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Abstract. Generative manufacturing technologies are gaining more and more of 
importance as key enabling technologies in future manufacturing, especially when 
a flexible scalable manufacturing of small medium series of customized parts is 
required. The paper describes a new approach for design and manufacturing of 
complex three dimensional components building on a combination of additive 
manufacturing and e-printing technologies, where the micro component is made 
up of stacks of functionalized layers of polymer films. Special attention will be 
paid to the “3-d” modeling approach, requested to support the applicaton 
developer through provision of design rules for this integrated manufacturing 
concept . Both, the application concept as well as the related equipment and 
manufacturing integration currently are currently developed further in the project 
SMARTLAM, funded by the European Commission. 

Keywords: flexible scalable manufacturing, smart manufacturing, additive 
manufacturing, printing technologies. 

1 Introduction 

Today´s fabrication methods for micro and nanotechnology enabled devices require 
expensive tooling and long turnaround times, making empirical, performance-based 
modifications to the product design expensive and time consuming. Thus till to date  
are often limited in their flexibility, so that complex devices, that incorporate on-
board valves, membranes, discrete parts, or electrodes, cannot be developed or 
adapted without considerable expense in molds and assembly fixtures. 

These boundary conditions create a barrier to the development of small to mediul 
series of complex and higher functionality devices, where the cost-benefit ratio of 
incorporating functionality is too risky for the typical laboratory, diagnostic or 
medical device developer. To bridge the gap between a high volume production with 
specialized equipment and a - until today - not efficient production of medium series, 
SME´s need to find other, more flexible and scalable approaches to produce 
microsystems in high volumes.  
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Fig. 1. SMARTLAM enabling technologies 

The solution proposed by the EC-funded project SMARTLAM and presented in 
this paper builds on a modular, flexible, scalable scenario combining state of the art 
developments in technologies and materials:  

- Rapid prototyping technologies in a wider sense and laminated object 
manufacturing (LOM) in the narrow sense - an established rapid prototyping 
technology building on layer by layer lamination of functionalised film sheets 
with different material properties is in the focus of the activities [1]. 

- Printing technologies, where aerosol-jet printing is in the specific focus of the 
project allowing for an efficient and precise manufacturing of conductive tracks, 
electrodes, etc. 

Novel polymer film materials with advanced material properties such as 
anisotropic conductive film or effects arising from combinations of composite sheets 
will be combined with state of the art, scalable 3D printing, structuring and welding 
technologies as well as the usage of.  

Both technologies will be integrated in a modular manufacturing environment 
allowing for the production of complete 3D Microsystems.  

The approach proposed by SMARTLAM is designed to address the 
manufacturing of small medium series of micro enabled components, in contrary to 
the research field of roll-to-roll manufacturing focussing on a high throughput 
manufacturing of e-printed devices such as flexible electronics, flat panel displays or 
organic photovoltaics [2]. 

The SMARTLAM design approach builds on the assumption that most 
applications can be designed using modular building blocks with dedicated process 
sequences for each functional element – the 3 dimensional integration (3D-I) 
approach. 
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To allow for a better use of the new capabilities arising from this 3D-Integration a 
testbed will be set up and evaluated by two SME companies in the field of 
bioanalytics and lighting application. The companies are acting as potential 
customers, whose application requirements will be providing input to the 3D-I 
approach from a technical and economical perspective. 

2 Application Oriented Modeling Elements of the SMARTLAM 
3D-I Approach  

To facilitate the development of new applications the SMARTLAM consortium 
introduced a modelling hierarchy allowing for structuring of the different levels of 
detailing and the mapping of technological capabilities, after the initial function 
requirements have been clarified and a first decision for a specific design has been 
made. 

Over the first months the focus of the discussions was on the identification of an 
initial set of functional elements which will become expanded during the project. Sets 
of related process sequences for manufacturing are currently identified for each of 
these elements These specific process chains support the implementation of a specific 
functional element, representing an instance of more or less application independent 
manufacturing processes. 

