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Abstract. So far, low probability differentials for the key schedule of
block ciphers have been used as a straightforward proof of security against
related-key differential analysis. To achieve resistance, it is believed that
for cipher with k-bit key it suffices the upper bound on the probabil-
ity to be 2−k. Surprisingly, we show that this reasonable assumption is
incorrect, and the probability should be (much) lower than 2−k. Our
counter example is a related-key differential analysis of the well estab-
lished block cipher CLEFIA-128. We show that although the key sched-
ule of CLEFIA-128 prevents differentials with a probability higher than
2−128, the linear part of the key schedule that produces the round keys,
and the Feistel structure of the cipher, allow to exploit particularly cho-
sen differentials with a probability as low as 2−128. CLEFIA-128 has 214

such differentials, which translate to 214 pairs of weak keys. The prob-
ability of each differential is too low, but the weak keys have a special
structure which allows with a divide-and-conquer approach to gain an
advantage of 27 over generic analysis. We exploit the advantage and give
a membership test for the weak-key class and provide analysis of the
hashing modes. The proposed analysis has been tested with computer
experiments on small-scale variants of CLEFIA-128. Our results do not
threaten the practical use of CLEFIA.

Keywords: CLEFIA, cryptanalysis, weak keys, CRYPTREC, differen-
tials.

1 Introduction

CLEFIA [13] is a block cipher designed by Sony. It is advertised as a fast en-
cryption algorithm in both software and hardware and it is claimed to be highly
secure. The efficiency comes from the generalized Feistel structure and the byte
orientation of the algorithm. The security is based on the novel technique called
Diffusion Switching Mechanism, which increases resistance against linear and dif-
ferential attacks, in both single and related-key models. These and several other
attractive features of CLEFIA-128 have been widely recognized, and the cipher
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has been submitted for standardization (and already standardized) by several
bodies: CLEFIA was submitted to IETF (Internet Engineering Task Force) [1],
it is on the Candidate Recommended Ciphers List1 of CRYPTREC (Japanese
government standardization body), and it is one of the only two2 lightweight
block ciphers recommended by the ISO/IEC standard [8].

A significant body of analysis papers has been published on the round-reduced
versions of CLEFIA [18,19,14,17,15,10,16,9,6], all for the single-key model, but
the analysis based on related keys is missing. Often this type of analysis can
cover a higher number of rounds but requires the cipher to have a relatively sim-
ple and almost linear key schedule. CLEFIA, however, has a highly non-linear
key schedule, equivalent roughly to 2/3 of the state transformation and designed
with an intention to make the cipher resistant against analysis based on related-
key differentials. Using a widely accepted approach, the designers have proved
that no such analysis could exist as the key schedule has only low probability
(≤ 2−128 for CLEFIA with 128-bit keys) differential characteristics. Note, we
will not try to exploit the fact that some characteristics can be grouped into a
differential that has a much higher probability than the individual characteris-
tics. Our results go a step further and we show that key schedule differentials
with a probability as low as 2−128, can still be used in analysis. This happens
when they have a special structure, namely, the input/output differences of the
differentials are not completely random, but belong to a set that, as in the case
of CLEFIA-128, is described with a linear relation.

We exploit the special form of the key schedule: a large number of non-linear
transformations at the beginning of the key schedule is followed by light linear
transformations that are used to produce the round keys. In the submission paper
of CLEFIA-128, the proof of related-key security is based only on the non-linear
part as this part guarantees that the probability of any output difference is 2−128.
In contrast, our analysis exploits the linear part and we show that there are 214

of the above low probability differences which, when supplied to the linear part,
produce a special type of iterative round key differences. CLEFIA-128 is a Feistel
cipher and, as shown in [5], iterative round key differences lead to an iterative
differential characteristic in the state that holds with probability 1. Therefore
we obtain related-key differentials with probability 1 in the state and 2−128 in
the key schedule. The low probability (2−128) of each of the 214 iterative round
key differences means that for each of them there is only one pair of keys that
produces such differences, or in total 214 pairs for all of them – these pairs form
the weak-key class of the cipher. When we target each pair independently, we
cannot exploit the differentials. However, the whole set of 214 pairs has a special
structure and we can target independently two smaller sets of sizes 27 and thus
obtain the advantage of 27 over generic analysis. As we will see in the paper,
the special structure of the weak key class is due to the linear part of the key
schedule, therefore we exploit the weakness of this part twice (the first time for
producing iterative round key differences).

1 This is the final stage of evaluation, before becoming CRYPTREC standard.
2 The second one is PRESENT [7].
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We further analyze the impact of the 214 pairs of keys and the advantage of 27

that we gain over generic analysis. First we show that CLEFIA-128 instantiated
with any pair of weak keys can be analyzed, namely we present a membership test
for the weak class. Next, for the hashing mode of CLEFIA-128, i.e. when the cipher
is used in single-block-length hash constructions, we show that differential multi-
collisions [4] can be produced with a complexity lower than for an ideal cipher.

The paper is organized as follows. We start with a description of
CLEFIA-128 given in Section 2. We present the main results related to the anal-
ysis of the key schedule and the production of the class of 214 pairs of weak-keys
in Section 3. The differential membership test is given in Section 4. We present
the analysis of the hashing mode of the cipher in Section 5 and in Section 6 we
conclude the paper.

