
K. Saeed and V. Snášel (Eds.): CISIM 2014, LNCS 8838, pp. 688–700, 2014.
© IFIP International Federation for Information Processing 2014

Semantic Set Analysis for Malware Detection

Nguyen Van Nhuong1, Vo Thi Yen Nhi1, Nguyen Tan Cam2,
Mai Xuan Phu1, and Cao Dang Tan1

1University of Science Ho Chi Minh City,
Vietnam National University – HCMC, Vietnam

2 University of Information Technology,
Vietnam National University - HCMC, Vietnam

{nvnhcmus,vtynhi2001,camnguyentan}@gmail.com,
mxphu@fit.hcmus.edu.vn, tan@hcmus.edu.com

Abstract. Nowadays, malware is growing rapidly through the last few years
and becomes more and more sophisticated as well as dangerous. A striking
malware is obfuscation malware that is very difficult to detect. This kind of
malware can create new variants that are similar to original malware feature but
different about code. In order to deal with such types of malware, many ap-
proaches have been proposed, however, some of these approaches are ineffec-
tive due to their limited detection range, huge overheads or manual stages.
Malware detection based on signature, for example, cannot overcome the ob-
fuscation techniques of malware. Likewise, the behavior-based methods have
the natural problems of a monitoring system such as recovery costs and long-
lasting detection time. In this paper, we propose a new method (semantic set
method) to detect metamorphic malware effectively by using semantic set (a set
of changed values of registers or variables allocated in memory when a program
is executed). For more details, this semantic set is analyzed by n-gram separator
and Naïve Bayes classifier to increase detection accuracy and reduce detection
time. This system has been already experimented on different datasets and got
the accuracy up to 98% and detection rate almost 100%.

Keywords: Data mining algorithm for classification, x86 instruction set,
obfuscation techniques, malware detection, semantic set.

1 Introduction

Today, malware is deployed up faster and faster and has a variety of spreading types.
According to the McAfee 2012 statistics [1], “malware is going unabated, with no
sign of slowing down”, new malware samples in 2012 grew 50% annually over 2011.
McAfee catalogs covered 100,000 new malware samples every day in 2012, which
means 69 new pieces of malware per minute [1]. Moreover, the obfuscation tech-
niques of malware are being developed more diversely and more complicatedly [2].
New malware samples not only use one obfuscation technique but also combine more
techniques, such as metamorphic malware [2], which could make the difficulty to
malware detection. Many malware detection methods are widely used nowadays, such

 Semantic Set Analysis for Malware Detection 689

as: using signature [4], using data mining for classification [4] or using behavior
features [5]. Even though signature-based detection can easily classify malwares, the
detection’s scope is limited around the well-known malware. Data mining-based
detection can simply recognize malware with the high accuracy but this system
spends more time on both the training process and the detecting process. Moreover,
malware detection based on data mining is in static detection type so it cannot cate-
gorize metamorphic malwares. Behavior-based detection is effective to defeat the
obfuscation techniques; however, its extracting subsystem is too complicated to dep-
loy. In addition, this method belongs to dynamic detection type so it itself has the
natural problems of a monitoring system [3]. For instance, the silent malware is used
VMM (Virtual Machine Monitor) detection techniques: IDT check, LDT check,
MCW check or Virtual PC Special Instruction [3] to detect its executing environment
that is whether virtual or not and then automatically changes to the appropriate
behavior.

There are many studies of malware detection, but each of them has its advantages
and disadvantages. A new detection method by using semantic set as a feature is pro-
posed to recognize malware. Semantic set is a set of values changed on registers and
variable allocated memories when program is executing. With the original hypothesis
which explains that “Two programs are similar to each other if and only if their two
semantic sets are also similar to”, therefore, semantic set is an effective behavior for
identifying malware. In order to get semantic set, either a monitoring system or a
smart tracer tool must be used. In this paper, authors developed an automatic tracer to
overcome the limitations of the monitoring system. In the proposed system, semantic
set is combined with the n-gram separator and Naïve Bayes classifier to become a
more precise malware detection system, which also can detect metamorphic malware.
Moreover, this system will give a new perspective on malware detection method: by
using the dynamic behavior interpreted by malware’s code as an input for the Naïve
Bayes classifier [4]. This system will inherit their strong characteristics to be a
stronger one.

