Adaptive Proofs of Knowledge
in the Random Oracle Model

David Bernhard!®™), Marc Fischlin?, and Bogdan Warinschi®

! University of Bristol, Bristol, UK
{bernhard,bogdan}@compsci.bristol.ac.uk
2 Technische Universitat Darmstadt, Darmstadt, Germany
marc.fischlin@cryptoplexity.de

Abstract. We formalise the notion of adaptive proofs of knowledge in
the random oracle model, where the extractor has to recover witnesses
for multiple, possibly adaptively chosen statements and proofs. We also
discuss extensions to simulation soundness, as typically required for the
“encrypt-then-prove” construction of strongly secure encryption from
IND-CPA schemes. Utilizing our model we show three results:

(1) Simulation-sound adaptive proofs exist.

(2) The “encrypt-then-prove” construction with a simulation-sound
adaptive proof yields CCA security. This appears to be a “folk-
lore” result but which has never been proven in the random oracle
model. As a corollary, we obtain a new class of CCA-secure encryp-
tion schemes.

(3) We show that the Fiat-Shamir transformed Schnorr protocol is not
adaptively secure and discuss the implications of this limitation.
Our result not only separates adaptive proofs from proofs of knowledge,
but also gives a strong hint why Signed ElGamal as the most prominent
encrypt-then-prove example has not been proven CCA-secure without

making further assumptions.

1 Introduction

Proofs of knowledge [5,22,31,50] are a generic tool to ensure correct operation in
many cryptographic constructions, including voting protocols, e-cash systems,
or group signatures. More generally, they can turn passively secure multi-party
protocols into actively secure ones. The value of proofs of knowledge in security
arguments is that whenever a participant makes a proof of knowledge on some
statement as part of a protocol, one can “hop” into an alternate, virtual world
in which the participant outputs the witness along with the statement. This
approach of pretending that each proof makes its witness available in a security
argument relies on the extractor that exists by definition of a proof of knowledge:
when a participant outputs a proof, we “freeze” the protocol, and invoke the
extractor to get the witness. This extraction is usually carried out by rewinding
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the party and branching into another protocol execution. Then we resume the
protocol with the witness now being available.

The problem with the “freeze-extract-resume” approach is that its imple-
mentation can easily become expensive. Each extraction and its rewinding can
double the running time of a reduction such that, if a participant makes a badly
nested “chain” of n proofs, a naive approach ends up with an exponential run-
ning time of 2" to get all the witnesses. This is certainly true for interactive
proofs of knowledge, but also in the case of non-interactive proofs of knowledge
in the random oracle model. Such random-oracle based proofs are paramount
if efficiency is vital, especially in the form of Fiat-Shamir transformed Sigma
protocols a.k.a. “Schnorr-type” proofs. In this context the rewinding problem
was first mentioned explicitly by Shoup and Gennaro [47].

Shoup and Gennaro [47] required nested proofs in the random oracle model
for the construction of CCA secure public-key encryption from IND-CPA secure
encryption via the encrypt-then-prove approach (e.g., for signed ElGamal). The
idea behind this approach, gradually refined in a sequence of works [13,17,36,
38,43,52], is to attach to each ciphertext a proof of knowledge of the message.
Intuitively, if one has to know the message to create a ciphertext, a decryption
oracle should be redundant, so encrypt-then-prove should lift CPA security to
CCA security. Unfortunately, there is no general proof of this intuition which
also covers the setting with random oracles. Currently, the best result for signed
ElGamal, without making additional “knowledge type” assumptions as in [43,
51], is that the scheme is non-malleable (NM-CPA) [12].

ADAPTIVE PROOFS OF KNOWLEDGE. Our notion and formalisation of adaptive
proofs of knowledge allows to capture the case of having to extract from multiple
proofs, possibly chosen adaptively by a malicious prover. We focus on the case
of non-interactive proofs in the random oracle. As a first step, we will cast
the (single-round) proof of knowledge property as a game between a prover (or
attacker) and an extractor. The prover wins the game if it makes a statement and
a valid proof but such that the extractor cannot find a witness. The extractor
wins the game if it can return a witness (or if the prover does not produce a
valid proof). A proof scheme is a proof of knowledge if there is an extractor that
wins against any prover with overwhelming probability.

For extending our simple game to the adaptive case, the prover can now
produce many statement/witness pairs in rounds and the scheme is an adaptive
proof if the extractor can find all witnesses (for a prover who makes a polyno-
mially bounded number of queries). The game is adaptive because the extractor
must return each found witness to the prover before the prover makes her next
query.

In addition to adaptive proofs, we define simulation-sound adaptive proofs
of knowledge. These proofs are obtained by the exact same change that extends
proofs of knowledge to simulation-sound proofs of knowledge: in addition to
producing statements and proofs of her own, the prover can simultaneously
ask the zero-knowledge simulator for proofs on valid statements of her choice.
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Of course, the prover cannot ask the extractor to extract a witness from a sim-
ulated proof.

