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Abstract. With the intention of design by reuse, configurable process
models provide a way to model variability in reference models that need
to be configured according to specific needs. Recently, the increasing
adoption of configurable process models has resulted in a large number
of configured process variants. Current research activities are successfully
investigating the design and configuration of configurable process models.
However, a little attention is attributed to analyze the way they are
configured. Such analysis can yield useful information in order to help
organizations improving the quality of their configurable process models.
In this paper, we introduce configuration rule mining, a frequency-based
approach for supporting the variability analysis in configurable process
models. Basically, we propose to enhance configurable process models
with configuration rules that describe the interrelationships between the
frequently selected configurations. These rules are extracted from a large
collection of process variants using association rule mining techniques.
To show the feasibility and effectiveness of our approach, we conduct
experiments on a dataset from SAP reference model.

1 Introduction

With the rapidly changing demands in today’s business requirements, there is
no doubt that new paradigms for managing enterprises’ business processes turn
into a pressing need. In such a highly dynamic environment, seeking reuse [1] and
adaptability [2] become a strong requirement for a successful business process
design. To this end, configurable process models [3] provide a way for modeling
variability in reference models. A configurable process model is a generic model
that integrates multiple process variants of a same business process in a given
domain through variation points. These variation points are referred to as con-
figurable elements and allow for multiple design options in the process model.
A configurable process model needs to be configured according to a specific re-
quirement by selecting one design option for each configurable element. In this
way, an individual process variant is derived without an extra design effort.

Recently, several approaches addressed the problem of building configurable
process models. Some of them propose to merge existing process variants [4–7],
others try to mine one configurable process model from execution logs [8–10].
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These research results highlight the need for means of support to derive indi-
vidual variants as integrated models tend to be complex with a large number
of configurable elements [11]. To fill this gap, some works propose to use ques-
tionnaires [12] or ontologies [13] in order to get business requirements and guide
the configuration process. Others propose to use non functional requirements to
assess configuration decisions on the process performance [14]. Although these
works have made a considerable effort on process variability design and config-
uration, a less attention has been paid to understand the way a configurable
process model is configured. That means which configurations are frequently se-
lected by the users and how configuration decisions may have an impact on others
in the process model. The configurations’ frequencies and interrelationships have
been identified in the requirements for a configurable modeling technique in [3].

In this work, we propose to enhance configurable process models with con-
figuration rules. These rules reveal the frequency and association between the
configuration decisions taken for different variation points in a configurable pro-
cess model. Concretely, we propose to discover from a large collection of process
variants the frequently selected configurations in a configurable process model.
Then, taking advantage of machine learning techniques [15], in particular associ-
ation rule mining, we extract configuration rules between the discovered config-
urations. These rules can be then used to support business analysts to develop
a better understanding and reasoning on the variability in their configurable
process models. For instance, business analysts can manage the complexity of
existing configurable process models by removing or altering the configurations
that were never or rarely selected. Moreover, the automated discovery of the
interrelationships between configuration decisions can assist the configuration
process by predicting next suitable configurations given the selected ones.

The remainder of the paper is organized as follows: in section 2, we present a
running example used throughout the paper to illustrate our approach. Section 3
provides some concepts and definitions needed for our approach. In section 4, we
detail our approach to derive configuration rules using association rule mining
techniques. The validation and experimental results are reported in section 5. In
section 6, we discuss related work and we conclude in section 7.

2 Running Example

Our running example is from SAP reference model for a procurement process
management modeled with the Configurable Event-Driven Process Chain nota-
tion (C-EPC) [3] (see Fig. 1). The EPC notation consists of three elements: event,
function and connector. An event can be seen as a pre- and/or post-condition
that triggers a function. A function is the active element that describes an activ-
ity. Three types of connectors, OR, exclusive OR (XOR) and AND are used to
model the splits and joins. In our example, we index connectors with numbers
in order to distinguish between them. The C-EPC notation adds the config-
urability option for functions and connectors. A configurable function can be in-
cluded or excluded from the model. A configurable connector can change its type
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Fig. 1. An example of a configurable process model from SAP reference model
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Fig. 2. A variant derived from the configurable process model in Fig. 1

(e.g. from OR to AND) or restrict it incoming or outgoing branches. Graphically,
a configurable element is modeled with a thick line.

