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Abstract. We propose the TWEAKEY framework with goal to unify the
design of tweakable block ciphers and of block ciphers resistant to related-
key attacks. Our framework is simple, extends the key-alternating con-
struction, and allows to build a primitive with arbitrary tweak and key
sizes, given the public round permutation (for instance, the AES round).
Increasing the sizes renders the security analysis very difficult and thus
we identify a subclass of TWEAKEY, that we name STK, which solves the
size issue by the use of finite field multiplications on low hamming weight
constants. Overall, this construction allows a significant increase of se-
curity of well-known authenticated encryptions mode like ΘCB3 from
birthday-bound security to full security, where a regular block cipher
was used as a black box to build a tweakable block cipher. Our work can
also be seen as advances on the topic of secure key schedule design.

Keywords: tweak, block cipher, key schedule, authenticated encryp-
tion.

1 Introduction

Block ciphers are among the most scrutinized cryptographic primitives, used in
many constructions as basic secure bricks that ensure data encryption and/or
authenticity. In the last few decades, a lot of research has been conducted on this
topic, and it is believed that building a secure and efficient block cipher is now
a well-understood problem. In particular, designs that allowed to prove their se-
curity against classical differential or linear attacks have been a very important
step forward, and have been incorporated in the current main worldwide stan-
dard AES-128 [34]. This topic is mature and the community has recently been
focusing on other directions, such as the possibility to build ciphers dedicated
to very constrained environments [9, 12, 23].

The security of the block ciphers, both Feistel and Substitution-Permutation
networks, has been well studied when the key is fixed and secret, however, when
the attacker is allowed to ask for encryption or decryption with different (and
related) keys the situation becomes more complicated. In the past, many pub-
lished ciphers have been broken in this so-called related-key model [4, 5] and it
has even been demonstrated that the Advanced Encryption Standard (AES) has
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flaws in this model [6,7]. It is known how to design a cryptographically good per-
mutation composed of several iterated rounds, but when it comes to keying this
permutation with subkeys generated by the key schedule, it is hard to ensure
that the overall construction remains secure. Most key schedule constructions
are ad-hoc, in the sense that the designers came up with a key schedule that is
quite different from the internal permutation of the cipher, in a hope that no
meaningful structure is created by the interaction of the two components. This is
the case of PRESENT [9] or AES [34] ciphers, where the key schedule is purposely
made different from the round function. Some key schedules can be very weak
but fast and lightweight (like in LED [23], where many rounds are required to
ensure security against related-key attacks), while some can be very strong but
slow (like in the internal cipher of the WHIRLPOOL hash function [3]). In order
to partially ease this task of deriving a good schedule, some automatic tools ana-
lyzing the resistance of the ciphers against simple related-key differential attacks
have been developed [8, 21, 32].

The Hasty Pudding cipher [37], proposed to the AES competition organized
by the NIST, permitted the user to insert an additional input to the classical key
and plaintext pair, called spice by the designers of this cipher. This extra input
T , later renamed as tweak, was supposed to be completely public and to random-
ize the instance of the block cipher: to different values of T correspond different
and independent families of permutations EK . This feature was formalized in
2002 by Liskov et al. [30,31], who showed that tweakable block ciphers are valu-
able building blocks if retweaking (changing the tweak value) is less costly than
changing its secret key. Tweakable block ciphers (see MERCY [13], for example)
found many different utilizations in cryptography, such as disk encryption where
each block is ciphered with the same key, but the block index is used as tweak
value.