2 Description of CLEFIA-128

CLEFIA is a 128-bit cipher that supports 128, 192, and 256-bit keys. We analyze
CLEFIA with 128-bit keys that is referred as CLEFIA-128. Before we define the
cipher, we would like to make an important note. To simplify the presentation,
we consider CLEFIA-128 without whitening keys 3. Our analysis applies to the
original CLEFIA-128 as shown in Appendix B. We proceed now with a brief
description of CLEFIA-128. It is an 18-round four-branch Feistel (see Fig. 3 of
Appendix A) that updates two words per round. A definition of the state update
function is irrelevant to our analysis (see [13] for a full description) and further
we focus on the key schedule only.

A 128-bit master key K is input to a 12-round Feistel GFN4,12(with the same
round function as the one in the state, refer to Fig. 3 of Appendix A) resulting
in a 128-bit intermediate key L. All the 36 round keys4 RKi, i = 0, . . . , 35 are
produced by applying a linear transformation to the master key K and the
intermediate key L as shown below (⊕ stands for the XOR operation and || is
concatenation):

RK0||RK1||RK2||RK3 ← L ⊕S1,

RK4||RK5||RK6||RK7 ← Σ(L)⊕K ⊕S2,

RK8||RK9||RK10||RK11 ← Σ2(L) ⊕S3,

RK12||RK13||RK14||RK15 ← Σ3(L)⊕K ⊕S4,

RK16||RK17||RK18||RK19 ← Σ4(L) ⊕S5,

RK20||RK21||RK22||RK23 ← Σ5(L)⊕K ⊕S6,

RK24||RK25||RK26||RK27 ← Σ6(L) ⊕S7,

RK28||RK29||RK30||RK31 ← Σ7(L)⊕K ⊕S8,

RK32||RK33||RK34||RK35 ← Σ8(L) ⊕S9,

3 There are four whitening keys: two are added to the plaintext, and two to the
ciphertext.

4 Two round keys are used in every round, thus there are 2 · 18 = 36 keys in total.
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where Si are predefined 128-bit constants, and Σ is a linear function defined fur-
ther. In short, each four consecutive round keys RK4i, RK4i+1, RK4i+2, RK4i+3

are obtained by XOR of multiple applications of Σ to L, possibly the master key
K, and the constant Si. The resulting 128-bit sequence is divided into four 32-bit
words and each is assigned to one of the round key words. The linear function
Σ (illustrated in Fig. 1) is a simple 128-bit permutation used for diffusion. The
function Σ : {0, 1}128 → {0, 1}128 is defined as follows:

X128 → Y128

Y = X [120− 64]X [6− 0]X [127− 121]X [63− 7],

where X [a− b] is a bit sequence from the a-th bit to the b-th bit of X .

Fig. 1. The function Σ. The numbers denote the size of the bit sequence.

We would like to make a note about the notations of XOR differences used
throughout the paper. To emphasize that a difference is in the word X , we use
ΔX , otherwise, if it irrelevant or clear from the context we use simply Δ.

3 Weak Keys for CLEFIA-128

In the related-key model, the security of a cipher is analyzed by comparing two
encryption functions obtained by two unknown but related keys. Given a specific
relation5 between keys, if the pair of encryption functions differs from a pair of
random permutations, then the cipher has a weakness and can be subject to
related-key analysis. Sometimes the analysis is applicable only when the pairs
of related keys belong a relatively small subset of all possible pairs of keys. The
subset is called the weak-key class of the cipher and the number of pairs of keys
is the size of the class.

We will show that a weak-key class in CLEFIA-128 consists of pairs of keys
(K, K̃ = K ⊕ L1(D)), where D can take approximately 214 different 128-bit
values, such that for any plaintext P , the following relation holds:

EK(P )⊕ EK̃(P ⊕ L2(D)) = L3(D), (1)

5 Some relations are prohibited as they lead to trivial attacks, see [3] for details.
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where L1,L2,L3 are linear functions defined below. The property can be seen as
a related-key differential, with the difference L1(D) for the master key, L2(D)
for the plaintext and L3(D) for the ciphertext. From Equation (1), it follows
that once D is defined, the probability of the differential is precisely one.

In the state of CLEFIA-128, the probability of a differential characteristic is
one if in each Feistel round, there is no incoming difference to the non-linear
round function. This happens when the differences in the state and in the round
key cancel each other. Consequently, the input difference to the round function
becomes zero6. An illustration of the technique for four rounds of CLEFIA-128
is given in Fig. 2. Notice that the input state difference at the beginning of the
first round (Δ1, Δ2, Δ3, Δ4) is the same as the output difference after the fourth
round, i.e. it is iterative with the period of 4 rounds. Therefore, we will obtain
a differential characteristic with probability 1 (in the state) for the full-round
CLEFIA-128 if we can produce 4-round iterative round key differences.

Fig. 2. Iterative related-key differential characteristic for 4 rounds of the CLEFIA-128

that is true with probability 1. The symbols Δ1,Δ2,Δ3,Δ4 denote word differences.

