Skip to main content

One-Term Groups and Ordinary Differential Equations

  • Chapter
  • First Online:
Theory of Transformation Groups I
  • 1210 Accesses

Abstract

The flow \(x' = \exp ( tX) ( x)\) of a single, arbitrary vector field \(X = \sum _{ i = 1}^n\, \xi _i ( x) \, \frac{ \partial }{ \partial x_i}\) with analytic coefficients \(\xi _i ( x)\) always generates a one-term (local) continuous transformation group satisfying:

$$ \exp \big (t_1X\big ) \Big ( \exp \big (t_2X\big )(x) \Big ) = \exp \big ((t_1+t_2)X\big )(x), $$

and:

$$ \left[ \exp (tX)(\cdot ) \right] ^{-1} = \exp (-tX)(\cdot ). $$

In a neighborhood of any point at which \(X\) does not vanish, an appropriate local diffeomorphism \(x \mapsto y\) may straighten \(X\) to just \(\frac{ \partial }{ \partial y_1}\), hence its flow becomes \(y_1' = y_1 + t\), \(y_2 ' = y_2, \dots , y_n' = y_n\). In fact, in the analytic category (only), computing a general flow \(\exp ( tX) ( x)\) amounts to adding the differentiated terms appearing in the formal expansion of Lie’s exponential series:

$$ \exp (tX)(x_i) = \sum _{k\geqslant 0}\, \frac{(tX)^k}{k!}(x_i) = x_i + t\,X(x_i) +\cdots + \frac{t^k}{k!}\, \underbrace{X\big (\cdots \big ( X\big (X}_{k\,\,\text {times}}(x_i)\big )\big )\cdots \big ) +\cdots , $$

that have been studied extensively by Gröbner in [3]. The famous Lie bracket is introduced by looking at the way a vector field \(X = \sum _{ i = 1}^n \, \xi _i ( x) \frac{ \partial }{ \partial x_i}\) is perturbed, to first order, while introducing the new coordinates \(x' = \exp ( tY) ( x) =: \varphi ( x)\) provided by the flow of another vector field \(Y\):

$$ \varphi _*(X) = X' + t\,\left[ X',\,Y'\right] +\cdots , $$

with \(X ' = \sum _{ i=1}^n \, \xi _i ( x') \, \frac{ \partial }{\partial x_i'}\) and \(Y' = \sum _{ i = 1}^n \, \eta _i ( x') \, \frac{ \partial }{ \partial x_i'}\) denoting the two vector fields in the target space \(x'\) having the same coefficients as \(X\) and \(Y\). Here, the analytical expression of the Lie bracket is:

$$ \left[ X',\,Y'\right] = \sum _{i=1}^n\, \bigg ( \sum _{l=1}^n\, \xi _l(x')\,\frac{\partial \eta _i}{\partial x_l'}(x') - \eta _l(x')\,\frac{\partial \xi _i}{\partial x_l'}(x') \bigg )\, \frac{\partial }{\partial x_i'}. $$

An \(r\)-term group \(x' = f ( x; \, a)\) satisfying his fundamental differential equations \(\frac{ \partial x_i'}{ \partial a_k} = \sum _{ j = 1}^r \, \psi _{ kj} ( a) \, \xi _{ ji} ( x')\) can, alternatively, be viewed as being generated by its infinitesimal transformations \(X_k = \sum _{ i = 1}^n \, \xi _{ ki} ( x) \, \frac{ \partial }{\partial x_i}\) in the sense that the totality of the transformations \(x' = f ( x; \, a)\) is identical with the totality of all transformations:

$$\begin{aligned} x_i'&= \exp \big ( \lambda _1\,X_1 +\cdots + \lambda _r\,X_r\big )(x_i) \\&= x_i + \sum _{k=1}^r\,\lambda _k\,\xi _{ki}(x) + \sum _{k,\,j}^{1\dots r}\, \frac{\lambda _k\,\lambda _j}{1\cdot 2}\, X_k(\xi _{ji}) + \cdots \ \ \ \ \ \ \ \ \ \ \ \ \ {\scriptstyle {(i\,=\,1\,\cdots \,n)}} \end{aligned}$$

obtained as the time-one map of the one-term group \(\exp \big ( t \sum \, \lambda _i X_i \big ) ( x)\) generated by the general linear combination of the infinitesimal transformations. A beautiful idea of analyzing the (diagonal) action \({x^{( \mu )}}' = f \big ( x^{ ( \mu )}; \, a\big )\) induced on \(r\)-tuples of points \(\big ( x^{(1)}, \dots , x^{ ( r)} \big )\) in general position enables Lie to show that for every collection of \(r\) linearly independent vector fields \(X_k = \sum _{ i = 1}^n\, \xi _{ ki} ( x) \, \frac{ \partial }{ \partial x_i}\), the parameters \(\lambda _1, \dots , \lambda _r\) in the finite transformation equations \(x' = \exp \big ( \lambda _1 \, X_1 + \cdots + \lambda _r \, X_r \big ) ( x)\) are all essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnol’d, V.I.: Ordinary differential equations. Translated from the Russian and edited by R.A. Silverman, MIT Press, Cambridge, Mass.-London (1978).

    Google Scholar 

  2. Engel, F., Lie, S.: Theorie der Transformationsgruppen. Erster Abschnitt. Unter Mitwirkung von Prof. Dr. Friedrich Engel, bearbeitet von Sophus Lie, Verlag und Druck von B.G. Teubner, Leipzig und Berlin, xii+638 pp. (1888). Reprinted by Chelsea Publishing Co., New York, N.Y. (1970)

    Google Scholar 

  3. Gröbner, W.: Die Lie-Reihen und ihre Anwendungen. Math. Monog. Veb Deutschen Verlag der Wissenschaften (1960).

    Google Scholar 

  4. Rao, M.R.M.: Ordinary differential equations, theory and applications. Edward Arnold, London (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lie, S. (2015). One-Term Groups and Ordinary Differential Equations. In: Merker, J. (eds) Theory of Transformation Groups I. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46211-9_4

Download citation

Publish with us

Policies and ethics