Returning to our example, the procurement process starts by detecting the
need for new materials. A purchase request is sent to the corresponding provider.
The purchase requisition type (for purchase order, for contract release order
or for scheduling agreement schedule) is evaluated before the purchase starts.
At this stage, either the goods delivery is followed until receiving goods or a
purchase order is created. At the same time, a service entry sheet is created
and transmitted. Last, the invoice is sent to the customer for verification and
payment. We identified five configurable elements in the process: the connectors
“×1”, “×2”, “×3”, “∨”, and the function “invoice verification”. This reference
model is configured and used in a large number of companies that aim at reusing
best practices for modeling their procurement processes.

Assume that a large number of configured process variants has been collected
in a business repository from which we show one process variant in Fig. 2. This
process is derived from the configurable process model in Fig. 1 through the
following configurations:

1. Remove the outgoing branch starting with the event “Scheduling agreement
release” from the configurable “×1”;

2. Change the type of the configurable “∨” to “∧”, and remove the incoming
branch ending with the event “service accepted”;

3. Exclude the function “invoice verification” from the model.



4 N. Assy and W. Gaaloul

In addition, some modifications have been performed on the configured model
according to the company specific requirements such as renaming and/or adding
events and functions. For example, the event “purchase order release” is renamed
to “purchase requisition released for purchase order”.

Using our proposed approach, we target to induce a set of configuration rules
for each configurable element from available process variants. These rules are in
the from of if...then and describe the combinations of the frequently selected con-
figurations. For example, a configuration rule CR1 for the configurable elements
“×1” and “∨” in the process model in Fig. 1 is:

CR1 : < ×, {purchase order release, contract order release} >

S=0.7/C=0.65−−−−−−−−−→ < ∧, {Purchase order created, ∧3} >
(1)

This rule means that:

– The configurable “×1” is frequently configured to a “×” with the outgoing
branches starting with “purchase order release” and “contract order release”;

– The configurable “∨” is frequently configured to an “∧” with the incoming
branches ending with “Purchase order created” and “∧3”;

– S = 0.7 means that in 70% of the process variants, these two configurations
are selected;

– C = 0.65 means that in 65% of the process variants, whenever the first
configuration (that of “×1”) is selected, then the second configuration (that
of “∨”) is also selected.

In the following sections, we give a formal definition for our configuration rules.
Afterwards, we detail our approach for extracting the configuration rules that
explain all possible combinations of the frequently selected configurations in the
configurable process model.

3 Preliminaries

In this section, we present the definition of the business process graph and con-
figurable process model enhanced with our configuration rules definition.

3.1 Business Process Graph

A business process model is a directed graph with labeled nodes. There exist
many notations to represent a business process model such as Event-driven Pro-
cess Chain (EPC), Business Process Modeling Notation (BPMN), Unified Mod-
eling Language (UML), etc. In this work, we abstract from any specific notation
and we represent a process model as a directed graph called business process
graph. This notation is inspired from [4] in which the elements are derived from
the common constructs of existing graphical process modeling notations.



Configuration Rule Mining for Variability Analysis 5

Definition 1. (Business process graph) A business process graph
P = (N,E, T, L) is a labeled directed graph where:

– N is the set of nodes;
– E ⊆ N ×N is the set of edges connecting two nodes;
– T : N → t is a function that assigns for each node n ∈ N a type t where

t depends on the elements’ types for each standard notation. In case of the
EPC notation, t ∈ {event, function, connector}; Throughout the paper, we
refer to functions and events by activities.

– L : N → label is a function that assigns for each node n ∈ N a label such that
if T (n) = event ∨ function, then L(n) is its name, and if T (n) = connector
then L(n) ∈ {∨,∧,×} where ∨ = OR, ∧ = AND and × = XOR.

Let P = (N,E, T, L) be a business process graph. We define the preset and
postset of a connector c ∈ N as the set of elements in its incoming and outgoing
branches respectively.