Each round of the state uses two round keys, thus the above 4-round
iterative characteristic requires the round key differences to have a period
of 8, i.e. ΔRKi = ΔRKi+8. Moreover, an additional condition has to

6 A similar idea is given in [5].
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hold. Note that in Fig. 2, the differences in the consecutive round keys are
(Δ1, Δ3, Δ2, Δ4, Δ3, Δ1, Δ4, Δ2), that is among the 8 round key differences, the
first four are different, while the remaining four are only permutations of the
first. These two conditions can be summarized as follows:

Condition 1 - For all i, it should hold ΔRKi = ΔRKi+8.
Condition 2 - For all i divisible by 8, it should hold ΔRKi = ΔRKi+5,

ΔRKi+1 = ΔRKi+4, ΔRKi+2 = ΔRKi+7, ΔRKi+3 = ΔRKi+6. This can
be rewritten as (ΔRKi+4, ΔRKi+5, ΔRKi+6, ΔRKi+7)=π(ΔRKi, ΔRKi+1

, ΔRKi+2, ΔRKi+3), where π is 4-word permutation (0, 1, 2, 3) → (1, 0, 3, 2).

Further we show how to find the set of differences for which the two conditions
hold.

Condition 1. From the definition of the key schedule

RK8i+0||RK8i+1||RK8i+2||RK8i+3 ← Σ2i(L) ⊕ S2i+1

RK8i+8||RK8i+9||RK8i+10||RK8i+11 ← Σ2i+2(L) ⊕ S2i+3,

it follows that Condition 1 for the first 4 (out of 8) round key differences in an
octet of round keys can be expressed as

ΔL = Σ2(ΔL). (2)

We will obtain the same equation if we consider the remaining 4 round key dif-
ferences. To satisfy Condition 1, we have to find possible values for ΔL such that
Equation (2) holds. This can be achieved easily as (2) is a system of 128 linear
equations with 128 unknowns (refer to the definition of Σ), and has solutions of
the form (expressed as concatenation of bit sequences):

ΔL = a1a2tb2b1b2b1b2b1b2a2a1a2a1a2a1a2tb1b2, (3)

where a1, a2 are any 7-bit values, t is the most significant bit of a1 and the 7-bit
values b1, b2 are defined as tb2b1 = a1a2t. Thus there are 27 · 27 = 214 solutions.

Condition 2. From the definition of the key schedule

RK8i+0||RK8i+1||RK8i+2||RK8i+3 ← Σ2i(L) ⊕ S2i+1,

RK8i+4||RK8i+5||RK8i+6||RK8i+7 ← Σ2i+1(L)⊕K ⊕ S2i+2,

we see that Condition 2 can be expressed as

π(ΔL) = Σ(ΔL)⊕ΔK,

where π is 4-word permutation (0, 1, 2, 3) → (1, 0, 3, 2). Thus when ΔL is fixed
(to one of the values from (3)), the difference in the master key ΔK can be
determined as

ΔK = π(ΔL)⊕Σ(ΔL). (4)
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Summary. We have shown above that Conditions 1 and 2 can be achieved
simultaneously as there are 214 values for ΔLi (see Equation (3)) with corre-
sponding values of ΔKi (see Equation (4)). It means that given the difference
in the master key ΔKi and the difference of the intermediate key ΔLi (i.e. the
differential in the 12-round Feistel GFN4,12 of the key schedule is ΔKi → ΔLi),
the differences in the round keys are going to be of the requested form as shown
below:

ΔRK0||ΔRK1||ΔRK2||ΔRK3 = Δ1||Δ3||Δ2||Δ4,

ΔRK4||ΔRK5||ΔRK6||ΔRK7 = Δ3||Δ1||Δ4||Δ2,

. . .

ΔRK28||ΔRK29||ΔRK30||ΔRK31 = Δ3||Δ1||Δ4||Δ2,

ΔRK32||ΔRK33||ΔRK34||ΔRK35 = Δ1||Δ3||Δ2||Δ4,

where Δ1||Δ3||Δ2||Δ4 = ΔLi. As a result, we have obtained the necessary dif-
ferences in the round keys and we can use the 4-round iterative characteristic
from Fig. 2.

Now we can easily specify the description of the weak-key class given by
Equation (1). The value of D coincides with the values of ΔL from Equation (3).
Therefore the first linear function L1 is defined as L1(D) = π(D) ⊕ Σ(D). The
input difference in the plaintext is the same as the input difference in the first four
round keys (which is again ΔL), but the order of the words is slightly different –
instead of (Δ1, Δ3, Δ2, Δ4) it is (Δ1, Δ2, Δ3, Δ4), see Fig. 2. Hence, we introduce
the 4-word permutation π2 : (0, 1, 2, 3) → (0, 2, 1, 3) that corrects the order. With
this notation, the second linear function L2 is defined as L2(D) = π2(D). Finally,
L3 is defined similarly. CLEFIA-128 has 18 rounds, thus the last 4-round iterative
characteristic (for the rounds 17,18) will be terminated after the second round,
with an output difference (Δ2, Δ3, Δ4, Δ1). It differs from ΔL only in the order
of the four words, hence we introduce π3 : (0, 1, 2, 3) → (3, 1, 0, 2) and conclude
that L3(D) = π3(D).