Simple constructions of a tweakable block cipher EK(T, P ) based on a block
cipher EK(P ), like XORing the tweak into the key input and/or message input,
are not satisfactory. For example, only XORing the tweak into the key input
would result in an undesirable property that EK(T, P ) = EK⊕X(T ⊕ X,P ).
Liskov et al. propose instead to use universal hash families for that purpose.
The XE and XEX constructions [36] (and the follow-up standard XTS [19]) are
based on finite field multiplications in GF (2n), and present the particularity of
being efficient if sequential tweaks are used. Nonetheless, even with such feature,
these scheme might not be really efficient as the cipher execution is not negligible
compared to a finite field multiplication in GF (2n) (for example when AES is the
internal block cipher and the scheme implementation uses AES-NI instructions).
More importantly, these methods ensure only security up to the birthday-bound
(relative to the block cipher size). This can be a problem as the main block
cipher standards only have 64- or 128-bit block size. Minematsu [33] partially
overcomes this limitation by proving beyond birthday-bound security for his
design, but at the expense of a very reduced efficiency. The same observation
applies to more recent beyond-birthday constructions such as [29, 38]. Overall,
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none of the state-of-the-art block-cipher-based schemes provide both efficiency
and beyond birthday-bound security.

Ad-hoc constructions would be a solution, with the obvious drawback that
security proofs regarding the construction would be very hard to obtain. So far,
this direction has seen a surprisingly low number of proposals. The NIST SHA-3
competition for hash functions triggered a few, like SKEIN [20] (with its ad-hoc
internal tweakable block cipher Threefish) and BLAKE2 [2]. It is interesting
to note that both are Addition-Rotation-XOR (ARX) functions and thus offer
less possibility of proofs with regard to classical differential-linear attacks. As
of today, it remains an open problem to design an ad-hoc AES-like tweakable
block cipher, which in fact would be very valuable for authenticated encryption
as AES-NI instruction sets guarantee extremely fast software implementations.
Such a primitive would enable very efficient authenticated encryption with be-
yond birthday-bound security and proof regarding the mode of operation.

Liskov et al. proposed to separate the roles of the secret key (which provides
uncertainty to the adversary) from that of the tweak (which provides independent
variability) – interestingly, almost all tweakable block cipher proposals (except
Threefish) follow this rule. This might be seen as counter intuitive as it is
required the tweak input to be somehow more efficient than the key input, but
at the same time the security requirement on the tweak seem somehow stronger
than on the key, since the attacker can fully control the former (even though
tweak-recovery attacks are irrelevant). We argue in this article that, in practice,
when one designs a block cipher these two inputs should be considered almost the
same, as incorporating a tweak and a secret key shares in fact a lot of common
ground, especially for the large family of key-alternating ciphers.

Our Contributions. In this article, we bring together key schedule design and
tweak input handling for block ciphers in a common framework that we call
TWEAKEY (Section 2). The idea is to provide a simple framework to design a
tweakable block cipher with any key and any tweak sizes. Our construction is
very simple and can be seen as a natural extension of key-alternating ciphers:
a subtweakey (i.e. a value obtained from the key and the tweak inputs) is in-
corporated into the internal state at every round of the iterative cipher. One
advantage of such a framework is that one can obtain a tweakable single-key
block cipher or a double-key length block cipher with the very same primitive.

Not all instances of TWEAKEY are secure and, in particular, the case where the
key and tweak material is treated exactly the same way does not lead to a secure
cipher. However, handling the key and the tweak material the same way would
be attractive in terms of performance, implementation, but more importantly it
would greatly simplify the security analysis, which is currently the main difficulty
designers have to face when constructing an ad-hoc tweakable block cipher. Indeed,
the main challenge is to evaluate the appropriate number of rounds required to
make the cipher secure – when the tweak size t and key size k are too large this
problem becomes infeasible. We propose a solution in Section 3 and we give a sub-
class of TWEAKEY for AES-like ciphers, named STK (for Superposition TWEAKEY),
where the key and the tweak materials are treated almost the same way – the small
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difference between the linear key and the tweak schedules is sufficient to remove
the aforementioned weakness. Due to the structure of STK, the security analysis
is rendered much easier, and the number of rounds can be kept small. The STK
construction leads to promising performances: in [24], a complete 128-bit tweak
128-bit key 128-bit block cipher proposal Deoxys-BC based on the AES round
function is proposed as an instance of the STK construction. It is faster and more
lightweight than other tentatives to build a tweakable block cipher from AES-128.
When used in ΘCB3 [28] authenticated encryption, Deoxys-BC runs at about
1.3 c/B on the latest Intel processors. This has to be compared to OCB3, which
runs at 0.7-0.88 c/B when instantiated with AES-128, but only ensures birthday-
bound security. Alternatively, Deoxys-BC could be a replacement for AES-256,
which has related-key issues as shown in [7]. The STK construction offers a very
lightweight tweakey schedule (only composed of a substitution of bits), that even
allows the key to be hardwired in hardware implementations. Similarly, one can
mention Joltik-BC: a lightweight instance of the STK construction as a 64-bit
tweak 64/128-bit key 64-bit tweakable block cipher.