This paper is organized into sections: Section 2 introduces the related studies in
malware detection. Section 3 gives more detail technology about semantic set and its
application in malware detection. Section 4 initiates the proposed system and its expe-
rimental results. Section 5 gives the conclusions and then introduces some future
works.

2 Related Works

From time to time, the malware obfuscation techniques become more and more com-
plicated. Fig. 1 shows the milestone of malware’s camouflages [1].

Fig. 1. The milestone of malware’s camouflage

690 V.N. Nguyen et al.

There are three general methods in malware detection: static method, dynamic me-
thod and hybrid method.

Sachin Jain and et al. [4] used n-hex byte as a signature to detect malware. Instead
of using a common string matching algorithm, they used data mining for classifying
malware. Classwise Document Frequency [4] is proposed to filter the standard n-hex
bytes. It not only reduces the space of n-hex bytes but also supplies a good input for
the classifier. However, this method requires more time in the training and in the
detecting process, especially on big-sized sample files or big datasets. The selected
n-hex bytes can help the classifier to detect malware in the ranges: well-known mal-
wares or simple transformable malwares. With the encrypted malware or advanced
transformable malware (polymorphic malware or metamorphic malware), this method
is not useful.

Without using the static detection method, Mahboobe Ghiasi and et al. [5] devel-
oped the DyVSoR system which recognizes malware by the set of registers’ values.
DyVSoR uses a VMware to monitor the values of some registers as EAX, EBX, ECX
and EDX when the program called API/function calls. After a monitoring time, the set
of register‘s values is considered as an input of matching-based behavior. By experi-
menting, this system has the accuracy up to 96%, higher than Kaspersky [5] at that
time. However, DyVSoR can be hardly used widely, because the threshold of moni-
toring time for a sample file is still an open problem. If the monitoring time is too
short, malware cannot perform its action; in contrast, if the monitoring time is too
long, it could be ineffective. Besides, the restore time after the monitoring will make
the system slower. With the smart malwares, they can detect executing environment
by VMM detection techniques [3] and easily change to the proper behavior. They is
the death weakness (transparent problem) of any monitoring system.

The dynamic method is able to detect the obfuscation techniques of malware,
which static method is unable, but the dynamic method could fail in the silent mal-
ware. To resolve that problem, Nguyen Anh M. and et al. [3] propose the MAVMM
(lightweight VMM) system which can detect silent malware. Authors modify the core
of VMM and remove unnecessary modules to perform only one objective: to monitor
malware behaviors [3]. This system steps over the problems of monitoring systems
and reaches some positive results. For example, the monitoring system status is quick-
ly restored after monitoring a sample file, the monitoring time is fixed and the system
is transparent to malwares [3]. Even though there are improvements, it is difficult to
deploy widely in reality. Besides that, MAVMM’s system needs more supports from
hardware such as the virtual technology. In addition, there are some troubles when the
system removes unnecessary hardware and software modules to make it more
lightweight, but some malwares need network card, SD storage or user information
such as email, system information, etc., to run.

Table 1 shows the advantages and disadvantages of these analysis methods in
malware detection:

Table 1 proves that the feature based dynamic method can bypass almost all of ob-
fuscation techniques and the static method has higher advantage in detection’s time.
Therefore, the malware detection method should use those techniques together to
improve the accuracy and remove problems of the static and dynamic method. Based
on the above ideas, authors developed a malware detection system that uses semantic

 Semantic Set Analysis for Malware Detection 691

set as a dynamic feature, and segments this semantic set into set of 3-gram values [4]
as an input for Naive Bayes algorithm to quickly identify sample files.

Table 1. Comparison of malware detection system

Method Type Advantage Disadvantage

3-gram hex
bytes and Naïve
Bayes [4]

Static

detection

Quickly recognize
familiar malware.

- Spend more cost on train-
ing or detecting process.

- Difficult to detect
advanced transformable
malware.

DyVSoR [5] Dynamic
detection

Detect malware with high
accuracy, including trans-
formable malware.

- Problem of monitoring
system.

- Cannot overcome MM
detection techniques.

MAVMM [3] Advanced
dynamic
detection

Overcome the natural prob-
lem of monitoring system.

- Need supports from hard-
ware and difficult to dep-
loy in reality.