In the weak-key class the pairs of keys are defined as (K,K ⊕ π(D)⊕Σ(D))
and for any plaintext P , it holds

EK(P )⊕ EK⊕π(D)⊕Σ(D)(P ⊕ π2(D)) = π3(D). (5)

A pair of keys belongs to this class if for any of the 214 values D = ΔL de-
fined by Equation (3), the 12-round Feistel GFN4,12 in the key schedule, on
input difference ΔK = π(ΔL) ⊕ Σ(ΔL) gives the output difference ΔL, i.e.
GFN4,12(K ⊕ π(ΔL) ⊕ Σ(ΔL)) ⊕GFN4,12(K) = ΔL. Therefore not all of the
keys K have a related key and form a pair in the weak-key class, but only those
for which the differential in the Feistel permutation holds.

We deal with a 12-round Feistel permutation and thus the probability of the
differential π(ΔL) ⊕ Σ(ΔL) → ΔL is low. We assume it is 2−128 (as proven
by the designers), which is the probability of getting fixed output difference
from a fixed input difference in a random permutation. However, even when we
model the Feistel permutation by a random one, there still exist 214 key schedule
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differentials that have a probability of 2−128 and that result in iterative round
key differences.

In CLEFIA-128, there are 2128 possible keys K, and therefore for a specific
value of D, the number of related keys (K,K ⊕ π(D)⊕Σ(D)) is the same. The
probability of the differential in the Feistel permutation is 2−128, thus among all
of the pairs, only one will pass the differential. However, there are 214 possible
values for D, hence the size of the weak-key class is 214.

4 Membership Test for the Weak-Key Class

An analysis technique that succeeds when the related keys belong to the weak-
key class is called a membership test. For the weak-key class of CLEFIA-128,
the membership test will be a differential distinguisher that succeeds always and
whose data, time and memory complexities are equal to 28. That is to say that
we can decide with probability 1 whether the underlying cipher is CLEFIA-128

with weak keys or other (possibly ideal) cipher.
Given a pair of weak keys (K,K ⊕ π(D) ⊕ Σ(D)), it is easy to distinguish

CLEFIA-128 (see Equation (5)) with only a single pair of related plaintexts
(P, P ⊕ π2(D)) but D has to be known. If it is unknown, we will have to try all
214 possible values of D (as D coincides with one of ΔLi). Consequently, we are
going to end up with a brute force attack on the space of weak keys. To address
this problem, we have to be able to detect the correct value of ΔL efficiently.

Finding the correct ΔLi can be performed much faster if we take into account
the additional properties of the difference in the intermediate key. All 214 values
of ΔLi (see Equation (3)) can be defined as XOR of two elements from two
different sets each of cardinality 27 as shown below

ΔLi = ΔLi(a1, a2) =a1a2tb2b1b2b1b2b1b2a2a1a2a1a2a1a2tb1b2 =

=G1(a1)⊕G2(a2),

a1 = 0, . . . , 27 − 1, a2 = 0, . . . , 27 − 1,

where G1(a1) is a 128-bit word that is the same as ΔL on the bits that depend
on a1 and has 0’s for the bits that depend on a2 while G2(a2) is the opposite,
i.e. coincides with ΔL on bits for a2 and has 0’s for bits that depend on a1

7.
Using the representation helps to detect the correct ΔL by finding collisions

on two specific sets. Assume the pair (K, K̃ = K ⊕ π(ΔL)⊕Σ(ΔL)) belongs to
the weak-key class. For a randomly chosen plaintext P , let us define two pools,
each with 27 chosen plaintexts:

P 1
i = π2(P ⊕G1(ai1)), a

i
1 = 0, 1, . . . , 27 − 1,

P 2
i = π2(P ⊕G2(ai2)), a

i
2 = 0, 1, . . . , 27 − 1.

7 Recall that each bit of b1, b2, t is equal to a single bit of either a1 or a2.
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Next, we obtain two pools of ciphertexts with (K, K̃) as encryption keys, i.e.
C1

i = EK(P 1
i ), C

2
i = EK̃(P 2

i ). Finally, we compute two sets V 1, V 2:

V 1 = {V 1
i |V 1

i = π−1
2 (P 1

i )⊕ π−1
3 (C1

i )},
V 2 = {V 2

i |V 2
i = π−1

2 (P 2
i )⊕ π−1

3 (C2
i )}.