In [26], the problem of tweaking AES-128 without altering the key schedule is
handled. The authors introduce Kiasu-BC as part of the TWEAKEY framework
as a way to securely introduce a 64-bit tweak in the 10-round AES-128 block
cipher.

2 The TWEAKEY Framework

In this section, we introduce the TWEAKEY construction framework that allows to
add a tweak of (almost) any length to a key-alternating block cipher and/or to
extend the key space of the block cipher to (almost) any size. In some sense, one
can view the TWEAKEY framework as a simple generalization of key-alternating
ciphers, offering more flexibility with regards to tweak and/or key sizes. Similarly
to key-alternating ciphers, we emphasize that not all TWEAKEY instances are se-
cure. We give in later sections natural instances of TWEAKEY that lead to secure
ciphers.

2.1 Key-Alternating Ciphers

A symmetric primitive like a block cipher E is usually built upon a smaller
building block f that is iterated a certain number of times – we refer to such
a function f as a round function. Usually f is cryptographically weak, but its
iterations bring security to E. The number r of iterations heavily depends on the
targeted security of E, the structure of f , its differential properties, its algebraic
degree, etc. In general, the function f takes two inputs: the first is the state,
while the second is a round-dependent parameter called round key or subkey.
The round keys are obtained by the expansion of a master secret K with an
expansion (key schedule) algorithm: K → (K0, . . . ,Kr). Formally, for a non-
negative i < r, we write f(si,Ki) = si+1 the function that transforms the state
si in one round into the state si+1, with the use of the round key Ki. Initially,
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Optional Key Scheduling Algorithm

K

P = s0 f
s1

. . . f
sr

sr+1 = C

K0 K1 Kr−1 Kr

Fig. 1. Key-alternating cipher: the function f is applied r times, surrounded by subkey
mixing operations

the state s0 is set to the plaintext value P , and state sr at the output of the
r-th round is the ciphertext C .

As a subclass of iterated block ciphers, we consider further the particular case
of key-alternating block ciphers, which specify how the round keys are used (see
Figure 1). The concept has been initially introduced by Daemen in [14, 16] and
has later been reused in many block cipher designs, e.g. [9, 15, 23]. Specifically,
we say that E is a key-alternating cipher when the general form f(si,Ki) =
si+1 for i < r becomes f(si ⊕ Ki) = si+1, where the current state si and
the incoming round key Ki are XORed prior to the application of the round
function f . Moreover, a final round key Kr is added after the r applications
of f to produce the ciphertext. The soundness of such a construction has been
theoretically studied recently in [1, 10].

