
Adaptation of Asynchronously Communicating

Software

Carlos Canal1 and Gwen Salaün2

1 University of Malaga, Spain
canal@lcc.uma.es

2 University of Grenoble Alpes, Inria, LIG, CNRS, France
gwen.salaun@inria.fr

Abstract. Software adaptation techniques aim at generating new com-
ponents called adapters, which make a set of services work correctly to-
gether by compensating for existing mismatch. Most approaches assume
that services interact synchronously using rendez-vous communication.
In this paper, we focus on asynchronous communication, where services
interact exchanging messages via buffers. We overview a method for au-
tomatically generating adapters in such asynchronous environments.

1 Introduction

Software Adaptation [22,9] is a non-intrusive solution for composing black-box
software services (peers in this paper) whose functionality is as required for the
new system, but that present interface mismatch which leads to deadlock or
other undesirable behaviour when peers are combined. Adaptation techniques
aim at automatically generating new components called adapters, and usually
rely on an adaptation contract, which is an abstract description of how mismatch
can be worked out. All interactions pass through the adapter, which acts as an
orchestrator and makes the involved peers work correctly together by compen-
sating for mismatch. Many solutions have been proposed since the seminal work
by Yellin and Strom [22], see, e.g., [5,7,21,16,13,14]. Most existing approaches as-
sume that peers interact using synchronous communication, that is rendez-vous
synchronizations. Nonetheless, asynchronous communication, i.e., communica-
tion via buffers, is now omnipresent in areas such as cloud computing or Web
development. Asynchronous communication complicates the adapter generation
process, because the corresponding systems are not necessarily bounded and may
result into infinite systems [6].

In this paper, we rely on the synchronizability property [3,18] in order to
propose an approach for generating adapters for peers interacting asynchronously
via (possibly unbounded) FIFO buffers. A set of peers is synchronizable if and
only if the system generates the same sequences of messages under synchronous
and unbounded asynchronous communication, considering only the ordering of
the send actions and ignoring the ordering of receive actions. Synchronizability
can be verified by checking the equivalence of the synchronous version of a given

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 437–444, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



438 C. Canal and G. Salaün

system with its 1-bounded asynchronous version (in which each peer is equipped
with one input FIFO buffer bounded to size 1). Thus, this property can be
analysed using equivalence checking techniques on finite systems.

More precisely, given a set of peers modelled using Labelled Transition Sys-
tems and an adaptation contract, we first reuse existing adapter generation tech-
niques for synchronous communication, e.g., [10,16]. Then, we consider a system
composed of a set of peers interacting through the generated adapter, and we
check whether that system satisfies the synchronizability property. If this is the
case, this means that the system will behave exactly the same whatever bound
we choose for buffers, therefore this adapter is a solution to our composition
problem. If synchronizability is not preserved, a counterexample is returned,
which can be used for refining the adaptation contract, until preserving synchro-
nizability. It is worth observing that the main reason for non-synchronizability
is due to emissions, which are uncontrollable in an asynchronous environment,
hence have to be considered properly in the adaptation contract.

The organization of this paper is as follows. Section 2 defines our models for
peers and introduces the basics on synchronous software adaptation. Section 3
presents our results on the generation of adapters assuming that peers interact
asynchronously. Finally, Section 4 reviews related work and Section 5 concludes.

2 Synchronous Adaptation

We assume that peers are described using a behavioural interface in the form
of a Labelled Transition System. A Labelled Transition System (LTS) is a tuple
(S, s0, Σ, T ) where S is a set of states, s0 ∈ S is the initial state,Σ = Σ!∪Σ?∪{τ}
is a finite alphabet partitioned into a set Σ! (Σ?, resp.) of send (receive, resp.)
messages and the internal action τ , and T ⊆ S×Σ×S is the transition relation.