 

 

Fig. 2. SMARTLAM demonstrator for “intelligent combination of functionalized” polymer 
layers 

2.1 Modelling of Generic SMARTLAM Functional Elements 

This initial set of functional elements shall cover a broad variety of potential 
applications without being limited to the two main application fields, which are in the 
focus of SMARTLAM. 

The requirements to the functional elements have to address the manufacturing 
methods inherent to SMARTLAM: They should either 

- have the potential to become realised by a combination of the technologies 
available in one level (grooves, conductive tracks,…), or 
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- Microfluidic channels 
- Membranes 
- Valves 
- Mixers  
- Storage 
- Actuators 

Functional elements building on surface modification 

SMARTLAM technologies basically allow for an active treatment of surface 
properties (chemical and physical properties). Surface activation (e.g. Ionisation) or 
an active control of wttability by laser processing are just two examples to mention in 
this context.  

Composite functional elements  

Some of the functional elements can be combined to composite functional 
elements of a “higher” integration level. The functional element “positioning and 
integration of a chip” may consist of two functional elements “milling of a pocket” 
and “e-contacting”  

Implementation strategies 

Many of the functional elements mentioned above can be realized in a single 
manufacturing step, where the function can be realized by manufacturing of a single 
geometric element, which will be covered in more detail in the next paragraph. In 
most cases even more complex functional elements can be described as a combination 
of such features. From a process perspective however, there are typically multiple 
solution strategies for implementing functional elements. The "Via" functional 
element may serve as an example, as technological as well as chemical solutions are 
feasible and will have to be selected depending on the application boundary 
conditions. These solutions include but are not limited to: 

- realisation of a “mechanical” contacting between film layers consisting of a 
through hole filled with electronic ink. 

- Physical realisation of a contacting using the special material properties e.g. of 
“anisotropic conductive films” 

2.2 Features  

“Features” represent a kind of intermediate between the application-oriented function 
element and the “manufacturing output”, mostly resulting in a set of geometric 
primitives that can be micro milled or cut, coated, printed, welded, etc.. The following 
examples may illustrate underlying concept:  

- A single hole can be a vertical microfluidic channelas well as a pocket for 
integration of discrete parts. 

- An array of such micro might represent a “micro sieve” for blood separation in the 
bio disposable application areas.  
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- A combination of the “hole”-feature with other features such as the filling of a 
hole with e-ink can result in a contacting for manufacturing of “vias”, know from 
printed circuit board technology 

Typical features: 

- Channels (for fluidic or optical properties) 
- Pockets (cavities, lumen or locating holes) 
- Printed lines (conductive tracks, sensors, “via”)  
- Material layers with properties, different from polymers (realisation of batteries, 

realisation of membranes (elastomers) 

Evaluation tests could demonstrate the validity of this approach and similar 
concepts on feature level had been successfully tested in other micro related contexts 
[3]. A thorough evaluation in order to validate the principles of this concept will be 
performed over the course of the project. 

3 Selection of Manufacturing Process Chain and Product 
Design  

An integrated micro device often consists of a very large number of features which 
form the application oriented functional elements. For the fabrication of such devices 
a manufacturing process chain of high complexity is required. To address this 
problem, in SMARTLAM the product design and the process selection are 
incorporated into a hierarchical model where decisions are made at different 
abstraction layers. Similar hierarchical approaches have been elaborated and realised 
in CIM or STEP [4][5]. 

