(d) and
∥∥∥R′′

1,β

∥∥∥ , ∥∥R′′
3,i

∥∥ ≤ mO(log �). It follows that

there exists an (efficiently derivable) matrix R0 such that

bT
U ,x ·G−1(CΠ,w)G

−1(D)− F (x(i))cTΠ,wG
−1(D) + F (x)ΠL(w)d

T = vTR0 ,

and ‖R0‖ ≤ mO(d+log �).
Finally,

〈v,R0 · uj〉 ∈ [−E,E] + (q/p)Z ,

with ‖R0 · uj‖ ≤ ‖R0‖ ≤ mO(d+log �) and E = B · mO(d+log �) = mO(d+log �).
Thus R0 · uj is a valid solution for 1D-SIS-Rq,p,γ,m′ . The claim thus follows.

Putting together Claim 6 and Eq. (5), we get that

Pr
H5

[Borderline] ≤ Pr
H6

[Borderline] + negl(λ) ≤ negl(λ) .

and thus, finally ∣∣∣AdvH5(A) −AdvH6
(A)

∣∣∣ ≤ negl(λ) .

Finally, we notice that the vector d is only used when answering the challenge
query in the case of b = 0. This means that in the adversary’s view, the answer
it gets when b = 0 is uniform and independent of its view so far, exactly the
same as the case b = 1 where an actual random vector is returned. It follows
that

AdvH6(A) = 1/2 .

On the other hand

AdvH6(A) ≥ 1/2 + εΔt/4− negl(λ) ,

and thus

ε ≤ negl(λ)

Δt/4
= negl(λ) .

It follows that A cannot achieve a noticeable advantage in the constrained PRF
experiment under the DLWEq,n,χ assumption.

26 Z. Brakerski and V. Vaikuntanthan

5.4 Computational Functionality Preserving

We now prove the computational functionality preservation of our scheme, as
per Definition 3.1. Throughout this section, we let F be a family of z-uniform
functions and let d be a depth bound (both can depend on λ). We let n = n(λ, d),
m = m(λ, d), q = q(λ, d), p = p(λ, d) and the noise distributions χ = χ(λ, d) be
as defined in Section 5.2. We let H be the family of admissible hash functions as
described in Section 3.4, with range {0, 1}�.
Theorem 5.2. Let F be a family of z-uniform functions and let d be a depth
bound (both can depend on λ). Let n = n(λ, d), m = m(λ, d), q = q(λ, d),
p = p(λ, d) and the noise distributions χ = χ(λ, d) be as defined in Section 5.2.
Further let m′ = m · (z + 2�+ 3), and γ = ω(

√
n logλ) · p ·mO(d+log �).

Assuming the hardness of DLWEn,q,χ and 1D-SIS-Rq,p,γ,m′ , the scheme CPRF
is computationally functionality preserving.

We note that the hardness of both assumptions translates to the worst case
hardness of approximating lattice problems such as GapSVP and SIVP to within
sub-exponential factors.

Proof (outline). The theorem follows from an argument practically identical
to that made in Hybrids H5,H6 of the proof of Theorem 5.1.

Recall that we showed that Borderline events only happen with negligible
probability, and therefore with all but negligible probability, it holds that the
PRF value at point x(i) is exactly equal to
⌊
bT
U,x(i) ·G−1(CΠ,w(i))G

−1(D)− F (x(i))cTΠ,w(i)G
−1(D) + F (x(i))ΠL(w

(i))dT
⌉
p

.

However, when F (x(i)) = 0, this term simplifies to

⌊
bT
U ,x(i) ·G−1(CΠ,w(i))G−1(D)

⌉
p

which is exactly ConstrainEval(KF ,PP, x(i)) by definition. Functionality is thus
preserved with all but negligible probability.

5.5 Other Properties

We describe several other properties that our construction satisfies.