3 Our Approach

Before introducing to the proposed system, some basic terms are explained:

─ Program has a collection of variables which always change their values when is
executed. Those variables are loaded into registers or variable allocated memories
to execute, then the change of their values are similar to the change of values on
registers and variable allocated memories.

─ Set of values changed on any register or variable allocated memory is called se-
mantic string. The set of semantic strings is called a semantic set. The semantic set
contains all changed values in a program instance. In this way, the semantic set is
appreciated as the dynamic feature of the program.

─ Semantic set is considered as a form of dynamic feature which can overcome the
weaknesses of the traditional methods, such as hex code signature [4] or
API/function call signature [6], [7]. As the result, semantic set is used as an n-gram
input of Naïve Bayes classification algorithm [6]. So that, the similarity between
two semantic sets are decided by Naïve Bayes classifier.

In order to become the input for this classifier, each semantic string is separated into
the 3-gram [6] values (a short string contains 3 values) by 3-gram separator [6]. A set
of 3-grams is often very large, therefore, it should be reduced by Classwise Document
Frequency [6] to only get the 3-gram values, namely:

─ The 3-gram values only appear in semantic set of malware or the 3-gram values do
not appear in the semantic set of malware.

─ The 3-gram values appear in semantic set of malware but their probability of fre-
quencies is very high or very low.

692 V.N. Nguyen et al.

After experiments, 2000 3-gram values is enough to be used as a feature for Naïve
Bayes algorithm. Actually, Naïve Bayes algorithm (1) uses all 3-gram value proba-
bilities to identify a sample file: | . ∏ | (1)

Where X = {x1, x2, …, xn} and P(X|Ci) is the probability of sample X in class Ci and
P(Ci) is the probability of class Ci (class C contains all attributes which needs classify-
ing). Due to the property of multiplication, the total probability will be zero or very
near zero if some 3-gram values’ probability is zero or very near zero. It will cause
the Naïve Bayes classifier become ineffective. In order to deal with this problem,
Maximum Likelihood technique is used to increase the accuracy of semantic set
system.

Disassembly and
run auto tracer

3-gram value
patterns

Naïve Bayes
classification

Decision

Using n-gram
seperator with n = 3

Sample files

3-gram values list
and its frequency

Fig. 2. Diagram of malware detection based on semantic set

The modified Naïve Bayes algorithm classifies a sample file by giving two values:
the MALWARE SCORE (the similarity probability between sample file and malware
file) and the BENIGN SCORE (the similarity probability between sample file and
benign file). The decision function is shown in the following pseudo code:

if (MALWARE SCORE > BENIGN SCORE)
 File is MALWARE.
else if (BENIGN SCORE > MALWARE SCORE and
BENIGN SCORE – MALWARE SCORE <= WARNING THRESHOLD)
 File is WARNING.
else File is BENIGN.

Because semantic set is automatically extracted by a tracer tool, so it can overcome
the obfuscation techniques of malware. In the following examples, we will give the
examples and sequentially analyze the non-effect obfuscation of malware to the
change context of semantic set.

Assuming that, there is the original assembly language code:

(1) e6 XOR ax, 0 ;ax = 0
(2) 2069 6e XOR bx, 0 ;bx = 0

 Semantic Set Analysis for Malware Detection 693

(3) 206d 6f ADD ax, 100 ;ax = 100
(4) 2e 0d SUB bx, 10 ;bx = −10
(5) 64 65 2e ADD cx, ax, bx ;cx = ax + bx = 90

The original semantic set is: Sorigin = [ax = {0,100} bx = {0,−10} cx ={90}]
In turn, the equivalent transform of the semantic set is shown through the following

obfuscation techniques (in bold lines):

1−Garbage code insertion.

(1) e6 XOR ax, 0 ;ax = 0
(2) 90 NOP
(3) 45 INC ax ;ax = ax + 1 = 1
(4) 50 PUSH ax ;Push ax into stack.
(5) 58 POP ax ;Pop ax into stack.
(6) 4f DEC ax ;ax = ax−1 = 1−1 = 0
(7) e6 XOR bx, 0 ;bx = 0
(8) 90 NOP
(9) 206d 6f ADD ax, 100 ;ax = 100
(10) 2e 0d SUB bx, 10 ;bx = −10
(11) 03c2 ADD cx, ax, bx ;cx = ax + bx = 90
(12) 83e1 03 AND dx, 0 ;dx = 0
(13) 03c2 ADD dx,dx,0 ;dx = dx + 0 = 0

Semantic set with garbage code insertion is:
Sgarbage = [ax = {0,1,0,100} bx = {0,−10} cx = {90} dx = {0,0}]. As you see, Sorigin

and Sgarbage are absolutely similar.