3.1 Product Design Method 

In the SMARTLAM 3D-I concept the product designer uses a library of structural 
features which can be integrated to built functional elements. These features together 
with information about technologies that can be used for their fabrication are stored in 
a database. In the hierarchical model the first layer is the library and is the only layer 
open to the designer. The second layer is the pool of available technologies and forms 
the manufacturing process chain. The third layer is the process parameters and is used 
for the optimisation and selection of specific process chain (see Figure 4). If the 
simple example from the previous section is taken, the library will offer a variety of 
micro holes in a range of sizes and materials which can be arranged to form a micro 
sieve. Some of the technologies that can be used for the fabrication of wholes in a 
polymer material are micro milling, laser machining or micro- injection moulding. 
The process parameters for the machining of the specific holes selected by the 
designer are stored in the database. After the micro sieve the next functional element 
on the device might be a conductive line. Possible technologies for its execution 
would be any kind of lithography, aerosol or jet printing. The design can be continued 
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with the next device feature or a lamination step. Thus is it is apparent that an 
effective method of selecting the best available chain has to be created. The advantage 
of using a library of preset geometries is that the designer is limited to structures 
which fabrication is already a well-established process. The number of alternative 
process depends on the completeness of the database which can be expanded when 
required. The addition of each new device feature multiplies the number of the 
possible manufacturing process chains by a factor equal to the number of available 
technologies for the feature. Therefore the development of fast and effective way of 
selecting the optimum chain is essential.  

 

Fig. 4. SMARTLAM process sequence hierarchies 

3.2 Process Chain Selection Method 

Large number of the initially identified process chains are rejected by breaking some 
of the links on the second hierarchical level. This can be done either on material- 
technology (M-T) or technology- technology (T-T) compatibility criteria. (see Figure 
4). The T-T compatibility criterion is relatively simple and normally there is a clear 
rejection or approval of a specific chain. In many cases this is the inability of 
combining vacuum with non- vacuum technologies. As an example, laser machining 
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cannot be combined with electron lithography due to the extreme complications of the 
workpiece transfer. In cases when the technology compatibility assessment is not that 
straightforward SMARTLAM can exploit the Process Pair Interface Model developed 
under the EC FP7 funded EUMINAfab project which provides more detailed analysis 
of the pair maturity level [6]. The M-T criterion is more complicated and requires 
some more detailed investigation. For many technologies there is a “favourite” 
material but this does not exclude the use of some other materials. For example PET 
is one of the most popular substrate materials for aerosol jet printing but shows poor 
UV laser machinability. This requires the development of a scoring system for 
different material- technology pairs and setting of threshold score below which the 
manufacturing chain is rejected.  

After applying the compatibility criteria the remaining process chains are arranged 
in an array:  

ݕܽݎݎܣ  ൌ ሺ݄ܿܽ݅݊ଵ … ݄ܿܽ݅݊௜ିଵ ݄ܿܽ݅݊௜ ݄ܿܽ݅݊௜ାଵ ڮ ݄ܿܽ݅݊௡ሻ 
 
Technologies that can be associated with more than one set of process parameters 

are linked in a separate chain for each set. The minimisation of the array is executed 
in two phases. In the first one process parameters such as temperature or pressure are 
assessed and it is checked whether any of the technologies or materials in the chain 
imposes restrictions to these parameters. Chains which do not meet these criteria are 
rejected. The second minimisation phase is when the actual process optimisation is 
performed. This is done by comparing the process parameters against the user 
requirements. User requirements can be machining time, cost or accuracy. At the end 
only the best matching chain remains which is used for the fabrication of the designed 
device. An advantage of this approach is that the selection of the technologies also 
serves for identification of the process parameters. This allows for very fast and 
efficient reconfiguration of the SMARTLAM modules. 