2.2 Tweakable Block Ciphers

The concept of tweakable block ciphers goes back to the Hasty Pudding ci-
pher [37], and has later been formalized by Liskov, Rivest and Wagner in [30,31],
where they suggest to move the randomization of symmetric primitives brought
by the high-level operations of the modes directly at the block-cipher level.
The signature of standard block ciphers can be described as E : {0, 1}k ×
{0, 1}n → {0, 1}n where an n-bit plaintext P is transformed into an n-bit ci-
phertext C = E(K,M) using a k-bit key K. On top on these inputs, tweak-
able block ciphers introduce an additional t-bit parameter T called tweak (see
Figure 2). The signature for a tweakable block cipher therefore becomes E :
{0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n, the ciphertext C = E(K,T, P ) where the
tweak T does not need to be secret and thus can be placed in the public do-
main. Similarly to a regular block cipher where E(K, ·) is a permutation for all
K ∈ {0, 1}k, a tweakable block cipher preserves this behavior as E(K,T, ·) is a
permutation for all (K,T ) ∈ {0, 1}k × {0, 1}t.
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(a) Regular Block Cipher.
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T

(b) Tweakable Block Cipher.

Fig. 2. Types of ciphers

Usually, the security notion expected from a tweakable block cipher is to be
indistinguishable from a tweakable random permutation (a family of independent
random permutations parameterized by T ). It is important to note that the
security model considers that the attacker has full control over both the message
and the tweak inputs.

Adversarial Model. Besides the classical single-key attack model, a typical
model for block ciphers is the related-key model, where the adversary can ask for
encryption/decryption of plaintext/ciphertext with a key related to the original
one. In this article, we only consider the relation between the keys and tweaks
to be the classical XOR difference, and refer to [17] for more details on this so-
called key access scheme. Similarly to the related-key model, the related-tweak
model denotes a situation where the adversary can ask for encryption/decryption
of plaintext/ciphertext with a tweak related to the original one, while the key
remains the original one. Continuing further, we can also combine these two
models and consider the related-key related-tweak adversarial model. Moreover,
instead of related-key or related-tweak model, one can consider open-key and/or
open-tweak models, where the adversary has full control over the key/tweak.
This model is reasonable to consider as in practice an active adversary might
have a full control over the tweak. For the key, this model might be interesting
when the block cipher is used in a hash function setting, where message blocks
are usually inserted in the key input of the inner block cipher of the compression
function. Since in this article we do not always separate key and tweak input,
we sometimes denote related-tweakey or open-tweakey to refer to related-key
related-tweak or open-key open-tweak model, respectively.

2.3 The TWEAKEY Construction

In theory, for a tweakable block cipher the distinction between the tweak input
and the key input is clear: the former is public and can be fully controlled by the
attacker, while the later is secret. This might indicate that in practice the tweak
input must be handled more carefully then the key input, since the attacker is
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given more power1. However, from the point of view of applications, what is
intrinsically required for a tweakable block cipher is that computing consecutive
cipher calls with different random tweak values should be very efficient, while
not necessarily required for the key input. This tends to indicate that, in the
contrary, the tweak input should not use more computations than the key input.

This contradiction regarding the proportion of computations between the
tweak and key inputs should make tweakable block cipher designers handle
both inputs almost equivalently (we note that this is the case for example in
Threefish [20]). Moving in this direction, we introduce the TWEAKEY frame-
work, that tries to bridge the gap between key and tweak inputs by providing
a unified vision. This framework can be seen as a direct extension of the key-
alternating cipher construction. As of today, building a tweakable block cipher
with a key-alternating approach has never been considered, but we note that
Goldenberg et al. [22] studied how to insert a tweak input inside a Luby-Rackoff
cipher from a theoretical point of view.

The term tweakey refers to an input that can be both tweak or key material,
without distinction. Using our framework, the obvious advantage is that one can
leverage the work already done on key schedule design in order to build proper
tweak schedule, or tweakey schedule more generally.

The TWEAKEY construction is a framework to build a n-bit tweakable block
cipher with t-bit tweak and k-bit key. It consists of two states: the n-bit internal
state s and the (t + k)-bit tweakey state tk, and we denote respectively as si
and tki their values throughout the rounds. The state s0 is initialized with the
plaintext P (or ciphertext C for decryption), and tk0 is initialized with the
tweak and key material. Then, the cipher is composed of r successive rounds
each composed of three steps:

• a subtweakey extraction function g from the tweakey state, and incorporation
of this subtweakey to the internal state (for ease of description, we consider
that the subtweakey incorporation is done with a simple XOR, but this can
be trivially extended to other operations),

• an internal state update permutation f ,
• a tweakey state update function h.