The crucial observation is that the sets V 1 and V 2 will always collide, i.e. there
exist V 1

i and V 2
j such that V 1

i = V 2
j . This comes from the following sequence:

V 1
i ⊕ V 2

j =

= π−1
2 (P 1

i )⊕ π−1
3 (C1

i )⊕ π−1
2 (P 2

j )⊕ π−1
3 (C2

j ) =

= π−1
2 (P 1

i ⊕ P 2
j )⊕ π−1

3 (EK(P 1
i )⊕ EK̃(P 2

j )) =

= π−1
2 (π2(G

1(ai1)⊕G2(aj2)))⊕
⊕ π−1

3 (EK(P 1
i )⊕ EK̃(P 1

i ⊕ π2(G
1(ai1)⊕G2(aj2)))) =

= ΔL′ ⊕ π−1
3 (EK(P 1

i )⊕ EK̃(P 1
i ⊕ π2(ΔL′))),

where ΔL′ = G1(ai1)⊕G2(ai2). Note that ΔL′ can take all possible 214 values (as
ai1, a

j
2 take all 27 values), and therefore for some particular i, j, it must coincide

with ΔL. In such case, the difference in the plaintext is π2(ΔL), and thus for
the ciphertext we obtain

EK(P 1
i )⊕ EK̃(P 1

i ⊕ π2(ΔL)) = π3(ΔL)

Then V 1
i ⊕ V 2

j = ΔL⊕ π−1
3 (π3(ΔL)) = 0.

The possibility to create the sets independently and then to find a collision
between them is the main idea of the membership test on CLEFIA-128. It works
according to the following steps.

1. Choose at random a plaintext P .
2. Create a pool of 27 plaintexts P 1

i = π2(P ⊕ G1(ai1)) and ask for the cor-
responding ciphertext C1

i obtained with encryption under the first key, i.e.
C1

i = EK(P 1
i ). Compute the set V 1 composed of elements V 1

i = π−1
2 (P 1

i )⊕
π−1
3 (C1

i ).
3. Create a pool of 27 plaintexts P 2

i = π2(P ⊕ G2(ai2)) and ask for the corre-
sponding ciphertext C2

i obtained with encryption under the second key, i.e.
C2

i = EK̃(P 2
i ). Compute the set V 2 composed of elements V 2

i = π−1
2 (P 2

i )⊕
π−1
3 (C2

i ).
4. Check for collisions between V 1 and V 2. If such a collision exists, then output

that the examined cipher is CLEFIA-128. Otherwise, it is an ideal cipher.

The total data complexity of the membership test is 27 + 27 = 28 plaintexts.
The time complexity of each of the steps 2,3 is 27 encryptions, while the collision
at step 4 can be found with 27 operations and 27 memory that is used to store
one of the sets V 1 or V 2. Therefore, given a pair of keys from the weak-key class,
we can distinguish CLEFIA-128 in 28 data, time and memory.
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To confirm the correctness of the membership test, we implemented it for a
small-scale variant of CLEFIA-128. Each word was shrunk to 8-bit value, thus
the whole state became 32 bits. The Sbox from AES was taken as the round
function F , and random 8-bit values were chosen as constants. The chunks in
the linear function Σ were taken of size 5, 11 (compared to the 7, 57 in the
original version). The expected size of the weak-key class in this toy version
is 210 (because X = Σ2(X) has 210 solutions), while in practice we obtained
960 = 29.9 solutions. For a random key pair chosen from this class, we were able
to distinguish the cipher after 26 encryptions which confirms our findings to a
large extent.

5 Analysis of the Hashing Modes of CLEFIA-128

In this section we analyze the impact of the weak-key class on hashing modes
of CLEFIA-128. We show that compression functions built upon single-block-
length modes instantiated with CLEFIA-128 exhibit non-random properties that
come in a form of differential multicollisions. The analysis of hashing modes of
a cipher is usually reduced to finding open-key distinguishers for the cipher.
Note, open-key distinguishers come in a form of known-key (the adversary has
the knowledge of the key, but cannot control it) and chosen-key (the adversary
can choose the value of the key). Our analysis applies to the second case, i.e. we
show non-randomness of the hashing modes of CLEFIA-128 when the adversary
can control the key.

First, let us find a pair of keys (K1,K2) that belong to the weak-key class –
we stress that the task is to find the pair explicitly, i.e. to produce the two values
that compose a weak-key pair. From the previous analysis we have seen that a
pair is a weak-key pair if for one of the 214 values of ΔL defined previously:
1) the difference ΔK = K1 ⊕ K2 satisfies ΔK = π(ΔL) ⊕ Σ(ΔL), and 2) the
12-round Feistel in the key schedule GFN4,12 produces output difference ΔL,
i.e. GFN4,12(K1)⊕GFN4,12(K2) = ΔL. The two conditions can be generalized
as search for a pair that satisfies the differential π(ΔL)⊕Σ(ΔL) → ΔL through
the 12-round Feistel in the key schedule.

Recall that the difference ΔL is an XOR of two elements (defined as G1(a1)
and G2(a2)) from sets of size 27, i.e. ΔL = G1(a1) ⊕ G2(a2). Therefore we get
that:

ΔK = π(ΔL)⊕Σ(ΔL) = π(G1(a1)⊕G2(a2)) ⊕Σ(G1(a1)⊕G2(a2)) =

= [π(G1(a1))⊕Σ(G1(a1))]⊕ [π(G2(a2))⊕Σ(G2(a2))] =

= T 1(a1)⊕ T 2(a2),

where T 1(a1) = π(G1(a1))⊕Σ(G1(a1)), T
2(a2) = π(G2(a2)⊕Σ(G2(a2)) are two

linear functions (as π,Σ,G1, G2 are linear), and therefore the difference in the
keys of a weak-key pair is an XOR of two sets as well. Using this fact, we can
find a weak-key pair as follows:
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1. Create a set ΔK of 214 values T 1(a1) ⊕ T 2(a2), a1 = 0, . . . , 27 − 1, a2 =
0, . . . , 27 − 1.