2−Garbage function or unused function insertion.

Garbage function or unused function insertion actually uses garbage code insertion
but with a larger scale. Thanks to the above definition of semantic set, this obfusca-
tion technique is still not affected to the original semantic set.

(1) e6 XOR ax, 0 ;ax = 0
(2) e6 XOR bx, 0 ;bx = 0
(3) 83e1 03 AND Reg, 0 ;Reg = 0
(4) 83e1 03 ADD Reg, Reg, 100 ;Reg = 100
(5) Loop:
(6) f9 BEQ Reg, 0, (9) ;if Reg = 0, exit loop.
(7) 2e 0d SUB Reg, Reg, 1 ;Reg = Reg −1
(8) GOTO Loop ;continue loop.
(9) 83e1 03 ADD ax, 100 ;ax = 100
(10) 2e 0d SUB bx, 10 ;bx = −10
(11) 83e1 03 ADD cx, ax, bx ;cx = ax + bx = 90
(12) 83e1 03 ADD Reg, Reg, 100 ;Reg = 100
(13) e6 XOR dx, 0 ;dx = 0

694 V.N. Nguyen et al.

(14) Sum:
(15) f9 BEQ Reg, 0, (19) ;if Reg = 0, exit loop.
(16) 83e1 03 ADD dx, dx, 0 ;dx = dx + 0 = dx = 0
(17) 83e1 03 ADD cx, cx, 1 ;cx = cx + 1
(18) GOTO Sum ;exit loop.
(19) 2e 0d SUB cx, cx, 100 ;cx = cx −100 = 90
(20) Exit ;end

Semantic set with the garbage/unused function insertion is:
Sfgarbage = [ax = {0,100} bx = {0,−10} Reg = {0,

100,99,98,97,...,0,100,99,98,97,…,0} cx = {90, 91, 92, 93, 94, 95,…,190, 90} dx =
{0,0,0,….,0}]

The Sfgarbage becomes much larger than Sorigin but the “shadows” of Sorigin (bold in-
struction) still appears in Sfgarbage. So Sorigin and Sfgarbage are also similar.

3− JUMP insertion and register renaming.

(1) e6 XOR eax, 0 ;eax = 0
(2) eb 05 JMP (3)
(3) 2069 6e XOR ebx, 0 ;ebx = 0
(4) eb 05 JMP (5)
(5) 206d 6f ADD eax, 100 ;eax = 100
(6) 2e 0d SUB ebx, 10 ;ebx = −10
(7) eb 05 JMP (10)
(8) 64 65 2e ADD ecx, eax, ebx ;ecx = eax + ebx = 90
(9) 83e1 03 AND edx, 0 ;edx = 0
(10) eb 05 JMP (11)
(11) Exit: ;end.

Semantic set with jump insertion is:
Sjmp = [eax = {0,100} ebx = {0, −10} ecx = {90} edx = {0}]. Therefore, Sjump and

Sorigin are also similar.

4− Equivalent code replacement:

(1) AND ax, 0 ;ax = 0
(2) AND bx, 0 ;bx = 0
(3) ADD ax, 1 ;ax = 100
(4) MUL ax, ax, 100 ;ax = ax*100 = 1*100 = 100
(5) ADD bx, −10 ;bx = bx −10 = 0−10 = −10
(6) ADD cx, ax, bx ;cx = ax + bx = 100 – 10 = 90

Hence, the semantic set is: Sequi = [ax = {0, 100} bx = {0, -10} cx = {90}]
Sequi is similar to Sorigin. Consequently, the equivalent code replacement technique is

still not affected to the semantic set. This is a special feature, which traditional me-
thod cannot perform.

 Semantic Set Analysis for Malware Detection 695

5− Combine many obfuscation techniques.