OUR RESULTS. After we provide a formalisation of adaptive proofs we can argue
about instantiations and applications. We provide three main results in this
regard:

(1.) Simulation-sound adaptive proofs exist. We discuss that the construction
of straight-line proofs of knowledge by Fischlin [26] satisifies our notion. Fis-
chlin’s transformation is an alternative to the common Fiat-Shamir transforma-
tion and allows any Sigma protocol with unique responses to be turned into a
non-interactive proof.

(2.) Adaptive simulation-sound proofs yield CCA security. We propose that adap-
tive proofs are to proof schemes what CCA security is to encryption schemes.
Only an adaptive proof gives you a formal guarantee that the intuition behind
proofs of knowledge still works when they are used over multiple rounds of a
protocol.

We prove that the encrypt-then-prove construction using an IND-CPA
encryption scheme and a simulation sound adaptive proof yields CCA security.
Our proof is to our knowledge the first proof of CCA security that considers a
potentially rewinding reduction in an adaptive case. While our proof follows the
same high-level direction as proofs of existing CCA schemes (using the reduction
to answer decryption queries), the need to handle rewinding without causing an
exponential blow-up makes for a complicated argument. We develop a new proof
technique called coin splitting to deal with some of the problems that arise.
(3.) Fiat-Shamir-Schnorr is not adaptively secure. We prove that the most com-
mon and efficient construction of proofs of knowledge via the Fiat-Shamir trans-
formation [25] is not adaptively secure. Our proof constructs a prover who makes
a “chain” of n Fiat-Shamir-Schnorr statement/proof pairs, following the ideas
of Shoup and Gennaro [47]. We then show that any extractor that wins the
adaptive proof game against this prover either reduces to breaking the one-more
discrete logarithm problem or launches 2(2™) copies of the prover. The key tech-
nical tools in the proof are the meta-reduction paradigm and a technique which
we term coin splitting.

Coin splitting allows us to perform a kind of hybrid argument on attackers
which have rewinding black-box access to several copies of the same algorithm.
We can change these copies individually as long as we can argue that the attacker
does not notice the difference. Coin splitting is a technique to show that some
changes which we make to individual copies are indeed indistinguishable to an
attacker who cannot break a more basic security assumption. The idea of this
technique originates in papers on resettable zero-knowledge [14].

RELATED WORK. We recall some related work here and discuss that so far no
previous work has given a profound answer to the issue of adaptive simulation-
sound proofs of knowledge in the random oracle model. A longer discussion can
be found in the full version of our paper. The notion of simulation-soundness of
zero-knowledge proofs has been introduced for proofs of membership by Sahai
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[41], showing that the Naor-Yung paradigm [36] yields CCA secure encryptions
in the common reference string model. In the context of proofs of knowledge,
De Santis and Persiano [19] already augmented ciphertexts by proofs in the
common reference string model to aim at CCA security, albeit their argument
seems to miss simulation-soundness as an important ingredient. This property
has been considered in works by Groth [33], Chase and Lysanskaya [15], and by
Dodis et al. [20], but once more in the common reference string model only. The
first formal definitions of simulation-sound proofs of knowledge in the random
oracle model were concurrently given by Bernhard et al. [12] and Faust et al. [21];
both works show that proofs derived via Fiat-Shamir transform meet this notion.
Both formulations, however, consider an extractor that needs only to extract
from non-adaptively chosen proofs, and in case of [21] only once (for security of
their signature construction). In conclusion, our work here fills in a gap allowing
to argue about important properties of adaptivity and simulation-soundness of
proofs of knowledge in the random oracle model.

2 Zero-Knowledge Proofs

In this section we discuss zero-knowledge proofs of knowledge and simulation
soundness in the random oracle model (ROM). Our central idea for zero-
knowledge and its extension of simulation soundness is a game between two
players, a malicious prover P and an extractor K. The prover’s aim is to pro-
duce a statement and a proof that verifies such that the extractor cannot extract
a witness from this proof. The extractor’s goal is to extract a witness from the
proof that the prover provides.

We use a code-based game-playing model a la Bellare and Rogaway [9] to
define adaptive proofs of knowledge. The game mediates between all involved
players, e.g., between the adversarial prover and the extractor and possibly also
the simulator in case of simulation soundness. The game starts by running the
initialisation algorithm which ends by specifying to which player it wishes to
transfer control to first. Executions are token-based: at any time, either the
game or one of the players is running (“holding the token”) and a call from one
participant to another yields control. All game variables are global and persist
between calls so the game may maintain state between calls. The game eventually
declares the winner among the prover and the extractor.