2. Randomly choose a key K.
3. Create a set V1 of 27 pairs

(K1,K1 ⊕ π(GFN4,12(K1))⊕Σ(GFN4,12(K1))),

where K1 = K ⊕ T 1(a1), a1 = 0, . . . , 27 − 1. Index the set V1 by the second
elements.

4. Create a set V2 of 27 pairs

(K2,K2 ⊕ π(GFN4,12(K2))⊕Σ(GFN4,12(K2))),

where K2 = K ⊕ T 2(a2), a2 = 0, . . . , 27 − 1. Index V2 as well by the second
elements.

5. Check for collisions between V 1 and V 2 on the second (and indexed) ele-
ments. If such a collision exists, then confirm the key pair is weak by checking
if the xor difference of the first elements belongs to ΔK. If so, then output
that found pair (K1,K2) and exit. Otherwise, go to step 2.

The above algorithm will output a correct weak-key pair after repeating around
2114 times the steps 2-5. For each randomly chosen key K, there are 214 pairs
of keys (K1,K2) with difference K1 ⊕ K2 = K ⊕ T 1(a1) ⊕ K ⊕ T 2(a2) =
T 1(a1)⊕T 2(a2) = π(ΔLi)⊕Σ(ΔLi). If the output difference of 12-round Feistel
is precisely the same ΔLi (an event that happens with probability 2−128), i.e. if
GFN4,12(K1)⊕GFN4,12(K2) = ΔLi, then

π(GFN4,12(K1)⊕GFN4,12(K2))⊕Σ(GFN4,12(K1)⊕GFN4,12(K2)) =

π(ΔLi)⊕Σ(ΔLi),

and therefore

K1 ⊕K2 = π(GFN4,12(K1)⊕GFN4,12(K2))⊕Σ(GFN4,12(K1)

⊕GFN4,12(K2)),

which is equivalent to

K1 ⊕ π(GFN4,12(K1))⊕Σ(GFN4,12(K1)) =

K2 ⊕ π(GFN4,12(K2))⊕Σ(GFN4,12(K2)).

Therefore a collision between V1 and V2 suggests a possible weak-key pair. The
suggested pair is weak-key only if the input and the output differences satisfy the
differential, thus with probability 2−128. As we take 2114 random keys K, and for
each there are 214 pairs, with overwhelming probability, one will be a weak-key
pair. To avoid false positives, we add step 1 and the additional checking at step
5, i.e. we make sure that the difference between the keys is π(ΔLi) ⊕ Σ(ΔLi)
for some of the 214 good values of ΔLi. Hence, the algorithm will produce a
weak-key pair in 214 + 2114 × 2× 27 ≈ 2122 time and 214 memory.
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We can use the found pair to show weakness of CLEFIA-128 when used for
cryptographic hashing. More precisely, we consider hashing based on single-
block-length8 modes, where a compression function is built from a block cipher.
If the compression function uses CLEFIA-128 then we can find a pair of weak keys
in 2122 time using the described algorithm. Once such pair (K1,K2) is found,
we can produce any number of differential multicollisions [4] for any of the 12
modes investigated by Preneel et al. [12], including the popular Davies-Meyer,
Matyas-Meyer-Oseas modes. For instance, for the Davies-Meyer mode, i.e. when
the compression function C(H,M) is defined as C(H,M) = EM (H) ⊕ H , the
differential multicollisions have the form

C(Hi,K1)⊕ C(Hi ⊕ π2(ΔL),K1 ⊕ π(ΔL)⊕Σ(ΔL)) =

= EK1(Hi)⊕Hi ⊕ EK1⊕π(ΔL)⊕Σ(ΔL)(Hi ⊕ π2(ΔL)))⊕Hi ⊕ π2(ΔL) =

= EK1(Hi)⊕ EK1⊕π(ΔL)⊕Σ(ΔL)(Hi ⊕ π2(ΔL))⊕ π2(ΔL) =

= π3(ΔL)⊕ π2(ΔL),

for i = 0, 1, . . .. Note that we do not need to call the compression functions as
C(Hi,K1) ⊕ C(Hi ⊕ π2(ΔL),K1 ⊕ π(ΔL) ⊕ Σ(ΔL)) = π3(ΔL) ⊕ π2(ΔL) as
long as (K1,K1⊕π(ΔL)⊕Σ(ΔL)) form a weak-key pair. Consequently, we can
produce an arbitrary number of differential multicollisions with the complexity
2122. On the other hand, the proven lower bound (see [4]) in the case of ideal
cipher is 2128. A distinguisher for the hashing based on CLEFIA-128 has already
been presented by Aoki at ISITA’12 [2]. It works in the framework of middletext
distinguishers [11] (open-key version of the integral attack), where the adversary
starts with a set of particularly chosen states in the middle of the cipher, then
from them (and the knowledge of the key) produces the set of plaintexts and
the set of ciphertexts, and finally shows that these two sets have some prop-
erty that cannot be easily reproduced if the cipher was ideal. For CLEFIA-128,
Aoki showed how to choose 2112 starting middle states that result in 17-round
middletext distinguisher, and then added one more round where he used subkey
guesses, to obtain the 18-round distinguisher. We want to point out that there
is a substantial difference, between our result and that of Aoki. We do not fix
the values neither of the plaintexts nor of the ciphertexts, and our analysis is
applicable as long as the pair of chaining values has the required difference – the
values can be arbitrary and even unknown.