Definition 2. (preset • c, postset c •) The preset of a connector c ∈ N de-
noted as • c is efined as • c = {n ∈ N : (n, c) ∈ E}. The postset of c denoted as
c • is defined as c • = {n ∈ N : (c, n) ∈ E}.
A connector “c” is a split if |c • | > 1; it is a join if | • c| > 1. For example, in
Fig. 2,×1 •={purchase requisition released for purchase, contract order release};
•∧4 = {∧2, invoice received, material released}. “×1” is a split connector and
“∧4” is a join connector.

3.2 Configurable Process Model

A configurable process model, is a business process graph with configurable el-
ements. A configurable element is an element whose configuration decision is
made at design-time [3]. Configurable elements can be functions and/or connec-
tors. A configurable function can be included (i.e. ON ) or excluded (i.e. OFF )
from the process model. A configurable connector has a generic behavior which
is restricted by configuration. A connector can be configured by changing its
type while preserving its behavior and/or restricting its incoming (respectively
outgoing) branches in case of a join (respectively split). Table 1 presents the
set of constraints identified in [3] for the configuration of connectors’ types. A
configurable connector is denoted by [label]c. Each row in the table corresponds
to a configurable connector which can be configured to one or more of the con-
nectors presented in columns. The last column (i.e. Seq) corresponds to a simple
“sequence”. For example, the configurable “∨” can be configured to any con-
nector’s type while a configurable “∧” can be only configured to an “∧”. These
configuration constraints are formalized through the partial order � that spec-
ifies which concrete connector may be used for a given configurable connector.

Definition 3. (partial order �) Let cc be a configurable connector and c be a
normal connector or a sequence (i.e. “Seq”). c � cc iff (L(cc) = “∨”) ∨ (L(cc) =
“× ” ∧ L(c) = “Seq”) ∨ (L(cc) = L(c)).
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Table 1. Configuration constraints of configurable connectors

∨ ∧ × Seq

∨c � � � �
∧c �
×c � �

Formally, the configuration of a configurable element, i.e. a function or a con-
nector, is defined as:

Definition 4. (Configuration Conf) The configuration of a node nc such
that T (nc) = ‘function’ ∨ ‘connector’ is defined as:

– if T (nc) = ‘function’ then Conf(nc) ∈ {ON,OFF};
– if T (nc) = ‘connector’ then Conf(nc) =< n, •n > (respectively Conf(nc) =

< n, n • >) in case nc is a join (respectively split) connector where:
1. n � nc;
2. •n ⊆ •nc (respectively n • ⊆ nc •) in case nc is a join (respectively split)

connector

For example, the process variant in Fig. 2 is derived from the configurable process
model in Fig. 1 by configuring the “∨c” to: Conf(∨c) =< ∧2, {purchase order cr-
eated, ∧3} >; the configurable function “invoice verification” to: Conf(invoice v-
erification) = OFF ; etc.

Configuration rule. A configuration rule describes an association among the
frequently selected configurations for different configurable elements in a config-
urable process model. It is defined as:

Confh1 , ..., Confhp

S,C−−→ Confb1 , ..., Confbq (2)

where Confhi : 1 ≤ i ≤ p is called the rule head and Confbj : 1 ≤ j ≤ q
is called the rule body. The rule head and body represent the configurations of
different configurable elements in a configurable process model. These configu-
rations are retrieved from a business process repository. A configuration rule is
parameterized by two well known metrics in association rule mining: the Sup-
port S and the Confidence C. The support is the fraction of process variants in
the business process repository that contain the configurations of the rule head
and body. It evaluates the usefulness of a rule. The confidence is the fraction
of process variants that contain the rule body configurations among those that
contain the rule head configurations. It represents the certainty of the rule. Let
� = {Pm : 1 ≤ m ≤ n} be a business process repository. Formally:

S =
|{Phb : 1 ≤ hb ≤ n ∧ Confhi , Confbj ∈ Phb}|

n

C =
|{Phb : 1 ≤ hb ≤ n ∧ Confhi , Confbj ∈ Phb}|

|{Ph : 1 ≤ h ≤ n ∧ Confhi ∈ Ph}|
(3)
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where |{Phb : 1 ≤ hb ≤ n ∧ Confhi , Confbj ∈ Pk}| is the number of process
variants in � that contain the configurations in the rule head and body; |{Ph :
1 ≤ h ≤ n ∧ Confhi ∈ Ph}| is the number of process variants that contain the
configurations in the rule head. The semantic of a configuration rule is: if the
configurations in the rule head are selected, then it is highly probably that the
configurations in the rule body are also selected. An example of a configuration
rule is given in (1).