To ensure termination, we assume strict polynomial-time provers and extrac-
tors (in the size of implicit parameters such as the size of the groups over which
the proofs are constructed). Our notions could also be achieved by having the
game “time out” if one player does not reply in a bounded number of time steps,
though this would require a more involved model of concurrency. The important
property is in any case that all players in the game must, on receiving an input,
eventually produce an output. In particular, a prover cannot prevent a “perfect”
extractor from winning a game by entering an infinite loop instead of producing
a proof.
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2.1 Proof Schemes

Below we give the common definition for proof schemes for NP relations R. For
Fiat-Shamir proof schemes we occasionally also need to parametrise over the
underlying number-theoretic group G(A) in a straightforward way, but we omit
this for sake of representational simplicity.

Definition 1. A non-interactive proof scheme for a relation R over groups con-
sists of two algorithms (P, V) over groups. P may be randomised, V must be
deterministic. For any pair (x,w) € R, if m — P(x,w) then V(x,m) must output
“true”.

The elements of the relation R are called statement and witness. P is called
the prover and its outputs 7 are called proofs. V is called the verifier and a
statement /proof pair on which V outputs “true” is called a valid proof. In the
random oracle model, both P and V may call the random oracle but the relation
R’ itself must be independent of any oracles. The last condition in the definition
of proof schemes is called correctness and says that proofs produced by the
genuine prover are valid. In the random oracle model, the prover and verifier in
the definition of the correctness property have access to the same random oracle,
i.e. the oracle answers consistently for both algorithms.

Our definitions of properties for proof schemes are centered around a game
with multiple interfaces to which various parties such as provers, extractors or
simulators may connect. We give our games as collections of algorithms where
each algorithm has both a name and a description of the interface to which
it applies. A return statement in an algorithm terminates the algorithm and
outputs the return value on the same interface that called the algorithm. Where
an algorithm should terminate and send a value on a different interface, we use
the keyword send instead. The keyword halt in the code of a game terminates
not just an algorithm but the entire game — when this occurs, the game will
announce a winner.

2.2 Zero-Knowledge

A proof scheme is called zero-knowledge if there is an algorithm S, called the
simulator, which is able to produce proofs indistinguishable from genuine ones
after seeing only the statement but no witness. Informally, 7 «— P(x,w) and
7'« S(x) should be indistinguishable for any pair (z,w) € R.

In the (programmable) random oracle model we define zero-knowledge in
such a way that the simulator is responsible for the random oracle (if present).
Formally, we treat the prover P as an interactive algorithm that may issue oracle
queries and get responses, and that eventually outputs a proof. A simulator is
a stateful interactive algorithm & that can respond to two kinds of queries: a
prove query which takes a value z as input and should produce a proof 7 as
output, and a ro query which takes an arbitrary x € ¥* as input and returns a
y € X*. A simulator does not have access to a random oracle, but simulates its
own random oracle towards its “clients”. A proof scheme is zero-knowledge in
the random oracle model if the following two games are indistinguishable:
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— The first game internally runs a random oracle RO . On input a pair (z,w),
if R(x,w) does not hold then the game returns L and halts. If the relation
holds, the game runs m « P(z,w) and returns 7. The prover P uses the
game’s random oracle. The adversary may then query the game’s random
oracle (which P used) directly, as often as she wants.

— The second game does not run a random oracle. On input a pair (x, w), again
if R(xz,w) does not hold the game returns L and halts. Otherwise, the game
runs 7w < S(z) and returns 7 to the adversary. The adversary may then issue
random oracle queries which the game delegates to the simulator’s random
oracle.

We specify this property using pseudocode in Figure 1. We use the following
notation: An oracle is a stateful process which other processes can access via a
well-defined set of queries. If O is an oracle and q is one if its supported queries
then we write O.q(z) to denote the invocation of this query with parameter
x. We write x «—s .S for selecting = uniformly at random from the set S and
y s A91On (1) for calling the (potentially randomised) algorithm A on input
x to get output y. The superscripts denote the oracles that A can use while
it is running. Sometimes, we will allow these oracles to call each other directly
(for example if several oracles need access to a random oracle) and to issue a
command halt that halts the entire execution.

To maintain random oracle queries in later definitions we write [ | for the
empty list and L :: [ to concatenate element [ to list L. When L is a list of pairs,
we define L(z) to be y such that (x,y) is the first element in L of the form (z, -).
If no such element exists then L(x) is defined to be L.

In Figure 1 we give the games G; and G and the methods that the adversary
can call. Since it will be helpful later on to give each kind of query a name, we
call the adversary’s initial query with parameters (x,w) a prove query. Similarly,
we call the two operations that a simulator S admits prove and ro queries.

At the moment, our code may seem like an unnecessarily complicated way of
stating a simple property. This level of formalism will become necessary when
we move on to adaptive proofs however.

Definition 2. A proof scheme (P,V) is zero knowledge in the random oracle
model for a relation R if there exists a simulator S satisfying the following con-
dition. For any security parameter X let §(\) be the distinguishing advantage of
any efficient adversary between the games G1 and G4 of Figure 1 and for relation
R and simulator S. Then §(\) is negligible as a function of A.