This can be summarized as: si+1 = f(si ⊕ g(tki)) followed by tki+1 = h(tki).
At the end, the last subtweakey is incorporated to the last internal state and
sr ⊕ g(tkr) represents the ciphertext C (or plaintext P for decryption). The
subtweakeys are usually of size n bits, but they might be smaller. The framework
is depicted in Figure 3.

1 One may argue that key recovery attacks are not to be considered for the tweak
input, which makes the tweak and the key inputs fundamentally different. However,
from a designer perspective, it seems easier to protect against key-recovery attacks,
than against a known-key distinguisher. For example, for most ciphers, more rounds
can be attacked in the open-key model than in the related-key model.
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TWEAKEY Scheduling Algorithm

P = s0 f
s1

. . . f
sr

sr+1 = C

tk0 h
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g

tkr−1

g

tkr

Fig. 3. The TWEAKEY framework

Increasing the amount of tweak or key material obviously renders the task of
the designer much more complex in terms of security analysis. To separate these
situations, we denote TK-p the class of tweakable block ciphers when one handles
p×n of tweakey material. For example, a simple single-key cipher would fit in TK-
1, while an n-bit key, n-bit tweak block cipher (or for a double-key cipher with
no tweak input) would fit in TK-2. By extension, a public permutation would fit
in TK-0. The tweakey material can be any amount of key and/or tweak. A tweak-
only cipher can be an interesting primitive as well, for example when building a
compression function (the members of the MD-SHA hash function family would
actually fit in our framework, the subtweakey having smaller size than n).

We emphasize that TWEAKEY is only a framework and, as such, will not guar-
antee a secure cipher. It is up to the designer to ensure picking a proper TWEAKEY
instance. The functions f , g and h must be chosen along with the number of
rounds r such that no known attack can apply on the resulting primitives. More
precisely, this must be true for any choice of the tweak/key size tradeoff inside
the tweakey input. A natural way to achieve this while keeping the same f , g
and h would be to set the number of rounds as the maximal number of required
rounds over all the possible tweak/key size tradeoffs. By known attacks, we refer
in particular to classical differential/linear attacks, even in related-tweakey or
open-tweakey model, or meet-in-the-middle techniques. Moreover, the key sched-
ule is often used to break inherent symmetries from the internal state update
function and to break round similarities (for example in the case of AES), hence
this has to be taken in account as well.

Cipher Instances Separation. Since the tweak and key material are not made
distinct in our framework, one might argue that since the tweakable block cipher
is always the same whatever is the amount of key or tweak inputs, there are some
obvious relations between these different versions. If the designer would prefer
to avoid these properties, this can be easily and securely done for example by
encoding the various cipher versions on a few bits of the tweakey state (with two
distinct key/tweak sizes versions, one tweak bit would then have to be booked
for that matter). Nevertheless, in the rest of this article, we do not consider
related-cipher attacks [39].
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3 The STK Construction

3.1 Motivation

The TWEAKEY framework unifies the tweak and key input for a tweakable block
cipher, but does not provide real instantiation of this construction, i.e. which
functions f , g and h (and number of rounds r) one should choose. For instance,
a trivial example resulting in a non-secure primitive consists in choosing the
identity function for the update function h (i.e. the key schedule of LED), and
defining g as the XOR of all n-bit tweakey words. In such a case, regardless of the
choice of the function f , the construction would not be secure as cancellations
of the tweakey words would lead to outputs of g consisting of zero bits.