Definition 5. (Configurable process model) A configurable process model is
denoted as P c = (N,E, T, L,B,Conf c, CRc) where:

– N,E, T, L are as specified in Definition 1;
– B : N → {true, false} is a boolean function returning true for configurable

nodes;
– Conf c is the set of valid configurations according to Definition 4;
– CRc is the set of configuration rules.

4 Configuration Rule Mining

In this section, we present our approach for mining configuration rules. Let
P c = (N,E, T, L,B,Conf c, CRc) be a configurable process model and � =
{Pi = (Ni, Ei, Ti, Li) : i ≥ 1} an existing business process repository. First, we
extract from � the set of similar configurations for the configurable elements in
P c (see section 4.1). Then, using association rule mining techniques, we mine
configuration rules from the retrieved similar configurations (see section 4.2).

4.1 Retrieving Similar Configurations

In this step, we extract from each process variant Pi ∈ � the configurations
corresponding to the configurable elements in P c. Nevertheless, retrieving exact
configurations is not realistic as existing process variants may have similar but
not exact parts with the configurable model. Thus, we aim at extracting similar
configurations for the configurable elements. In order to match graph elements,
we compute two similarities: the similarity SimA between activities and the
similarity SimC between connectors.

Activities’ similarity. Let a ∈ N be an activity (function or event) in P c and
a’ ∈ Ni be an activity in the process variant Pi. To compute the similarity SimA

between a and a’, we use a combination of syntactic and semantic similarity
metrics since they are popular for measuring the similarity between activities’
labels in business process models [16]. We use a syntactic similarity based on
Levenshtein distance [17] which computes the number of edit operations (i.e.
insert, delete or substitute a character) needed to transform one string into
another. For the semantic similarity, we use WordNet database [18] which a is
lexical database for English words. The WordNet similarity package includes
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a set of algorithms for returning the synonyms between two words. We use in
particular the WUP algorithm [19] which measures the relatedness of two words
by considering their depths in WordNet database. After normalizing activities’
labels (i.e. put all characters in lowercase, remove stop words, etc.) the total
similarity is the average of their syntactic and semantic similarities.

SimA(L(a), Li(a’)) =
LD(L(a), Li(a’)) +WUP (L(a), Li(a’))

2
(4)

where 0 ≤ SimA ≤ 1, LD and WUP are functions returning the Levenshtein
distance and the WordNet based similarity respectively between L(a) and Li(a’).
We say that a’ is the best activity matching for a iff: SimA(L(a), Li(a’) ≥
minSimA ∧ �ax ∈ Ni : SimA(L(a), Li(ax)) > SimA(L(a), Li(a’)), where
minSimA is a user specified threshold. For example, in Fig. 1 and 2, the sim-
ilarity between the events “Purchase order release” and “Purchase requisition
released for purchase order” is 0.735. For a minSimA = 0.5,“Purchase order
requisition for purchase order” is the best activity matching for “Purchase order
release” as it has the highest similarity with “Purchase order release”.

Connectors’ similarity. Let c ∈ N be a connector in P c and c’ ∈ Ni be a
connector in Pi. The similarity between connectors cannot be done in the same
way as activities since connectors’ labels do not have linguistic semantics. Hence,
in order to compute the similarity SimC between c and c’, we rely on (1) the
partial order � (see Definition 3) which orders the connectors’ labels based on
their behavior and (2) the postset (respectively preset) similarities in case of split
(respectively join) connectors. The similarity SimC between split connectors is
computed as:

SimC(c, c’) =

{
#BM(c •,c’ •)

|c •| if c’ � c

0 otherwise
(5)

where #BM(c •, c’ •) returns the number of best elements’ matching in c’ •
that correspond to those in c •. The join connectors’ similarity is computed
in the same way but with the consideration of their preset instead of postset.
We say that c’ is the best connector matching for c iff: SimC(c, c’) ≥
minSimC ∧ �cx ∈ Ni : SimC(c, cx) > SimC(c, c’) where minSimC is a user
specified threshold. For example, in Fig. 1 and 2, the similarity between “×1” in
the first process model and “×1” in the second one is SimC(×1,×1) =

2
3 = 0.67.