2.3 Proofs of Knowledge

A proof scheme is a proof of knowledge if there is an extractor K such that for
any prover P which can make a statement /proof pair that verifies, K can deliver
an associated witness. Formalising this statement requires that we not only take
care of random oracles but also the extractor’s ability to “fork” the prover.

We first consider the non-rewinding case as a warm-up. A prover P is a
randomized interactive algorithm that may make random oracle queries and
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Game G, Game G2
initialise(): initialise():
//potentially generate parame- //potentially generate parame-
ters ters
A issues prove(z,w): A issues prove(z, w):
if =R(z,w) then return L if =R(z,w) then return L
7 PRO(x,w) 7w — S.prove(z)
return m return
A issues ro(z): A issues ro(z):
return RO(z) return S.ro(z)

Fig. 1. Games for zero-knowledge (ZK) in the random oracle model. A scheme (P, V)
is ZK if the two games G and G2 are indistinguishable. The adversary A may issue
prove once and ro any number of times. RO is a random oracle.

eventually outputs a pair (x,7). A non-rewinding extractor I is an algorithm
that takes a pair (z,7) as input, may make random oracle queries and even-
tually outputs a value w. We consider the game G that runs a random oracle
RO internally and connects a prover and an extractor as in Figure 2. A proof
scheme is an R-proof of knowledge if there is an extractor K such that for every
prover P, the game mediating between the two algorithms outputs “ wins”
with overwhelming probability. R

The game as in Figure 2, in which both the prover P and the extractor K
can access a random oracle and where the extractor is supposed to find a witness
for a valid proof produced by the prover, is actually too demanding to be useful:
It basically says that anyone is able to extract a witness from the proof. To
derive some sensible notion we give the extractor some advantage and allow it
to inspect the random oracle queries made by the prover. That is, the extractor
KC can make an extra query list in response to which the game G returns the
list H. This gives us a notion of straight-line proofs in the random oracle model
which is actually sufficient for capturing the approach used by Fischlin [26].

Definition 3. A proof scheme (P, V) is a straight-line proof of knowledge in the
ROM w.r.t. a relation R if there is an extractor KC such that for any prover 73,
the game in Figure 2 augmented with a list query that allows IC to see the list H
returns “‘IC wins” with overwhelming probability.

The above definition is less general than the one first proposed by Bellare
and Goldreich [5]. There the authors relate the extractor’s success probability
to that of the prover (in producing a valid proof), whereas our definition lets
the extractor win by default if the prover does not make a proof. However, our
notion generalises more easily to the adaptive setting where the probability of
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initialise: P outputs (z,7):
H—[] if =V (2, ) then
start P

halt with output “kC wins”
X —z

P issues ro(z): send (z,7) to K

y «— RO(z)
H—H:: (z,y) K outputs w:
return y to P if R(X,w) then

) halt with output “K wins”
K issues ro(x):
— " else
y < RO(z) halt with output “P wins”
return y to K
K issues list :

return H

Fig. 2. The game G defining proofs of knowledge in the random oracle model. Capital-
X is part of the game’s internal state that persists between calls (so that the extractor’s
witness is verified against the same statement that the prover provided earlier).

the prover making a valid proof is no longer well-defined, since it also depends
on the extractor’s response to earlier proofs.

2.4 Rewinding Extractors

The next standard notion that we formalise in our game-based model is that of
a rewinding extractor in the ROM, running the prover multiple times. We model
the extractor’s rewinding ability by giving the extractor access to further copies
of the prover, initialised with the same random string as the main incarnation of
the prover’s algorithm which connects to the proof of knowledge game. We call
these further copies “rewound copies”. Although all copies of the prover share
the same random string, this string is not available to the extractor directly. This
prevents the extractor from just simulating the prover on its own and reading
off any witness used to make a proof.

The rewound copies of the prover connect to the extractor directly as sketched
in Figure 3. In particular, the extractor is responsible for answering the random
oracle queries for the rewound copies and can use this ability to “fork” them at
any point. In order to apply the forking strategy to proofs made by the main
prover, the extractor may make use of the list H that records all random oracle
queries and answers for the main execution.

The game itself is the same as for non-rewound provers. For example, for the
prover in Schnorr’s protocol, one extraction strategy is to start a rewound copy
of the prover and run it up until the point that it asks the oracle query which the
main prover used to make its proof. Then, the extractor gives the rewound copy
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a different answer to the oracle query and hopes to obtain a new proof with the
same commitment, in order to extract via special soundness. If the main prover
made other oracle queries before the “target” one, then the extractor looks these
up in the list H and gives the rewound copy the same answers when it makes
the relevant queries.