(1) XOR dx, 0 ;dx = 0
(2) NOP
(3) JUMP (6)
(4) ADD dx, dx, 100 ;dx = 100
(5) JUMP (12)
(6) AND ex, 0 ;ex = 0
(7) INC ex ;ex = ex + 1
(8) PUSH ex ;Push ex into stack.
(9) POP ex ;Get ex from stack.
(10) SUB ex, ex, 1 ;ex = ex −1 = 0
(11) JUMP (5)
(12) ADD cx, dx, ex ;cx = dx + ex = 100 – 10 = 90
(13) GOTO Exit
(14) ADD ex, −10 ;ex = −10
(15) Exit
(16) JUMP (14)

The related semantic set is: Scomplex = [dx = {0, 100} ex = {0, 1, 0, -10} cx = {90}]
This semantic set will increase the number of its strings and the number of values

in each semantic string but the similarity between Sorign and Scomplex is still not
changed. In other words, the transformable code techniques are unlikely to be affected
to the similarity between two programs if their internal processing is equivalent.

6− Code encryption.

Fig. 3. Diagram of malware encryption

The malware belonging to this group has 4 basic parts as in Fig. 2. When the pro-
gram is executed, the decryption part will be executed firstly to decrypt the encryption
code. After that, the final program will become a normal program. This technique is
used by malware to evade detection and loopholes only at runtime. Therefore, the
semantic set of this program will increase some semantic strings of decryption part
but the semantic set similarity between original program and encrypted program re-
mains unchanged.

7− Malware used another technique.

Some malware opens itself only during its execution. It implements functions and
prepares necessary data to execute itself. A sigmoid function is prepared to activate
malware’s behavior and this behavior is not shown explicitly in the executable code.

696 V.N. Nguyen et al.

One simple example:

(1) MOV [0x12345], locate_0x101;
preparing code.

(2) MOV [0x22345], locate_0x102
(3) PUSH [0x1233], locate_0x103
(4) POP [0x1000]

(5) JMP [0x1000]; executable code
(6) JMP [0x12345]
(7) JMP [0x22345]
(8) JMP [0x1233]

In the above code, the commands (1)→(4) prepare data (started address of the
build-in functions) for commands (5)→(8) to be executed by jump commands. The
semantic set includes two parts: runtime semantic strings of malware and semantic
string of the preparing code. This ensures to detect successfully this malware, other-
wise method based on signature such as API/function call or hex bytes cannot do.

In spite of using the same feature as DyVSoR system of Mahboobe Ghiasi [5], the
proposed method has some new characteristics:

─ Instead of using a VMware system to monitor the changed values of the registers
after each API/function call [5], the proposed system identifies malware based on
the semantic set. The modified Pyew tool [8] is used for disassembly PE (Portable
executable) file. Then, all changed values on registers and variables allocated
memory will be extracted automatically into semantic set by our tracer tool. In ad-
dition, DyVSor uses VMware thus increases processing time for each sample file,
but the proposed system limits it.

─ DyVSor only traces the values on basic registers, such as: EAX, EBX, ECX, and
EDX [5] when the executed program calls API/function. This API/function call is
limited by the set of API collected such as network API system, file system API
[5]. Hence DyVSoR is not as general as malware detection system based on se-
mantic set. For that reason, those kinds of malware using the external library with
different API/function calls as OpenGL API, OpenCV API or encrypted API, etc.,
will not be detected correctly by DyVSoR system.

─ Besides that, DyVSoR uses string matching algorithm [5] while the semantic set
system uses Naïve Bayes algorithm to classify sample files. With the long regis-
ter’s value string, the matching algorithm will not work as effectively as Naïve
Bayes algorithm, because Naïve Bayes only uses the features extracted from the
training process instead of using all semantic string.

─ In addition, the semantic set system uses the tracer (running as an interpreter) to
extract the semantic set. Thus, it can control the executing of a program and easily
prevent the threat action of malware without recovery time like the DyVSoR sys-
tem. Moreover, the tracer is independent so it can be integrated into other systems.

In summary, the proposed system used semantic set as an input for Naïve Bayes clas-
sifier. Therefore, this system can inherit the advantages of the semantic set and Naïve
Bayes filter. The system has already been experimented on common datasets and got
the high accuracy.