One of the main causes for the low number of ad-hoc tweakable block ciphers
is the fact that adding a tweak input makes the security analysis much harder.
Building a block cipher secure in the related-key model is already not an easy
task, and by incorporating an additional tweak or a double key, the task becomes
even more difficult. In the case of AES, there exists tools [8, 21] to analyze the
best differential characteristics in the related-key model, but they mainly work
for TK-1. As soon as we switch to bigger keys or add tweak inputs, like TK-2
or TK-3, the searches might become infeasible, unless very good characteristics
exist to speed up the search with branching cuts, which would mean that the
cipher is insecure.

One research direction that we follow in this article consists in finding a con-
struction within the TWEAKEY framework that simplifies this analysis. A poten-
tial and natural solution would be that all p = (t+ k)/n n-bit words of tweakey
are handled the same way (i.e. the function h is symmetric with regards to the p
n-bit words of the tweakey state of TK-p), and that g simply XORs all these n-bit
tweakey state words to the internal state. The security analysis is simplified as
any analysis independently performed on one of the n-bit words of tweakey will
hold for the other words as well (and thus the tools working for TK-1 could now
do the analysis even for TK-p with p > 1). The problem is to understand what
happens when all words are considered together as their interaction might cause
potential weaknesses (e.g. if we insert differences in all the tweakey words). For
example, assume we would like to build an AES-like cipher with double key: this
would fit in TK-2 as k = 2n and t = 0. If the two n-bit tweakey words were
treated equivalently, we could use the differential characteristic search tools to
assess the security of the primitive with regards to classical differential attacks,
and then use this information to pick an appropriate number of rounds. However,
there is an obvious weakness if we strictly follow this strategy: starting with the
two tweakey words equal would lead to zero being XORed to the internal state
every round, since their value would always cancel each other in the XOR. Us-
ing constants to separate the two words would work, but only if the h function
is strongly non-linear, which is something we would like to avoid for efficiency
reasons. In fact, we would like to push even further the efficiency incentive and
only consider nibble-wise substitutions for the h function.
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In the remaining of the section, we propose a simple solution to overcome
this issue for AES-like ciphers. The basic idea is to minimize possible differences
cancellations between tweakey words by using small field multiplications. Follow-
ing this mechanism still allows to apply the existing differential characteristic
search tools, while avoiding the trivial characteristic in the tweakey scheduling
algorithm.

3.2 The STK (Superposition TWEAKEY) Construction

The STK construction is a subclass of the TWEAKEY framework for AES-like
ciphers defined over a finite field GF (2c). Recall that p = (t+ k)/n denotes the
number of n-bit words in the tweakey state composed of t-bit tweak and k-bit
key. Assuming that the AES-like S-Box operates on c bits (thus we have n/c
nibbles in a n-bit word), the STK construction further specifies the f , g and h
functions as follows (also see Figure 4):

• the function g simply XORs all the p n-bit words of the tweakey state to the
internal state (AddRoundTweakey, denoted ART), and then XORs a round-
dependent constant Ci,

• the function h first applies the same nibble position substitution function h′

to each of the p n-bit words of the tweakey state, and then multiply each
c-bit cell of the j-th n-bit word by a nonzero coefficient αj in the finite field
GF (2c) (with αi �= αj for all 1 ≤ i �= j ≤ p)

• the function f is an AES-like round.

STK Key Schedule

h′

h′

...

h′

α1

α2

αp

tk0

XOR C0

ART
f

h′

h′

...

h′

α1

α2

αp

XOR C1

ART
fP = s0

h′

h′

...

h′

. . .

. . .

. . .

XOR C2

ART
. . .