6 Conclusion

The analysis of CLEFIA-128 presented in this paper shows existence of a weak-
key class that consists of 214 pairs of keys. We have shown how to exploit the
pairs in two different scenarios: hashing mode of CLEFIA-128 and membership
test for the weak-key class. In the hashing mode (or open-key mode in general)

8 The state and key sizes in CLEFIA-128 coincide, thus we can construct only single-
block-length compression functions.
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we have shown that a weak-key pair can be found in around 2122 time, and such
pair can be used to produce differential multicollisions faster than the generic
2128. Furthermore, we have shown a membership test for the weak-key class
that has 28 time and data complexity, compared to the generic 214. The main
ideas of the analysis have been verified with computer experiments on small-scale
variants of CLEFIA-128.

The analysis is invariant of three important security features that presumably
increase the strength of a cipher. First, the non-linear part of the key schedule
can be any random permutation (not necessarily a 12-round Feistel). Our anal-
ysis would still work as we do not need high probability differentials for this
permutation. Second, the state update functions (in CLEFIA-128 F0, F1 are one
round substitution-permutation networks) can be arbitrary functions or permu-
tations, including several layers of SP – the difference never goes into them,
hence, the probability of the characteristic in the state would stay 1. Finally, the
number of rounds in CLEFIA-128 plays absolutely no role in our analysis – even
if CLEFIA-128 had 1000 rounds, the complexity of the analysis would stay the
same.

To prevent future analysis as ours, we have to clearly understand what are
the main drawbacks of the design. The weak-key class and the three analysis
invariances are results of these drawbacks (not their cause) and provide clues
on what the actual cause might be. The invariance of the state update function
is due to the Feistel structure of the cipher – this construction can lead to
probability 1 characteristics as it can cancel round key and state differences.
To maintain the cancellation through arbitrary number of rounds (invariance of
the number of rounds), the round key differences have to be iterative. The key
schedule prevents high probability iterative (or any fixed value) differences as
they have to be produced from a difference in the key that goes initially through a
12-round Feistel modeled as random permutation. The Feistel, however, produces
low probability (2−128) differences (invariance of the random permutation), and
214 of them become iterative round key differences due to the linear function
used after the Feistel. That is, because of the linear function, with 2−128 we can
have a special type of differences in 36 rounds keys (1152 bits !). Therefore, the
analysis of CLEFIA-128 holds due to the Feistel structure of the cipher and the
weak linear function that is used to produce the round keys.

To conclude, our work shows that low probability differentials (around 2−k for
a cipher with k-bit key and n-bit state) for the key schedule of Feistel ciphers,
cannot be used as a sole proof of resistance against related-key differential anal-
ysis.. A safe upper bound on the probability of such differentials, which proves
and provides security against related-key analysis, is not 2−k but 2−2k−n – this
comes from the fact that there can be as many as 22k pairs of weak keys, and
their combined probability should be below 2−n.
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A Specification on CLEFIA-128

B Analysis of CLEFIA-128 with Whitening Keys

The whitening keys are the four words WKi, i = 0, 1, 2, 3, defined as
WK0||WK1||WK2||WK3 = K, i.e. they are the words of the master key K.
The first two are XOR-ed to the second and the fourth plaintext words, and the
remaining two to the second and the fourth ciphertext words (see Fig 3).

To index the whitening words, we define two linear functions on 128-bit words
(or four 32-bit words). Assume X is 128-bit word, such that X = a|b|c|d, where
a, b, c, d are 32-bit words. Then l(X) : {0, 1}128 → {0, 1}128 is defined as l(X) =
l(a|b|c|d) = 0|a|0|b. Similarly r(X) : {0, 1}128 → {0, 1}128 is defined as r(X) =
r(a|b|c|d) = 0|c|0|d.

Now we can easily specify the weak-key class:

– the key difference remains the same,
– the plaintext difference, instead of π2(ΔL), should be π2(ΔL)⊕ l(ΔK),
– the ciphertext difference, instead of π3(ΔL), should be π3(ΔL)⊕ r(ΔK).

As ΔK = π(ΔL) ⊕ Σ(ΔL), it follows that the weak-key class for the original
CLEFIA-128 is defined as 214 pairs of keys (K,K ⊕ π(ΔL)⊕ Σ(ΔL)) such that
for any plaintext P holds:

EK(P )⊕ EK⊕π(ΔL)⊕Σ(ΔL)(P ⊕ π2(ΔL)⊕ l(π(ΔL)⊕Σ(ΔL))) =

π3(ΔL)⊕ r(π(ΔL) ⊕Σ(ΔL)).