For a minSimC = 0.5, “×1” in the second process model is the best connector
matching for “×1” in the first one.

Similar functions’/connectors’ configurations. Having defined the similar-
ity metrics for activities and connectors, we show how we retrieve for configurable
elements in P c the similar configurations from each process variant Pi ∈ �.

A configurable function f c ∈ N can be configured to ON or OFF . A config-
uration Conf(f c) = ON is retrieved from a process variant Pi, if there exists a
function f ’ ∈ Ni such that f ’ is the best activity matching for f c. Otherwise,
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the configuration Conf(f c) = OFF holds. For example, in our running exam-
ple, for a minSimF = 0.5, the configurable function “Invoice verification” in the
configurable process model in Fig. 1 does not have any best activity matching
in the process variant in Fig. 2. Thus from this process variant, we retrieve the
configuration OFF .

A configurable split (respectively join) connector cc ∈ N can be configured
w.r.t. its type and postset (respectively preset) (see Definition 4). A configuration
Conf(cc) =< c, c • > 1 is retrieved from a process variant Pi:

– if there exists a connector c’ ∈ Ni such that:
1. c’ is the best connector configuration for cc,
2. L(c’) = L(c) and
3. c • is the set of elements in cc • that have best element’ matching in c’ •.

– else if |c • | = 1 and there exists an element e’ ∈ Ni such that e’ is the best
element matching for e ∈ c •. In this case, cc is configured to a “sequence”,
i.e. c = Seq.

For example, for aminSimC=0.5, the configuration Conf(×1)=< ×, {Purchase
order release, contract order release} for the configurable connector “×1” in the
process model in Fig. 1 is retrieved from the process model in Fig. 2 since (1)
“×1” in the second model is the best connector matching for “×1” in the first
model, (2) L(×1) = L(×1) and (3) “Purchase order release” has “Purchase
requisition released for purchase order” as the best activity matching; and “con-
tract order release” has “contract order release” in the second model as the best
activity matching.

4.2 Deriving Configuration Rules

In the previous section (section 4.1), we retrieved for each configurable element
in P c the set of similar configurations found in each process variant in �. In
this section, we use these configurations to mine our configuration rules using
association rule mining techniques.

Association rule mining [20] is one of the most important techniques of data
mining. It aims to find rules for predicting the occurrence of an item based on
the occurrences of other items in a transactional database or other repositories.
It has been first applied to the marketing domain for predicting the items that
are frequently purchased together. Thereafter, it has manifested its power and
usefulness in other areas such as web mining [21] and recommender systems [22].
The Apriori algorithm [23] is one of the earliest and relevant proposed algorithms
for association rule mining.

In our work, we also use the Apriori algorithm for deriving our configuration
rules. In order to be able to apply the Apriori algorithm, we store our retrieved
configurations in a configuration matrix. The configuration matrix is a n×m
matrix where n is the number of process variants in � (i.e. n = |�|) and m is
the number of configurable elements in P c. A row in the configuration matrix

1 We show the case for a split connector.



10 N. Assy and W. Gaaloul

corresponds to one process variant in �. A column corresponds to one config-
urable element in P c. The entry for the row i and the column j contains the
configuration retrieved from Pi ∈ � for the jth configurable element. An exam-
ple of the configuration matrix for the configurable process model in Fig. 1 is
presented in Table 2. For example, the second row corresponds to the configura-
tions retrieved from the process variant in Fig. 2. For clarification purpose, we
refer to the configurations by their identifiers denoted as C[nb]. Table 3 contains
the retrieved configurations’ identifiers for each configurable element.

Table 2. An excerpt of a configuration matrix

Pid invoice
verification

×1 ×2 ×3 ∨

P1 C2 C3 C3 C20 C27

P2 C1 C4 C4 C21 -

P3 C1 C4 C4 - C28

... ... ... ... ... ...