5 G K 2

main prover game extractor rewound provers

genuine RO extractor’s RO

Fig. 3. Extending the straight-line proof of knowledge game to the rewinding case

Definition 4. A proof scheme is a rewinding proof of knowledge in the ROM if
it satisfies the conditions of Definition 3 (proof of knowledge) for an extractor
IC that has black box access to further copies of the main prover with the same
random string.

2.5 Simulation Soundness and Extractability

Simulation soundness is a property of some zero-knowledge proofs, where even
after seeing a simulated proof you cannot construct a new proof of a false state-
ment. Simulation soundness was introduced by Sahai [41] for proofs of state-
ments; unlike proofs of knowledge these do not require an extractor. Sahai used
simulation soundness to show that the Naor-Yung “double encryption” trans-
formation can be used to obtain CCA secure encryption. Naor-Yung is not an
encrypt-then-prove construction. The latter use only a single encryption but
require a proof of knowledge; their security arguments make use of the extrac-
tor.

In fact, encrypt-then-prove requires a proof scheme for which one can apply
both the zero-knowledge simulator and the proof-of-knowledge extractor in
the same security argument. The formal property that models this is called
simulation-sound extractability (SSE) [33]. Specifically, the extractor must still
work even if the simulator has been invoked, as long as one does not try to
extract from a simulated proof. Simulation soundness is often challenging to
achieve outside the random oracle model. The proof scheme of Groth and Sahai
[50] for example, even in the instantiations that are proofs of knowledge, oper-
ates with a setup parameter that can be constructed in two ways: either one can
simulate proofs or one can extract, but not both simultaneously. In the random
oracle model simulation soundness is typically easier to achieve, e.g., it comes
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almost for free with Schnorr-type proofs. However, it takes some care to for-
malise this property as the simulator works under the condition that it controls
the random oracle. Hence, the extractor must now succeed w.r.t. the simulator’s
random oracle in this case.

We model simulation-sound extractability by taking the game for proofs of
knowledge and giving the prover the extra ability to ask prove queries just like
in the zero-knowledge game. These queries are always answered by the zero-
knowledge simulator and their proof replies are banned from being handed over
to the extractor. The SSE game runs the simulator and delegates random oracle
queries to it. The result is the game G in Figure 4. The list II keeps track of
simulated proofs. If the prover returns a simulated proof (on the same statement
as it used in the related proof query), it loses the game. The state C' is required
for a bit of extra bookkeeping since the random oracle is now external to the
game. By V5™ we mean that the game G runs the verifier V and uses the
simulator’s random oracle to answer any oracle queries made by the verifier.
In other words, in the SSE game even the notion of a valid proof depends on
the simulator. Unlike the prover P which is one of the players in our game, the
simulator § is assumed to always produce valid proofs by the zero-knowledge
property. The extractor’s list query returns both the random oracle queries and
the proof queries made by the main prover so far — this allows the extractor to
make a rewound copy of the prover run in identical executions as in the main
copy. R

In addition to the main game G, we define an auxiliary game G that sits
between the extractor K and its rewound provers (there is one copy of G for
each rewound prover). The task of G is to “sanitize” prove queries made by
rewound provers. When a rewound prover makes such a query, the extractor must
play the role of the simulator — after all, the extractor is already simulating the
rewound prover’s random oracle. (The extractor may run a copy of the simulator
S internally.) However, provers make prove queries containing both a statement
x and a witness w whereas the simulator only ever gets to see z. The auxiliary
game G strips the witness from these proof queries. Otherwise, G acts as a
channel between K and a rewound copy of P. This is slightly tedious to write in
our noiation; we make the convention that G prefixes a string to every message
from P to K to indicate whether the value is meant to be a random oracle,
extraction or proof query. Messages (responses) flowing in the other direction
can always be passed on unchanged — the prover will hopefully remember what
its last query was when it gets a response.

Definition 5. A proof scheme (P, V) is simulation sound in the ROM for a rela-
tion R if it satisfies the following conditions. An s-prover is an algorithm P that
can ask random oracle and proof queries and eventually outputs an extraction
query containing a statement/proof pair.

— The proof scheme is zero-knowledge w.r.t. R for a simulator S and a proof

%f knowledge w.r.t. R for an extractor . .
— For every s-prover P, if we connect K to P through the game G of Figure

4 and give IC access to further rewound copies of the prover (with the same
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initialise: P outputs (z,7):
H— U P I ] if ~VS*°(x, 70) or (z,7) € II then
start P halt with output “k wins”
—~ Xz
P issues ro(z): send (z,7) to K
C «— “prover”; [ «— x
send x to S.ro K outputs w:
if R(X,w) then
K issues ro(z): halt with output “K wins”
C' «— “extractor” else
send x to S.ro halt with output “P wins”
S.ro returns a value y: P issues prove(z, w):
if C = “prover” then if =“R(z,w) then
H—H: (I,y) halt with output “K wins”
send y to P X' —=x
else send = to S.prove
send y to K
S.prove returns 7:
IC calls list: I —1II: (X, 7)
return (H,II) send 7 to P

Fig. 4. The game G defining SSE in the random oracle model.

random string) through the auziliary game G of Figure 5 then with over-
whelming probability the game G returns “IC wins”.