Let us focus on the membership test. We define the plaintexts pools as:

P 1
i = P ⊕ π2(G

1(ai1))⊕ l(T 1(ai1)), a
i
1 = 0, 1, . . . , 27 − 1,

P 2
i = P ⊕ π2(G

2(ai2))⊕ l(T 2(ai2)), a
i
2 = 0, 1, . . . , 27 − 1.

This way, the difference between each two plaintext from two different pools is
π2(ΔL′)⊕ l(ΔK), i.e. it is as required by the class.

To define the sets V 1, V 2 that lead to a collision, first we have to understand
how a collision can occur. In the previous membership test (on CLEFIA-128with-
out whitening keys), we used the trick that the difference in both the plaintext
and the ciphertext is ΔL, but with permuted words (that is why we applied
π−1
2 , π−1

3 ). Here it is not the same: in the plaintext the difference is ΔL and two
more words of ΔK, while in the ciphertext it is ΔL and the remaining two words
of ΔK. Hence, XOR of these values does not trivially produce zero as the two
words from l and the two from r are different.
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Fig. 3. The encryption function of CLEFIA-128 at the left, and the key schedule at
the right. P0, P1, P2, P3 are 32-bit plaintext words, C0, C1, C2, C3 are the ciphertext
words, K0,K1,K2,K3 are the key words, RKi,WKj are the round and whitening
keys, respectively, and Si are 128-bit constants. Finally, F0, F1 are the two state update
functions, while Σ is a linear function (permutation).

Nevertheless, we can achieve collisions. Assume ΔL = a|b|c|d. Then the dif-
ference ΔP in the plaintext is

ΔP =π2(a|b|c|d)⊕ l(π(a|b|c|d)⊕Σ(a|b|c|d)) =
a|c|b|d⊕ l(b|a|d|c)⊕ l(Σ(a|b|c|d)) =
a|c+ b|b|d+ a⊕ l(Σ(a|b|c|d)).

Note, l(Σ(a|b|c|d) has zeros at the first and at the third words.
Similarly, the difference ΔC in the ciphertext is

ΔC =π3(a|b|c|d)⊕ r(π(a|b|c|d) ⊕Σ(a|b|c|d)) =
c|b|d|a⊕ r(b|a|d|c) ⊕ r(Σ(a|b|c|d)) =
c|b+ d|d|a+ c⊕ r(Σ(a|b|c|d)).

Again, in the sum r influences only the second and the fourth word.
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Let us introduce a function f , that acts on the four 32-bit words of a 128-bit
state and it XORs the first word to the fourth word, and the third word to the
second word, i.e. f(x|y|z|t) = (x|y + z|z|t+ x). Then

f(ΔP ) = a|c|b|d⊕ l(Σ(a|b|c|d)),
f(ΔC) = c|b|d|a⊕ r(Σ(a|b|c|d)).

The function Σ is linear and therefore Σ(a|b|c|d) = Σ(a|0|0|0) + Σ(0|b|0|0) +
Σ(0|0|c|0)+Σ(0|0|0|d). Let us denote these four values with Σa, Σb, Σc, and Σd.
Furthermore, with superscripts we denote the four 32-bit words of Σx, e.g. Σ

2
a is

the second (most significant) word of Σa. This allows us to remove the functions
l, r from the terms, and as a result we obtain

f(ΔP ) = a|c+Σ1
a +Σ1

b +Σ1
c +Σ1

d |b|d+Σ2
a +Σ2

b +Σ2
c +Σ2

d ,

f(ΔC) = c|b+Σ3
a +Σ3

b +Σ3
c +Σ3

d |d|a+Σ4
a +Σ4

b +Σ4
c +Σ4

d .

Next, we define a function g(x|y|z|t) that from x, z computes Σ1
x, . . . , Σ

4
x,

Σ1
z , . . . , Σ

4
z and it adds Σ4

x, Σ
4
z to the first word, Σ1

x, Σ
1
z to the second, Σ3

x, Σ
3
z to

the third, and Σ2
x, Σ

2
z to the fourth. Similarly, for ΔC we define h(x|y|z|t) that

from x, z computes Σ1
x, . . . , Σ

4
z and it adds Σ1

x, Σ
1
z to the first word, Σ3

x, Σ
3
z to

the second, Σ2
x, Σ

2
z to the third, and Σ4

x, Σ
4
z to the fourth. Thus we get

g(f(ΔP )) = a+Σ4
a +Σ4

b |c+Σ1
c +Σ1

d |b+Σ3
a +Σ3

b |d+Σ2
c +Σ2

d ,

h(f(ΔC)) = c+Σ1
c +Σ1

d |b+Σ3
a +Σ3

b |d+Σ2
c +Σ2

d |a+Σ4
a +Σ4

b .

Obviously h(f(ΔC)) = π4(g(f(ΔP ))), where π4(0, 1, 2, 3) → (3, 0, 1, 2). There-
fore the sets V1, V2 are defined as:

V 1 = {V 1
i |V 1

i = π4(g(f(P
1
i )))⊕ h(f(C1

i ))},
V 2 = {V 2

i |V 2
i = π4(g(f(P

2
i )))⊕ g(f(C2

i ))},

and a collision between this two sets suggests that ΔL′ coincides with ΔL.
Thus the membership test for CLEFIA-128 with whitening keys has the same
complexity as before (without whitening).
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