Table 3. An excerpt of the retrieved configurations associated to unique identifiers

Nc Conf Confid

invoice verification
OFF C1

ON C2

×1

< ×, {purchase order release, contract order release} > C3

< ×, {purchase order release, scheduling agreemenr release} > C4

... ...

×2

< ×, {purchase order release, contract order release} > C8

< ×, {purchase order release, scheduling agreemenr release} > C9

... ...

×3

< ×, {Inbound delivery created, Purchase order created} > C20

< Seq, {purchase order release} > C21

... ...

∨
< ∧, {Purchase order created, ∧3} > C27

< ×, {purchase order created, Service accepted} > C28

< ×, {Service accepted, ∧3} > C29

... ...

The configuration matrix along with a user specified support and confidence
thresholds are used as inputs by the Apriori algorithm. As output, the Apriori
algorithm returns the set of configuration rules having a support and confidence
above the user’s thresholds. An example of a configuration rule returned by
Apriori for a support S = 0.5 and a confidence C = 0.5 is given in (1).
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5 Experimental Results

In order to evaluate the usefulness and effectiveness of our proposed approach,
we conduct experiments on a dataset from SAP reference model which contains
604 process models in EPC notation [24]. These models are not configurable.
To create configurable process models for our experiments, we merge the simi-
lar processes in SAP models into configurable EPC (C-EPC) models using the
merging approach proposed in [4]. To do so, we cluster similar process mod-
els with the Agglomerative Hierarchical Clustering (AHC) algorithm using the
similarity approach presented in [4]. We obtain 40 clusters of similar process
models having a similarity higher than 0.5. Then, each cluster is merged into
one configurable process model. The characteristics of each obtained cluster and
the corresponding configurable models are reported in Table 4.

Table 4. The size statistics of the clusters and the configurable process models

size # configurable
nodes

min max avg. min max avg.

cluster 20.55 25.625 23 0 0 0

configurable model 2 162 34.175 0 36 5.575

In the first experiment, we calculate the amount of reduction in the number
of allowed configurations for a configurable process model using our proposed
approach. Since the exponential growth in the number of allowed configurations
is a source of complexity in a configurable process model, reducing and linking
configuration decisions to the frequently selected ones have a significant impact
on the variability understanding in configurable process models. Therefore, for
each configurable process model, we mine the configuration rules. Then, we com-
pute the amount of reduction which is one minus the ratio between the number
of valid configurations using our configuration rules and the total number of
valid configurations. The amount of reduction is defined as:

R = 1− #CR

#C
(6)

where #CR is the number of configurations using our configuration rules and #C
is the total number of valid configurations. The results reported in Table 5 show
that in average we save up to 70% of allowed configurations which are either
infrequent configurations or never selected in existing process models. Note that
this amount of reduction may vary depending on the selected minSupport and
minConfidence thresholds which are set to 0.5 in our experiments.

In the second experiment, we evaluate the mined configuration rules in order
to extract useful characteristics for the configuration decision. Since configu-
ration rules can be represented as a graph where each node represents a rule
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Table 5. The amount of reduction

Size #CR #C R

min 2 2 6 0.6

max 162 10.5× 104 70× 104 0.85

Avg. 34.175 1.5× 103 5× 103 0.7
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head or body and edges represent the implication relation between rules’ head
and body [25], we analyze this graph structure in order to derive interesting
hypothesis for the configuration decision. We borrow the emission and reception
metrics from the social network analysis domain [26] which measure the ratio
of the outgoing and incoming relations respectively of a node in the graph. The
reason for choosing these two metrics in particular is justified by the fact that
a configuration node with a high emission have an impact on a large number
of configurations in the process model. Therefore starting by its configuration
may save the number of configuration decisions that should be taken by the
user. Whereas a configuration node with a high reception depends on a large
number of configurations. Therefore it may be useful to delay the selection of
such configuration. The emission EC and reception RC ratios of a configuration
node are computed as:

EC =
#outC

maxi(#outCi)
RC =

#inC

maxi(#inCi)
(7)

where #outC (respectively #inC) is the number of outgoing (respectively in-
coming) relations of the node C and #maxi(outCi) (respectively #maxi(inCi))
is the maximal number of outgoing (respectively incoming) relations among the
configuration nodes Ci in the graph. Using these two metrics, we select the mod-
els having more than 10 configurable nodes. Then for each configuration node,
we compute its emission, reception and the number of configuration decisions
that must be taken when starting with such configuration. Then, we organized
these nodes in four groups based on their high (> 0.5) or low (< 0.5) reception
and emission. The obtained results are illustrated in Fig. 3. The straight line
represents the average number of configurable elements and the curve line rep-
resents the average number of configuration decisions that must be taken when
starting with a specific group of configuration nodes. These results show that
selecting the configurations with a high reception and a low emission reduce
the number of configuration decisions to 10 while there exist in average 25, 5
configuration decisions (i.e. configurable elements) in the model.
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6 Related Work

The limitation and rigid representation of existing business process models have
led to the definition of flexible process models [27]. In this paper, we rely on the
work presented in [3] where configurable process models are introduced. In their
work, the authors define the requirements for a configurable process modeling
technique and propose the configurable EPC notation. They highlight the need
for configuration guidelines that guide the configuration process. These guide-
lines should clearly depict the interrelationships between configuration decisions
and can include the frequency information. In our work, we demonstrate how
using association rule mining techniques, we induce frequency-based configura-
tion rules from existing process variants. These rules describe the association
between the frequently selected configurations.

In order to match existing process models for merging, La Rosa et al. [4] use
the notion of graph edit distance [28]. They compute the score matching using
syntactical, semantic and contextual similarities identified in [16]. In our work,
we propose to use existing process variants in order to analyze the variability in
a configurable process model. This analysis can be used to improve the design
and configuration of the configurable process model. We also use similar metrics
for process model matching. However, instead of matching entire process models,
we only search a matching for configurable elements.

To manage the variability in configurable process models, the researchers have
been inspired from variability management in the field of Software Product Line
Engineering [29]. La Rosa et al. [12] propose a questionnaire-driven approach for
configuring reference models. They describe a framework to capture the system
variability based on a set of questions defined by domain experts and answered
by designers. Their questionnaire model includes order dependencies and domain
constraints represented as logic expressions over facts. The main limitation of
this approach is that it requires the knowledge of a domain expert to define
the questionnaire model. In addition, each change in the configurable process
model requires the update of the questionnaire model by the domain expert. This
task manually performed may affect the configuration framework performance.
While in our work, we propose an automated approach to extract the knowledge
resulted from existing configurations using the well know concept of association
rules. Our configuration rules can serve as a support for domain experts in order
to define and update their configuration models.

Huang et al. [13] propose an ontology-based framework for deriving business
rules using Semantic Web Rule Language (SWRL). They use two types of on-
tologies: a business rule ontology which is specified by a domain expert, and
a process variation points ontology based on the C-EPC language. Using these
ontologies, they derive SWRL rules that guide the configuration process. Differ-
ent from them, we map the configuration process to a machine learning problem
and use association rule mining instead of SWRL based rules in order to derive
configuration rules. Our approach does not require any extra expert’s effort and
can be extended in order to classify the learned configuration rules w.r.t. specific
business requirements.
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7 Conclusion

In this paper, we present a frequency-based approach for the variability analysis
in configurable process models. We propose to enhance the configurable process
models with configuration rules. These rules describe the combination of the
frequently selected configurations. Starting from a configurable process model
and an existing business process repository, we take advantage of association
rule mining techniques in order to mine the frequently selected configurations as
configuration rules. Experimental results show that using our configuration rules,
the complexity of existing configurable process models is reduced. In addition,
metrics such as emission and reception applied to our configuration rules help
in identifying the configurations that save users’ decisions.

Actually, we are integrating our approach in an existing business process mod-
eling tool, namely Oryx editor. In our fututre work, we target to define most
sophisticated rules for retrieving similar connector’ configurations. Instead of re-
lying only on the connectors’s direct preset and postset, we aim at looking for
k-backward and k-forward similar elements. This in turn, would improve our pre-
processing step and therefore our mined configuration rules. Moreover, we look
for enhancing our configuration rules, besides the frequency, with other useful
information such as the configuration performance, ranking, etc.