3 Adaptive Proofs of Knowledge

Given our game-centric view of proofs of knowledge we can extend the approach
to adaptive proofs of knowledge. An adaptive proof is simply a proof scheme
where the extractor can still win if the prover is given multiple turns to make
proofs. The adaptive part is that the game hands the extractor’s witness in each
turn back to the prover before the prover must take her next turn. Should a
prover be able to produce a proof for which she does not know the witness,
she could then use the extractor’s ability to find a witness to help make her
next proof. The intuition is essentially the same for the cases with and without
simulation soundness. We first introduce adaptive proofs formally without simu-
lation soundness using so-called n-proofs, where n is a parameter describing the
number of rounds the prover plays. In a later step we add simulation soundness.
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K calls P for the first time: P calls ro(x):
start P send (“ro”, x) to K
K sends a value z: P outputs (z,7):
send z to P send (“extract”, z, 7) to K

P calls prove(z, w):

send (“prove”, z) to K

Fig.5. The auxiliary game G for SSE. It acts mostly as a channel between I and
a rewound prover P except that it strips witnesses from proof queries. We use the
convention that G indicates to K whether a value is for a random oracle, extraction or
proof query by prefixing a string.

_ extract extract
and ro and ro

list

)
Q
=
)

Fig. 6. The adaptive proof game and the queries that the various algorithms can
exchange

3.1 Adaptive Proofs and n-Proofs

Let (P,V) be a proof scheme for a relation R. An adaptive prover P in the
ROM is a component that can make two kinds of queries, repeatedly and in
any order. The first are random oracle queries; these are self-explanatory. The
second are extraction queries which take a statement and a proof as parameters.
The response to an extraction query is a witness. (Correctness conditions will
be enforced by the game, not the prover.) Adaptive provers may also halt. For
example, a non-adaptive prover can be seen as an adaptive prover that halts
after its first extraction query.

An adaptive extractor K is a component that can make list and random oracle
queries and receive and process extraction queries from an adaptive prover. In
addition, an extractor may have black-box access to further rewinding copies
of the adaptive prover (with the same random string) and answer all of their
queries.

The n-proof game takes a parameter n as input and connects an adaptive
prover and extractor. It runs up to n rounds in which the prover may make a
statement and proof and the extractor must return a witness. The extractor wins
if it can deliver all n witnesses or if the prover halts earlier than this, or fails to
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make a valid proof. The extractor loses if it does not supply a valid witness to
one of the first n extraction queries.

initialise(n): P halts: halt with output “A wins”

ﬁ : g] P issues extract(zx, ):

start P if ~VRO(z, ) then
N halt with output “K wins”
P issues ro(z): X —

y < RO(z) send (z,7) to K

H«— H : (z,y)

return y to P K outputs w:

if “R(X,w) then

K issues ro(x): halt with output “P wins”

y < RO(z) K~ K+1

return y to K if K =n then

halt with output “IC wins”

K issues list : else

return H to K send w to P

Fig. 7. The game G for adaptive proofs with parameter n

Definition 6. A proof scheme is an n-proof in the ROM for a_relation R if
there exists an extractor K such_that for every adaptive prover P the game G
of Figure 7 when connected to P and K returns “KC wins” with overwhelming
probability. R

If IC also has access to further copies of P with the same random string then
we call the proof scheme a rewinding n-proof, otherwise we call it a straight line
n-proof.

If for every polynomial p(x) there is an extractor K,y making a particular
scheme a p(n)-proof, we say that the scheme is an adaptive proof.

3.2 Simulation-Sound Adaptive Proofs

Adding simulation soundness to adaptive proofs works the same way as for
non-adaptive proofs. Adaptive s-provers may make random oracle, proof and
extraction queries (the simulation sound n-proof game only limits the number
of extraction queries, not proof queries). We give the new algorithms in Figure
8. Random oracle calls from the main prover go to the simulator; simulated
proofs are logged and provided on request to the extractor (via a list query)
and are banned from extraction queries. The rewinding copies of the prover are
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connected to the extractor through the same games G as in the non-adaptive
case: extraction queries and witnesses found by the extractor are simply passed
back and forth. Only the witnesses in prove queries are stripped out.

initialise(n): P issues extract(x, 7):
H—[]; 0[] if ~VS"°(x, ) or (z,7) € II then
K —0 halt with output “K wins”
start P X~z