4 Technologies and Materials of Relevance for the Smart 
Manufacturing Approach 

Representing the smallest building blocks in modelling of process chains three 
different types of technologies are currently under evaluation regarding their 
integration in the system setup: 
- Technologies for additive manufacturing and e-printing aerosol jet printing. In 

SMARTLAM the e-printing functionality is realized by aerosol jet printing, 
offering good results for manufacturing of line-based geometries such as 
conductive paths [8] 

- Handling assembly and bonding technologies [7] 
- Technologies for direct and indirect milling and cutting of polymer films [laser 

milling, cutting, nano imprint lithography, hot embossing] 

Each of these technical sections will be briefly introduced with respect to its 
specific relevance for the Smartlam approach. 
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Fig. 7. Pocket structure in PE
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repeatable positioning of the droplet. To still achieve a stable assembly process, high 
precision measuring equipment for the lateral and vertical dimensions of the pockets 
and the dispensed adhesive as well as a precision placement system with a positioning 
accuracy in the low micron range for the dispensing tool is required. The same high 
requirements have to be fulfilled for the chip placement. Fig. 9 shows optical 
measurements of three stages of the chip assembly process: at first the empty pocket 
is filled with adhesive and the assembled chips with the adhesive bridge.Afterwards 
the adhesive needs to be cured. The products assembled within SMARTLAM are 
based on polymer films. Currently a broad range of substrate materials is intended to 
be applied, e. g. polyethylene terephthalate (PET), polycarbonate (PC) or poly(methyl 
methacrylate) (PMMA). The glass transition temperatures (PET: 70 °C; PC: 145 °C; 
PMMA: 105 °C) should not be exceeded during the curing of the adhesive. For most 
common adhesives comparative high temperatures above 100 °C are needed for fast 
curing. To maintain low cycle times with low temperatures UV curing adhesives are 
taken into account. Laser as part of the SMARTLAM system could potentially be 
used for precise and local curing to reduce the heat-affected zone compared to a 
convection oven. 

The SMARTLAM e-printing functionality is used in a following step for the 
electrical connection of the chips. 

4.3 Materials Properties of Specific Relevance for SMARTLAM Concept 

Novel polymer film with advanced material properties are of a specific interest for the 
SMARTLAM approach. There exists a broad range of material features that will 
become of interest for SMARTLAM applications: 

“Standard materials” 

The use of polymer materials with dedicated optical and mechanical properties 
provides opportunities for a broad range of applications but does also cause problems 
while its application in the SMARTLAM context. While the activities in the startup 
phase are focussing on polymer films, the application of ceramic films, similar to 
LTCC applications [15] as well as the application of flexible glass [16] but also 
combinations of different substrate layers with surface properties will be subject to 
the future research. 

In addition materials with advanced chemical and physical properties will be 
evaluated in later stage of the project. As an outlook may serve the following 
materials: 

- Anisotropic conductive films allowing for the an electrical conductivity vertical 
to the sheet plane, While the application in LCD panel production and chip 
industry is well established the application of the ACF in flexible environment is 
still subject to research activities, e.g. in the field of flip-chip on flex packages 
assembly [11]  

- high optical transparency, robust flexibility, and excellent conductivity caused by 
general synthesis of aligned carbon nanotube/polymer composite films with. 
(potential applications such as flexible conductors for optoelectronic devices) [12] 

- Actuation of the microsystem, caused by electro active properties of the polymer 
[13] 



 The SMARTLAM 3D-I Concept 159 

4.4 System Integration on Process Chain Level 

According to the 3D-integration paradigm different combinations of process 
sequences –each representing the respective process sequences for manufacturing of 
the respective design building blocks. Figure 10 provides an example how such 
process sequences could look like  

 

Fig. 10. Example of a process sequence for connecting a discrete part 

Different setups are currently under evaluation and testing, contributing to the 
decision support tools as well as the database. 

5 Conclusions and Outlook 

In the paper a novel approach for flexible scalable manufacturing of micro 
components building on a combination of laminated objects modelling, integration of 
laser technologies for structuring of films and printed electronics for e-contacting and 
printing of electronic components was presented. 

Specific attention was paid to the design of applications, building on a new 
approach for 3D-integration, (3D-I). Design elements on different aggregation levels 
and their implementation have been introduced.  

Over the next month these concepts will be developed further and adapted to the 
needs of the two project demonstrators in the field of lighting and microfluidics 
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