Unconditional Almost-Correctness. We have shown that our constrained PRF
satisfies a computational correctness property, namely that it is hard to find
an input x such that PRFK(x) �= ConstrainEval(KF ,PP,x). We are also able
to show unconditionally that the constrained evaluation and the actual PRF
evaluation do not differ by much, for any input x. Indeed, by Equation 3 and 4,
we have

||PRFK(x)− ConstrainEval(KF ,PP,x)||∞ ≤ mO(d) · B

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 27

Key Homomorphism. Our PRF is also “almost key homomorphic” in the sense
that PRFs(x) + PRFs′(x) is close to PRFs+s′(x) for any keys s and s′ and any
input x. Recall that our PRF is

PRFs(x) =
⌊
sTBU ·G−1(CΠ) ·G−1(D)

⌉
p

For any keys si and input x, denoting sTi BU ·G−1(CΠ) ·G−1(D) as hi, we have

||PRF∑

si(x) −
∑

PRFsi(x)||∞ =

∣∣∣∣
∣∣∣∣
⌊∑

i

hi

⌉
p
−
∑
i

�hi�p
∣∣∣∣
∣∣∣∣
∞

≤ k + 1

Constrained-Key Homomorphism. Our constrained keys are “almost homomor-
phic” as well, in the same sense as above. That is, if KF and K ′

F are constrained
versions of PRF keysK andK ′ for the same function F , the summationKF+K ′

F

is a constrained version of K +K ′ for the function F . For any input x, we then
have that ConstrainEval(KF +K ′

F ,PP,x) is close to PRFK+K′(x).
We remark that techniques similar to what we used in showing computational

correctness can be used to strengthen the almost key-homomorphism property
into computational key-homomorphism where it is computationally hard to find
an input for which key homomorphism does not hold.

6 Succinct Constrained Keys

In this section we show how to reduce the size of the constrained key so that
asymptotically it depends only on the security parameter and independent of
the function class. The construction builds upon the scheme CPRF from Sec-
tion 5 but reduces the key size by utilizing an attribute based encryption scheme
(ABE). In particular, the constrained keys in our new system have size poly(λ),
independent of the parameters of the constraining circuit (namely, its size or
depth).

Our succinct constrained PRF SCPRF for a z-uniform d-depth-bounded fam-
ily F works as follows.

– KeyGen(1λ, 1z, 1d): The key generation algorithm takes as input the maxi-
mum size z and depth d of the constraining circuits. Let t = O(log z) to be
specified later.
It starts by calling CPRF .KeyGen(1λ, 1z, 1d) to obtain the seed s, and public
parameters PP = (H,A0,A1, {Bi}i∈[z]).

It then generates: aβ = sT (Aβ+βG)+eT1,β and bi,β = sT (Bi+βG)+eT2,i,β .
Note that any possible constrained key of CPRF consists of a0 and a1,
together with a subset of {bi,β}i∈[z],β∈{0,1}.
Next it generates parameters for the ABE scheme (ABE .msk,ABE .pp) ←
ABE .Setup(1λ, 1t), and generates cti,β ← ABE.Enc(ABE .pp, (i, β),bi,β), en-
cryptions with (i, β) as the “attributes” and bi,β as the “message”.
The public parameters consist of

SCPRF .PP = (CPRF .PP,ABE.PP, a0, a1, {cti,β}i,β)

28 Z. Brakerski and V. Vaikuntanthan

The seed for SCPRF contains a seed for CPRF , namely a uniformly random
vector s ∈ Z

n
q , and in addition the ABE master secret key ABE .msk. We note

that in fact s can be retrieved from the public parameters using ABE.msk
and therefore it is not necessary to give it explicitly. However, it is more
natural to think of s as a part of the seed. In particular s will be used to
evaluate SCPRF (see Eval below) and ABE .msk will be used to produce
constrained keys (see Constrain below).

– Eval(s,PP,x) takes as input the PRF seed s, the public parameters PP
which contains CPRF .pp, and an input x ∈ {0, 1}k such that k ≤ kd (i.e.
Uk is of depth ≤ d), and outputs the result of the CPRF evaluation, namely
CPRF .Eval(s, CPRF .pp,x).

– Constrain(ABE .msk, F) takes as input the ABE master secret key ABE.msk
and a circuit F (represented as a string in {0, 1}z) and does the following.
Consider the function:

φF (i, β) =

{
1, if Fi = β
0, otherwise

Note that φF can be computed by a depth O(log z) circuit (whose depth is
independent of the depth of F itself), the parameter t from above is set to
be equal to this depth. We recall Section 3.5
The constrained key for F is the ABE token for φF , namely

KF = ABE.KeyGen(ABE .msk, φF)

– ConstrainEval(KF ,PP,x) takes as input the constrained key KF , the public
parameters PP and an input x.
Recalling that PP = (CPRF .pp,ABE .pp, a0, a1, {cti,β}), and that KF is
the ABE decryption key for the function φF , it first decrypts to obtain bi =
ABE .Dec(KF , cti,Fi), and then applies the constrained evaluation algorithm
CPRF .ConstrainEval

(
(a0, a1, {bi}), CPRF .PP,x

)
.