XOR Cr−1

ART
f

h′

h′

...

h′

α1

α2

αp

XOR Cr

ART
sr = C

Fig. 4. The STK construction: example with TK-p

3.3 Rationale behind the STK Construction

Most automated differential analysis tools for AES-like ciphers (e.g., [8, 18, 21])
use truncated differential representation to make feasible the search for differ-
ential characteristics. In the truncated difference representation [27], the exact
value of a difference in a nibble is not specified. Rather, only the presence (active
nibble) or absence (inactive nibble) of a difference is kept track of. In the STK
construction, the different subtweakey words will have precisely the same trun-
cated representation of the difference if the input tweakey words have the same
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difference. The reason behind this is that they all apply the same functions g and
h, which are completely independent of the tweakey word considered. This fea-
ture already significantly simplifies the analysis for the designer, since a simple
TK-1 differential analysis (already known to be possible with the current tools)
will ensure the security for all situations in which only a single tweakey word
contains a difference. Having all the tweakey words treated almost equivalently
is therefore very helpful for the designer.

The issue, however, is to understand what happens when differences are placed
in several tweakey words at the same place (in the same nibbles). In particular,
the difficulty lies in the cancellations that might happen in the nibbles at the
output of g (recall that g will XOR all the subtweakey word to the state). These
cancellations are the reason why having exactly the same update function for all
tweakey words leads to a design that is not secure. The trick we use is to apply
a nibble-wise multiplication with a distinct coefficient αj for all tweakey words.
This prevents the large number of cancellation of differences in a particular
nibble position at the output of g. To explain this, first observe that as we
apply the very same nibble position substitution function h′ to each of the p
tweakey words, the relative position of the nibble between the tweakey words is
always the same (i.e. two nibbles at the same position inside their tweakey word
will always keep that property). Thus, we can divide the tweakey nibbles into
n/c fully independent subgroups (according to the nibble position in the n-bit
tweakey words), and to each of these subgroups will correspond one and only
one nibble at the output of g at every round. More precisely, in each subgroup,
we have p input nibbles x = [x1, . . . , xp] (one in each tweakey word) and r + 1
output nibbles y = [y0, . . . , yr] (since we have to generate r + 1 sub-tweakeys).
Our STK construction ensures that whenever a non-null difference is inserted
in the input nibbles of the subgroup, there will always be at least r + 1 − p
active output nibbles. These output nibbles y can be expressed in terms of x
by using a right-matrix multiplication y = x×V with the following p× (r + 1)
Vandermonde matrix:

V =
(
αj
i

)
i,j

=

⎛
⎜⎜⎜⎜⎜⎜⎝

α0
1 α1

1 . . . αr
1

α0
2 α1

2 . . . αr
2

...
...

. . .
...

α0
p α1

p . . . αr
p

⎞
⎟⎟⎟⎟⎟⎟⎠

,

In order to minimize the number of nonzero elements in y for x �= 0, we need to
ensure that all the columns in V are linearly independent. This is true as long
as the αi coefficients, 1 ≤ i ≤ p are pairwise distinct. Using for example the
specific distinct coefficients αj = j ∈ GF (2c), 1 ≤ j < 2c, in TK-p, 1 ≤ p ≤ c− 1,
then at most p elements of y can be zero for x �= 0, which is the property that
we targeted.

To summarize, when we deal with differences in several tweakey words (which
is supposedly very hard to analyze due to the important number of nibbles), the
study of the STK construction is again the same as for a classical TK-1 analysis,
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except that at most p active output nibbles can be erased in each subgroup.
This extra constraint in the search is rather easy to include in the existing
analysis tools [8, 21] and this is precisely why we believe the STK construction
to be interesting. It has been created with this criteria in mind, so as to ease a
systematic cryptographic analysis by existing tools, rather than only relying on
ad-hoc constructions, which are de facto more difficult to evaluate.

As a side note, the constants Ci in the STK construction prevent obvious issues
regarding symmetries in the internal state for an AES-like cipher, as the RCON
constants do for the original AES key scheduling algorithm. The choice of these
constants are left at the discretion of the designers, but one could recommend
for instance to use the AES RCON constants, based of the exponentiation of 2 in
GF (2c), or the exponentiation of any other primitive element in that field.