The alphabet of the LTS is built on the set of operations used by the peer
in its interaction with the world. This means that for each operation p provided
by the peer, there is an event p? ∈ Σ? in the alphabet, and for each operation
r required from its environment, there is an event r! ∈ Σ!. Events with the
same name and opposite directions (a!, a?) are complementary, and their match
stands for inter-peer communication through message-passing. Additionally to
peer communication events, we assume that the alphabet also contains a special
τ event to denote internal (not communicating) behaviour. Note that as usually
done in the literature [15,2,20], our interfaces abstract from operation arguments,
types of return values, and exceptions. Nevertheless, they can be easily extended
to explicitly represent operation arguments and their associated data types, by
using Symbolic Transition Systems (STSs) [16] instead of LTSs.

Example 1. We use as running example an online hardware supplier. This ex-
ample was originally presented in [11] and both participants (a supplier and a
buyer) were implemented using the Microsoft WF/.NET technology. Figure 1
presents the LTSs corresponding to both peers. The supplier first receives a re-
quest under the form of two messages that indicate the reference of the requested
hardware (type), and the max price to pay (price). Then, it sends a response



Adaptation of Asynchronously Communicating Software 439

indicating if the request can be replied positively or not (reply). Next, the sup-
plier may receive and reply other requests, or receive an order of purchase on the
last reference requested (buy). In the latter case, a confirmation is sent (ack).
The behaviour of the buyer starts by submitting a request (request). Upon re-
ception of the response (reply), the buyer either submits another request, buys
the requested product (purchase and ack), or ends the session (stop).

Fig. 1. LTS interfaces of supplier (top) and buyer (bottom) peers

As shown in the example, typical mismatch situations appear when event
names do not correspond, the order of events is not respected, or an event in
one peer has no counterpart or matches several events in another one. All these
cases of behavioural mismatch can be worked out by specifying adaptation rules.
Adaptation rules express correspondences between operations of the peers, like
bindings between ports or connectors in architectural descriptions. Rules are
given as adaptation vectors. An adaptation vector (or vector for short) for a
set of peers {P1, . . ., Pn} with Pi = (Si, s

0
i , Σi, Ti), is a tuple 〈e1, . . . , en〉 with

ei ∈ Σi ∪ {ε}, ε meaning that a peer does not participate in the interaction.
In order to unambiguously identify them, event names may be prefixed by

the name of the peer, e.g., Pi : p?, or Pj : r!, and in that case ε can be omitted.
For instance, the vector 〈p1 : a!, p2 : ε, p3 : b?, p4 : c?〉 represents an adaptation
rule indicating that the output event a! from peer p1 should match both input
events b? and c? in p3, and p4 respectively, while peer p2 does not participate in
this interaction. For more details on the syntax and expressiveness of adaptation
vectors, we refer to [10].

An adaptation contract for a set of peers is a set of adaptation vectors for those
peers. Writing the adaptation contract is the only step of our approach which is
not handled automatically. This step is crucial because an inadequate contract
would induce the generation of an adapter that will not make the composition
of peers to behave correctly (for instance, some expected interactions may be
discarded by the adapter, in order to avoid deadlock). However, the adaptation
methodology that we propose (Section 3) is iterative, which helps in writing the
adaptation contract.



440 C. Canal and G. Salaün

Example 2. Going back to our running example, we observe several differences
between both interfaces. For instance, the buyer submits a single message for
each request, while the supplier expects two messages; the name of the message
for carrying out a purchase is not the same, etc. The vectors below are proposed
for composing and adapting the whole system. The correspondence between
request! and messages type? and price? can be achieved using two vectors,
Vreq and Vprice. The mismatch between purchase! and buy? can be solved by
vector Vbuy.

Vreq = 〈b :request!, s :type?〉
Vprice = 〈b :ε, s :price?〉
Vreply = 〈b :reply?, s :reply!〉
Vbuy = 〈b :purchase!, s :buy?〉
Vack = 〈b :ack?, s :ack!〉
In [10,16] we have shown how an adapter can be automatically derived from

a set of interfaces and an adaptation contract. Our approach relies on an en-
coding into process algebra together with on-the-fly exploration and reduction
techniques. The adapter is given by an LTS which, put into a non-deadlock-free
system yields it deadlock-free. All the exchanged events will pass through the
adapter, which can be seen as a coordinator for the peers to be adapted. Code
generation is also supported by our approach, thus BPEL adapters can be auto-
matically synthesised from an adapter LTSs. All these steps are automated by
the Itaca toolset [8]. Notice that the adaptation algorithms in [10,16] generate
synchronous adapters, that is, they assume a synchronous communication model
for peers. In our present work we show how our previous results can be applied
to asynchronous adaptation, where peers communicate asynchronously and are
equipped with an input message buffer.