P issues ro(): send (z,) to K

C «— “prover”; I « x K outputs w:
send x to S.ro if “R(X,w) then
halt with output “P wins”
K issues ro(z): Ko K41
C — “extractor” if K = n then
send z to S.ro halt with output “kC wins”
else
S.ro returns a value y: send w to P
if C = “prover” then .
He« H:(Iy) P issues prove(x, w):
send y to P if =R(z,w) then
else halt with output “IC wins”
send y to K X' —z

send x to S.prove
K issues list:

return (f,1I) Sprovereturl(m |
II—1II: (X', m

 halt send 7 to P
alts:

halt with output “/K wins”

Fig. 8. Simulation sound n-proofs in the random oracle model

Consider a proof scheme (P, V) that is zero-knowledge for a relation R with
simulator §. The simulation sound n-proof experiment for this scheme, an adap-
tive s-prover P and an extractor K is the following experiment. Connect the
prover P, the simulator § and the extractor K to the game G of Figure 8. Let
IC have black box access to further copies of P mediated by G as in Figure 5
that forwards all messages in both directions except that it strips witnesses from
proof queries.

Definition 7. Let (P,V) be a proof scheme for a relation R that is zero-
knowledge with simulator S. The scheme is a simulation sound n-proof if there
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s an extractor IC such that for any adaptive s-prover 73, the simulation sound n-
proof experiment returns “IC wins” with overwhelming probability. If the extractor
works for all polynomially bounded n, we call the scheme an adaptive simulation
sound proof.

4 Overview of Our Results

In this section we briefly discuss our main results. Since the proofs of our theo-
rems are long and contain many technical /formal details that are not particularly
enlightening, we have chosen to give only an overview of our results here.

4.1 Adaptive Proofs Exist

First, we establish that simulation-sound adaptive proofs in the random ora-
cle model exist. An existing construction due to Fischlin [26] is adaptively
secure. Fischlin gives a transformation of Sigma protocols to non-interactive
proof schemes as an alternative to the more common Fiat-Shamir transforma-
tion.

The following theorem shows that Fischlin proofs are adaptively secure.

Theorem 1. A Fischlin-transformed Sigma protocol with special soundness is
a simulation-sound adaptive proof in the random oracle model.

4.2 Encrypt-Then-Prove

Our main positive result is that the encrypt-then-prove transformation does what
it is intuitively supposed to do — boost IND-CPA to CCA — if the proof scheme
is a simulation-sound adaptive proof. To define the transformation we first clarify
a point about NP languages. In the introduction, we said that encrypt-then-
prove uses a proof of the “randomness and message” used to encrypt. This is
not precise enough for a formal definition. This informal statement would give us
a proof over a relation Ry : {(c, (m,r)) | ¢ = Encrypt(pk, m;r)} where statements
are ciphertexts and witnesses are message/randomness pairs. However, Signed
ElGamal (which we will define soon) uses a Schnorr proof which is a proof
of knowledge of a discrete logarithm, namely the randomness in an ElGamal
ciphertext. This would suggest a relation Ry : {(¢,7) | ¢ = Encrypt(pk, m;r)}.
Of course, the point of the proof is that the message can be computed from
a ciphertext and its randomness, but that is not the same thing as the formal
definition of the proof’s NP relation. In addition, since the NP relation and
proof depends on the public key as an extra parameter, when we define the
transformation formally we are actually working with a parametrised family of
relations. Further, the encrypt-then-prove transformation still works if one adds
extra features to the proof. For example, the Helios voting scheme for example
uses encrypt-then-prove ciphertexts that additionally prove that the encrypted
message is a valid vote.
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We address all these problems with an abstract definition of compatibility
between encryption and proof schemes; any schemes that meet this definition
can be used in the encrypt-then-prove transformation. Our definition also means
that we will not have a concrete NP relation to work with in our main theorem.
Instead, compatibility says that the NP relation can be anything that supports
the two features we need: from a witness you can compute a message and from
the list of all inputs used to form a ciphertext, you can derive a witness.

Definition 8. An encryption scheme & = (KeyGen, Encrypt, Decrypt) and a
proof scheme P = (P, V) for relation R are compatible if there are efficient
algorithms M and W such that:

1. For any tuple (pk,c,w) of public key, ciphertext and witness such that R((pk,
¢),w) holds, the value m = M(pk,c,w) is the message such that c is an
encryption of m under public key pk.

2. For any tuple (pk,c,m,r) of public key, ciphertext, message and random
string, the value w = W(pk,c,m,r) is a witness for which R((pk,c),w)
holds.

Definition 9. Let & and P be compatible encryption and proof schemes (for a
relation R and algorithms M, W. The encrypt-then-prove transformation of &
and P is the encryption scheme in Figure 9 where RS is the space of random
strings for €.Encrypt.

KeyGen(): Encrypt(pk, m): Decrypt(sk, ¢):
(pk, sk) < €.KeyGen() r<sRS parse c as (e, m)
return (pk, sk) c <~ if PY((pk,e),m) = 0
&.Encrypt(pk, m;r) then
w < W(pk,c,m,r) return L
™ < P.P((pk, c), w) m < €.Decrypt(sk, e)
return (c, ) return m

Fig. 9. The encrypt-then-prove transformation of compatible € and ‘B. RS is the space
of random strings used by the original encryption algorithm.