The nibble positions permutation h′ is also left at the discretion of the de-
signers, but it must be carefully chosen so as to provide the best resistance
against classical differential/linear attacks. This will permit the designers to
safely choose an appropriate number of rounds r. This number will of course
strongly depend on the amount of tweakey material, since more tweakey mate-
rial makes it harder for the designer to create a secure tweakable block cipher.
Our analysis tools indicate that using identity function instead of h′ would lead
to designs that require a great number of rounds. Therefore, we recommend
h′ to be a nibble positions permutation so as to prevent the existence of very
good differential characteristics, but yet remaining a very efficient function to
compute.

3.4 Performances

The performance of the STK construction is very high due to the simple trans-
formations used in the schedules – all of them are linear and lightweight. The
cost of the nibble position permutation h′ is very low, however, the choice of the
coefficients αj might have a significant impact on the performances. For optimal
efficiency, one should typically use α1 = 1 and α2 = 2 in the case of TK-2. For
larger instances, TK-p with p > 2, one could use powers of 2 as coefficients αj

in order to maintain high efficiency in the computations of the coefficients mul-
tiplications. In most of the applications, the tweak is changed more frequently
than the key. For instance, in a number of authenticated encryption schemes, the
key is the same across different calls to the tweakable cipher, while the tweak is
different in each call. Thus, it is reasonable to make the tweak schedule more ef-
ficient than the key schedule. Therefore, the tweak schedule should use the most
efficiently implementable coefficients αj (α1 = 1 would be the first choice). How-
ever, for some particular use-cases, it can be better to assign coefficient α1 = 1 to
a key input. Indeed, for hardware implementations, it might be very valuable in
certain scenarios to hard-wire the key in order to greatly reduce the area required
(this is a feature of several lightweight ciphers). Yet, this would be possible only
if the key input is not modified during the execution of the entire cipher and this
is ensured only if α1 = 1 is assigned to this key input. The efficiency of the STK
constructions can best be measured in term of key/tweak agility, i.e. how well
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the construction behaves when the key and/or the tweak are frequently changed.
Due to the very low number of transformations, and all being completely linear,
this construction has obviously one of the simplest possible schedules.

4 Conclusion

We have introduced the TWEAKEY framework, which helps designers to build
a secure tweakable block cipher by bringing together key schedule design and
tweak input. Inside this framework, we have identified a new type of construc-
tion, named STK, that is simple and generic and which provides efficient schemes,
as shown by the two STK instances Deoxys-BC and Joltik-BC. We have also
shown how to directly tweak the AES-128 block cipher, with the very simple
and extremely efficient Kiasu-BC tweakable block cipher. The three candidates
Kiasu [26], Joltik [25] and Deoxys [24] to the CAESAR authenticated en-
cryption competition by the same authors are based on three instances of either
the TWEAKEY or the STK constructions and are claimed secured against classical
class of cryptanalytic attacks, as differential and meet-in-the-middle attacks.

We believe this work opens many questions and future works. First, it would
be interesting to prove the soundness of our framework and the STK construction.
Namely, can we generalize the recent proofs done on key-alternating ciphers?
Secondly, we believe that several nibble positions permutation h′ might be of
particular interest for the STK construction. The search space is quite large,
thus a smart method in order to prune bad candidates is necessary, as well as
very optimized search tools. This problem is actually even more complex, since
the best permutation for TK-i might not necessarily be the best for TK-j with
i �= j. Then, a very valuable advance would be to find a way to tweak directly
the AES-128 (keeping the original key schedule) with a 128-bit tweak, since the
best achievable option to date only handles up to 64-bit tweak (Kiasu-BC). Our
searches led us to the conclusion that this seems quite hard to achieve. Finally,
the problem of designing a simple, secure and efficient key schedule for AES-like
ciphers remains an open problem. Is it possible to find an efficient key schedule
that could lead to simple human-readable proofs on the minimal number of active
S-Boxes in a differential characteristic in the related-tweakey model?
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