Example 3. Figure 2 presents the adapter LTS generated for our running exam-
ple. Since the adapter is an additional peer through which all communications
transit, all the messages appearing in the adapter LTS are reversed with re-
spect to those in the peers. Note, for instance, how the adapter receives the
request coming from the buyer, and splits this request into messages carrying
the type and price information. This LTS also shows how the adapter interacts
on different names (purchase? and buy!) to make the communication possible.

Fig. 2. Adapter LTS for the case study



Adaptation of Asynchronously Communicating Software 441

3 Asynchronous Adaptation

Our asynchronous adaptation techniques rely on the synchronizability prop-
erty [3,18]. A set of peers is synchronizable if and only if the system generates
the same sequences of messages under synchronous and unbounded asynchronous
communication, considering only the ordering of the send actions and ignoring
the ordering of receive actions. Focusing only on send actions makes sense for
verification purposes because: (i) send actions are the actions that transfer mes-
sages to the network and are therefore observable, (ii) receive actions correspond
to local consumptions by peers from their buffers and can therefore be consid-
ered to be local and private information. Synchronizability can be verified by
checking the equivalence of the synchronous version of a given system with its
1-bounded asynchronous version (in which each peer is equipped with one input
FIFO buffer bounded to size 1). Thus, this property can be verified using equiva-
lence checking techniques on finite systems, although the set of peers interacting
asynchronously can result in infinite systems.

The synchronizability results directly apply here, considering the adapter as
a peer whose specificity is just that it interacts with all the other peers. It was
proved that checking the equivalence between the synchronous composition and
the 1-bounded asynchronous composition is a sufficient and necessary condition
for branching synchronizability [18]. In the rest of this section, we show how
we reuse the synchronizability property for generating adapters that work in
asynchronous environments.

Given a set of mismatching peers modelled as LTSs and an adaptation contract
(a set of vectors), an adapter LTS can be automatically synthesised as presented
in Section 2. Then, we check whether the adapted synchronous composition and
the 1-bounded adapted asynchronous composition are equivalent. If this is the
case, it means that the system is synchronizable and its observable behaviour will
remain the same whatever bound is chosen for buffers. Thus, the adapter gener-
ated using existing techniques for synchronous communication can be used as is
in an asynchronous context. If the system is not synchronizable, the user refines
the adaptation contract using the diagnostic returned by equivalence checking
techniques. This counterexample indicates the additional behaviour present in
the asynchronous composition and absent in the synchronous one, which invali-
dates synchronizability. The violation of this property has two main causes: either
the adapter does not capture/handle all reachable emissions, or the adapter is
too restrictive wrt. message orderings, e.g., the adapter requires a sequence of
two emissions, which cannot be ensured in the asynchronous composition be-
cause both emissions can be executed simultaneously. We apply iteratively this
process until the synchronizability property is satisfied.

Our approach is supported by several tools: (i) we reuse the Itaca toolbox [8]
for synthesising synchronous adapters, and (ii) we rely on process algebra en-
codings and reuse equivalence checking techniques available in the CADP veri-
fication toolbox [12] for checking synchronizability.