References

1. Fettke, P., Loos, P.: Classification of reference models: a methodology and its ap-
plication. Information Systems and eBusiness Management (2003)

2. Schonenberg, H., et al.: Towards a taxonomy of process flexibility. In: CAiSE Fo-
rum, pp. 81–84 (2008)

3. Rosemann, M., van der Aalst, W.M.P.: A configurable reference modelling lan-
guage. Inf. Syst. (2007)

4. Rosa, L., et al.: Business process model merging: An approach to business process
consolidation. ACM Trans. Softw. Eng. Methodol. (2013)

5. Derguech, W., Bhiri, S.: Merging business process variants. In: Abramowicz, W.
(ed.) BIS 2011. LNBIP, vol. 87, pp. 86–97. Springer, Heidelberg (2011)

6. Gottschalk, F., Aalst, W.M., Jansen-Vullers, M.H.: Merging event-driven process
chains. In: OTM 2008 (2008)

7. Assy, N., Chan, N.N., Gaaloul, W.: Assisting business process design with config-
urable process fragments. In: IEEE SCC 2013 (2013)

8. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Mining configurable
process models from collections of event logs. In: Daniel, F., Wang, J., Weber, B.
(eds.) BPM 2013. LNCS, vol. 8094, pp. 33–48. Springer, Heidelberg (2013)

9. Gottschalk, F., Aalst, W.M.P.v.d., Jansen-Vullers, M.H.: Mining Reference Process
Models and their Configurations. In: EI2N08, OTM 2008 Workshops (2008)

10. Assy, N., Gaaloul, W., Defude, B.: Mining configurable process fragments for
business process design. In: Tremblay, M.C., VanderMeer, D., Rothenberger, M.,
Gupta, A., Yoon, V. (eds.) DESRIST 2014. LNCS, vol. 8463, pp. 209–224. Springer,
Heidelberg (2014)

11. Dijkman, R.M., Rosa, M.L., Reijers, H.A.: Managing large collections of business
process models - current techniques and challenges. Computers in Industry (2012)



Configuration Rule Mining for Variability Analysis 15

12. Rosa, M.L., et al.: Questionnaire-based variability modeling for system configura-
tion. Software and System Modeling 8(2), 251–274 (2009)

13. Huang, Y., Feng, Z., He, K., Huang, Y.: Ontology-based configuration for service-
based business process model. In: IEEE SCC, pp. 296–303 (2013)

14. Santos, E., Pimentel, J., Castro, J., Sánchez, J., Pastor, O.: Configuring the vari-
ability of business process models using non-functional requirements. In: Bider, I.,
Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Ukor, R. (eds.) BP-
MDS 2010 and EMMSAD 2010. LNBIP, vol. 50, pp. 274–286. Springer, Heidelberg
(2010)

15. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, Second Edition (Morgan Kaufmann Series in Data Management Systems).
Morgan Kaufmann Publishers Inc (2005)

16. Dijkman, R.M., et al.: Similarity of business process models: Metrics and evalua-
tion. Inf. Syst. 36(2), 498–516 (2011)

17. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady (1996)

18. Pedersen, T., Patwardhan, S., Michelizzi, J.: Wordnet: Similarity - measuring the
relatedness of concepts. In: AAAI, pp. 1024–1025 (2004)

19. Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: ACL 1994 (1994)
20. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of

items in large databases. In: ACM SIGMOD 1993, pp. 207–216 (1993)
21. Fu, X., Budzik, J., Hammond, K.J.: Mining Navigation History for Recommenda-

tion. In: IUI 2000, pp. 106–112 (2000)
22. Lin, W., Alvarez, S.A., Ruiz, C.: Collaborative recommendation via adaptive as-

sociation rule mining. In: Data Mining and Knowledge Discovery (2000)
23. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large

databases. In: VLDB, pp. 487–499 (1994)
24. Keller, G., Teufel, T.: Sap R/3 Process Oriented Implementation, 1st edn. Addison-

Wesley Longman Publishing Co., Inc., Boston (1998)
25. Ertek, G., Demiriz, A.: A framework for visualizing association mining results. In:
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