The correctness follows in a straightforward manner from the correctness of
ABE and CPRF . The constrained key size of SCPRF is derived from that of
ABE and is poly(λ, t) = poly(λ, log z). It follows that there exists a poly(λ)
asymptotic upper bound on the key sizes that applies for all polynomial values
of z. Security is stated in the following theorem, the proof can be found in the
extended version [11].

Theorem 6.1. If CPRF is a single-key secure constrained pseudorandom func-
tion for function class F (Definition 3.1), which is built according to the template
in Section 5, and if ABE is a selectively secure ABE scheme (Definition 3.9),
then the scheme SCPRF described above is a secure single-key CPRF for F .

References

1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
Miller, G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, pp.
99–108. ACM (1996)

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 29

2. Alekhnovich, M.: More on average case vs approximation complexity. In: Proceed-
ings of 44th Symposium on Foundations of Computer Science (FOCS 2003), Cam-
bridge, MA, USA,, October 11-14, pp. 298–307. IEEE Computer Society (2003)

3. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom
functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 353–370. Springer, Heidelberg (2014)

4. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012)

5. Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primitives based
on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (1994)

6. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

7. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikun-
tanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014)

8. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic prfs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013)

9. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013)

10. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014)

11. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic prfs from stan-
dard lattice assumptions or: How to secretly embed a circuit in your prf. Cryptology
ePrint Archive, Report 2015/032 (2015), http://eprint.iacr.org/

12. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptology 25(4), 601–639 (2012)

13. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. Electronic Colloquium on Computational Complexity
(ECCC) 14(133) (2007)

14. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986); Extended abstract in FOCS 84

15. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) Symposium on The-
ory of Computing Conference, STOC 2013, Palo Alto, CA, USA, June 1-4, pp.
545–554. ACM (2013)

16. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., di Vimercati,
S.D.C. (eds.) Proceedings of the 13th ACM Conference on Computer and Commu-
nications Security CCS 2006, October 30 - November 3, pp. 89–98. ACM (2006)

17. Hofheinz, D., Kamath, A., Koppula, V., Waters, B.: Adaptively secure constrained
pseudorandom functions. In: Cryptology ePrint Archive, Report 2014/720 (2014),
http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/

30 Z. Brakerski and V. Vaikuntanthan

18. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: Sadeghi, A., Gligor, V.D., Yung, M. (eds.)
2013 ACM SIGSAC Conference on Computer and Communications Security, CCS
2013, Berlin, Germany, November 4-8, pp. 669–684. ACM (2013)

19. Lewi, K., Montgomery, H.W., Raghunathan, A.: Improved constructions of prfs
secure against related-key attacks. In: Boureanu, I., Owesarski, P., Vaudenay, S.
(eds.) ACNS 2014. LNCS, vol. 8479, pp. 44–61. Springer, Heidelberg (2014)

20. Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of
LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 465–484. Springer, Heidelberg (2011)

21. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

22. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and kdcs.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346. Springer,
Heidelberg (1999)

23. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, STOC 2009, Bethesda, MD, USA, 2009, May 31 - June 2, pp. 333–
342 (2009)

24. Regev, O.: Lattices in computer science - average case hardness. Lecture Notes
for Class (scribe: Elad Verbin) (2004),
http://www.cims.nyu.edu/ regev/teaching/lattices fall 2004/ln/

averagecase.pdf

25. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
Baltimore, MD, USA, May 22-24, pp. 84–93 (2005)

26. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable en-
cryption, and more. In: Shmoys, D.B. (ed.) Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, 2014, May 31 - June 03, pp. 475–484. ACM
(2014)

27. Schnorr, C.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci. 53, 201–224 (1987)

http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf
http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf

	Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions (Or: How to Secretly Embed a Circuit in Your PRF)

	1 Introduction

	2
Overview of Our Construction
	3
Preliminaries
	3.1
Constrained Pseudorandom Function: Definition
	3.2
Learning with Errors
	3.3
 One-Dimensional Short Integer Solution (SIS) and Variants
	3.4
Admissible Hash Functions
	3.5
Attribute-Based Encryption

	4
Embedding Circuits into Matrices
	5
Constrained PRF
	5.1
Construction
	5.2
Setting the Parameters
	5.3
Security
	5.4
Computational Functionality Preserving
	5.5
Other Properties

	6
Succinct Constrained Keys
	References