442 C. Canal and G. Salaün

Example 4. As far as our running example is concerned, given the LTSs of the
peers and the set of vectors presented in Section 2, we can automatically generate
the corresponding adapter (Figure 2). However, if we check whether the com-
position of this adapter with the peers’ LTSs satisfies synchronizability, the ver-
dict is false, and we obtain the following counterexample: b:request!, s:type!,
s:price!, s:reply!, b:reply!, and b:stop!, where the very last event appears
in the asynchronous system but not in the synchronous one. Note that synchro-
nizability focuses on emissions, hence the counterexample above contains only
messages sent by a peer to the adapter (b:request!, s:reply!, b:stop!) or
by the adapter to a peer (s:type!, s:price!, b:reply!). This violation is due
to the fact that the emission of stop is not captured by any vector, and con-
sequently it is inhibited in the synchronous system, while it is still possible in
the asynchronous system because reachable emissions cannot be inhibited under
asynchronous communication.

In order to correct this problem, we extend the adaptation contract by adding
the following vector: Vstop = 〈b :stop!, s :ε〉. The corresponding adapter is gener-
ated and shown in Figure 3. The system composed of the two peers interacting
through this adapter turns out to satisfy the synchronizability property. This
means that the adapter can be used under asynchronous communication and
the system will behave exactly the same whatever bound is chosen for buffers or
if buffers are unbounded.

Fig. 3. Adapter LTS generated after addition of Vstop

4 Related Work

Existing proposals for software adaptation present interesting approaches tack-
ling this topic from different points of view. However, most of them assume that
peers interact synchronously, see, e.g., [10,1,17,16,14,4] for a few recent results.
There were a few attempts to generate adapters considering asynchronous com-
munication. Padovani [19] presents a theory based on behavioural contracts to
generate orchestrators between two services related by a subtyping (namely, sub-
contract) relation. This is used to generate an adapter between a client of some
service S and a service replacing S. An interesting feature of this approach is
its expressiveness as far as behavioural descriptions are concerned, with support
for asynchronous orchestrators and infinite behaviour. The author resorts to the



Adaptation of Asynchronously Communicating Software 443

theory of regular trees and imposes two requirements (regularity and contractiv-
ity) on the orchestrator. However, this work does not support name mismatch
nor data-related adaptation. Seguel et al. [21] present automatic techniques for
constructing a minimal adapter for two business protocols possibly involving
parallelism and loops. The approach works by assigning to loops a fixed number
of iterations, whereas we do not impose any restriction, and peers may loop in-
finitely. Gierds and colleagues [13] present an approach for specifying behavioural
adapters based on domain-specific transformation rules that reflect the elemen-
tary operations that adapters can perform. The authors also present a novel way
to synthesise complex adapters that adhere to these rules by consistently sep-
arating data and control, and by using existing controller synthesis algorithms.
Asynchronous adaptation is supported in this work, but buffers/places must be
arbitrarily bounded for ensuring computability of the adapter.

5 Conclusion

Most existing approaches for adapting stateful software focus on systems relying
on synchronous communication. In this paper, we tackle the adapter generation
question from a different angle by assuming that peers interact asynchronously
via FIFO buffers. This complicates the synthesis process because we may have to
face infinite systems when generating the adapter behaviour. Our approach uses
jointly adapter generation techniques for synchronous communication and the
synchronizability property for solving this issue. This enables us to propose an
iterative approach for synthesising adapters in asynchronous environments. We
have applied it in this paper on a real-world example for illustration purposes.

Acknowledgements. This work was partially funded by the European Com-
mission FP7 project SeaClouds (FP7-ICT-2013-10) and by the Spanish Govern-
ment under Project TIN2012-35669.

References

1. van der Aalst, W.M.P., Mooij, A.J., Stahl, C., Wolf, K.: Service Interaction: Pat-
terns, Formalization, and Analysis. In: Bernardo, M., Padovani, L., Zavattaro, G.
(eds.) SFM 2009. LNCS, vol. 5569, pp. 42–88. Springer, Heidelberg (2009)

2. de Alfaro, L., Henzinger, T.A.: Interface Automata. In: Proc. of ESEC/FSE 2001,
pp. 109–120. ACM Press (2001)

3. Basu, S., Bultan, T., Ouederni, M.: Deciding Choreography Realizability. In: Proc.
of POPL 2012, pp. 191–202. ACM (2012)