Signed ElGamal. As an example, we present the Signed ElGamal scheme.
Signed ElGamal is ElGamal encryption with a Fiat-Shamir-Schnorr proof. It
operates over a cyclic group G of prime order ¢ with a generator G. To generate
keys, pick a random sk «s F, and set your public key to pk < G*¥. To encrypt
a message m € G, pick a random r «s[F; and create an ElGamal ciphertext
e «— (G",pk™ - m). Then pick another random value a «sF, and create the
Schnorr commitment A « G®, challenge ¢ «— H(pk,e, A) and response s «—
a+ c-r (mod q). The ciphertext is (e, A, s). To decrypt a ciphertext (e, A, s)
with secret key sk, parse e as a pair (u, v) and check that G* = A+H(pk, e, A)-u
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(mod ¢). If this fails, the ciphertext is invalid. If it succeeds, the decryption is
m «— v/u**. The relation R for Signed ElGamal is R((pk, (u,v)),r) 1 u = G".
Here (u,v) is an ElGamal ciphertext and (pk, (u,v)) is a statement consisting
of a public key/ciphertext pair. The maps to make the encryption scheme and
proof compatible are M(pk, (u, v), w) := v/pk® and W(pk, (u,v),m,r) :=r.

4.3 Simulation-Sound Adaptive Proofs Yield CCA
Our main positive result expresses the intuition behind encrypt-then-prove.

Theorem 2. Let & be an IND-CPA secure encryption scheme and let 5B be a
compatible simulation-sound adaptive proof scheme in the random oracle model.
Then the encrypt-then-prove transformation of these schemes is a CCA secure
encryption scheme in the random oracle model.

As a corollary we immediately obtain a new CCA secure encryption scheme.

Corollary 1. The encrypt-then-prove transformation of ElGamal using Fischlin-
Schnorr proofs is CCA secure.

The final step of the proof follows the basic intuition behind all encrypt-
then-prove constructions. We reduce CCA security to IND-CPA security. Our
reduction sends the two challenge messages to the IND-CPA game for the basic
scheme, gets a ciphertext back and simulates a proof on it to create the chal-
lenge ciphertext of the encrypt-then-prove construction. When the CCA attacker
makes a decryption query with an encrypt-then-prove ciphertext, the reduction
invokes the extractor using the IND-CPA ciphertext component as the state-
ment and the proof component as the proof. The witness contains the encrypted
message which the reduction returns to the attacker. Since we are simulating and
extracting in the same reduction, we require simulation sound extractability.

Unfortunately, this idea does not explain how the reduction is supposed to
deal with the extractor requesting a further copy of the attacker. Worse still, the
“prover” that we are simulating towards the extractor is a combination of the
attacker and the IND-CPA challenger. We definitely cannot clone or rewind our
challenger. To our knowledge, our proof is the first proof of a CCA construction
that involves rewinding.

After an intial step in which we simulate all proofs on challenge ciphertexts,
most of the proof is an argument how and why a single reduction can provide the
extractor with a consistent simulation of multiple copies of the same algorithm.
We call this technique coin splitting. It works on two principles. (1.) Keep track
of which copies are “clones” of other copies. If a copy C is getting the exact
same queries that another copy D has already answered, let C simply replay D’s
answers. (2.) Make sure that all cases not handled by the last point involve fresh,
independent randomness. Then the reduction can simply draw fresh random
values from one source to simulate all copies.

Coin splitting lets us use our one IND-CPA challenge for the extractor’s
main prover and simulate our own challenges for the rewinding provers. To the
extractor, all this will look just like fresh randomness each time.
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4.4 Fiat-Shamir-Schnorr Is Not Adaptively Secure

Our third result is negative. It separates proofs of knowledge from adaptive
proofs and shows that Fiat-Shamir Schnorr is an example that separates the
two notions.

Theorem 3. The Fiat-Shamir-Schnorr (FSS) proof scheme is not adaptively
secure under the one-more discrete logarithm assumption. Specifically, for any n
there is a prover P who makes a sequence of n F'SS proofs. For any extractor K
who can win the adaptive proof experiment against P, either KC calls at least 2"
rewinding copies of P or there is a reduction that solves the one-more discrete
logarithm problem in the underlying group with a comparable success rate to K.

The prover in question follows the same ideas as Shoup and Gennaro’s CCA
attacker [47]. While the cited work gave the attacker as an example why the
“obvious” proof fails, it did not show any inherent limitation of the Fiat-Shamir
technique; it did not show that this limitation cannot be overcome by using a
different proof technique. Our paper is the first to give a proof that Fiat-Shamir
transformed sigma protocols have an unavoidable limitation.
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