4. Bennaceur, A., Chilton, C., Isberner, M., Jonsson, B.: Automated Mediator Syn-
thesis: Combining Behavioural and Ontological Reasoning. In: Hierons, R.M., Mer-
ayo, M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 274–288. Springer,
Heidelberg (2013)

5. Bracciali, A., Brogi, A., Canal, C.: A Formal Approach to Component Adaptation.
Journal of Systems and Software 74(1), 45–54 (2005)



444 C. Canal and G. Salaün

6. Brand, D., Zafiropulo, P.: On Communicating Finite-State Machines. Journal of
the ACM 30(2), 323–342 (1983)

7. Brogi, A., Popescu, R.: Automated Generation of BPEL Adapters. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 27–39. Springer, Heidel-
berg (2006)

8. Cámara, J., Mart́ın, J.A., Salaün, G., Cubo, J., Ouederni, M., Canal, C., Pimentel,
E.: ITACA: An Integrated Toolbox for the Automatic Composition and Adaptation
of Web Services. In: Proc. of ICSE 2009, pp. 627–630. IEEE (2009)

9. Canal, C., Murillo, J.M., Poizat, P.: Software Adaptation. L’Objet 12(1), 9–31
(2006)

10. Canal, C., Poizat, P., Salaün, G.: Model-Based Adaptation of Behavioural Mis-
matching Components. IEEE Trans. on Software Engineering 34(4), 546–563 (2008)

11. Cubo, J., Salaün, G., Canal, C., Pimentel, E., Poizat, P.: A Model-Based Approach
to the Verification and Adaptation of WF/.NET Components. In: Proc. of FACS
2007. ENTCS, vol. 215, pp. 39–55. Elsevier (2007)

12. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A Toolbox for the
Construction and Analysis of Distributed Processes. In: Abdulla, P.A., Leino,
K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg
(2011)

13. Gierds, C., Mooij, A.J., Wolf, K.: Reducing Adapter Synthesis to Controller Syn-
thesis. IEEE T. Services Computing 5(1), 72–85 (2012)

14. Inverardi, P., Tivoli, M.: Automatic Synthesis of Modular Connectors via Compo-
sition of Protocol Mediation Patterns. In: Proc. of ICSE 2013, pp. 3–12. IEEE /
ACM (2013)

15. Magee, J., Kramer, J., Giannakopoulou, D.: Behaviour Analysis of Software Ar-
chitectures, pp. 35–49. Kluwer Academic Publishers (1999)

16. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of Service Protocols Using Process
Algebra and On-the-Fly Reduction Techniques. IEEE Trans. on Software Engineer-
ing 38(4), 755–777 (2012)

17. Nezhad, H.R.M., Xu, G.Y., Benatallah, B.: Protocol-Aware Matching of Web Ser-
vice Interfaces for Adapter Development. In: Proc. of WWW 2010, pp. 731–740.
ACM (2010)

18. Ouederni, M., Salaün, G., Bultan, T.: Compatibility Checking for Asynchronously
Communicating Software. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013.
LNCS, vol. 8348, pp. 310–328. Springer, Heidelberg (2014)

19. Padovani, L.: Contract-Based Discovery and Adaptation of Web Services. In:
Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569,
pp. 213–260. Springer, Heidelberg (2009)

20. Plasil, F., Visnovsky, S.: Behavior Protocols for Software Components. IEEE Trans.
on Software Engineering 28(11), 1056–1076 (2002)

21. Seguel, R., Eshuis, R., Grefen, P.W.P.J.: Generating Minimal Protocol Adaptors for
Loosely Coupled Services. In: Proc. of ICWS 2010, pp. 417–424. IEEE Computer
Society (2010)

22. Yellin, D.M., Strom, R.E.: Protocol Specifications and Components Adaptors.
ACM Trans. on Programming Languages and Systems 19(2), 292–333 (1997)


	Adaptation of Asynchronously Communicating
Software

	1 Introduction
	2 Synchronous Adaptation
	3 Asynchronous Adaptation
	4 Related Work
	5 Conclusion
	References