 Semantic Set Analysis for Malware Detection 697

4 Implement and Experimental Result

4.1 Implementation

In order to compare semantic set method with equivalent malware detection me-
thods, the datasets which have the same ratio in number of files and type of files are
used:

Table 2. Experimental dataset

Dataset number Num. of
files

Type of file

Dataset 1 [7] 85 files 10 Benign, 21 Virus, 34 Worm, 20 Trojan.

Dataset 2 [5] 155 files 20Backdoor, 20 P2Pworm, 20 Trojan, 20
Worm, 20 Virus and 55 Begin.

Dataset 3 [4] 107 files 51 Malware, 56 Benign

Dataset 4 [6] 79 files 18 Benign, 61 Malware

Besides, those datasets are chosen because of two other reasons:

─ Firstly, the datasets include all common very dangerous and many variant mal-
ware’s types such as: worm, backdoor, trojan, virus and benign files belonging to
Windows32 system files.

─ Secondly, the number of samples in the datasets for the semantic set system and
these methods such as API Graph [7], DyVSoR [5], n-hex byte Naïve Bayes [4]
and Structure and Behavior features [6] are similar in ratio. A list of selected mal-
wares is shown in Table III.

Table 3. Clasification of sample’s type in each dataset

No. Name of sample file Classification

1 P2P-Worm-Win32.Agent Worm

2 Backdoor.ASP.Ace Backdoor

3 Backdoor.PHP.Agent Backdoor

4 Trojan.Win32.KillFiles Trojan

5 Virus.Win32.Delf Virus

6 Virus.Win32.Seppuku Virus

7 Worm.Win32.Downloader Worm

8 Worm.Win32.Viking Worm

9 System32 folder Benign

698 V.N. Nguyen et al.

4.2 Experimental Result

Table 4. The evaluation parameters table

No. Parameter Meaning

1 TP The amount of malware files are recognized as malware.

2 FP The amount of benign files are recognized as malware.

3 TN The amount of benign files are recognized as benign.

4 FN The amount of malware files are recognized as benign.

5 Accuracy (TN+TP)/(TN+TP+FN+FP)

6 Detection rate TP/ (TP + FP)

To evaluate the accuracy of the SSSM system, the above parameters are used (Ta-
ble IV). After that, the datasets mentioned in Table III has been tested, the accuracy of
malware detection system is shown in Table V:

Table 5. Detection result of malware detection system based on semantic set

Dataset Evaluation Accuracy Detection rate

1 TN = 9, FN = 1, TP = 75, FP = 0 98.82% 100%

2 TN = 49, FN = 6, TP = 100, FP = 0 96.12% 100%

3 TN = 50, FN = 6, TP = 51, FP = 0 94.39% 100%

4 TN = 17, FN =1, TP = 61, FP = 0 98.73% 100%

The result proves that our malware detection system has ability to detect most of
malware samples in datasets. The detection rate reaches 100% and accuracy is up to
approximately 98.82%.Therefore, this new method should be paid more attention to
by anti-malware researchers. These precision charts reveal the detection result of our
method that compares with API/function Graph, DyVSoR system, n-hex byte Naïve
Bayes and Structure and Behavior feature system.

Fig. 4. The detection rate of semantic set
system and API Graph system

Fig. 5. The accuracy of semantic set system
and DyVSor system

100.00
98.00

96.00
98.00

100.00
102.00

Semantic set
system

API Graph

Detection rate

96.12
96.00

95.90
96.00
96.10
96.20

Semantic set
system

DyVSoR
system

Accuracy

 Semantic Set Analysis for Malware Detection 699

Fig. 6. The accuracy of semantic set system
and n-hex byte Naïve Bayes

Fig. 7. The accuracy of semantic set system
and Structure and Behavior features system

In addition, the system is able to detect some kinds of malware that are difficult
to others. For example, Backdoor.ASP.Agent and Backdoor.PHP.Ace are two
malwares that cannot extract API/function call list. As a result, API Graph method
[7] cannot be used for them, but semantic set system is able. Moreover, the system
can detect the complicated malware as: Worm.Win32.Downloader which has many
variations.

5 Conclusion

Today, malwares are deployed faster and faster and their metamorphosis is more and
more complicated. Nevertheless, the current detection methods together with some
advantages are still limited, so an effective method to classify malware and to be able
to overcome the limitations of the current methods becomes more demanded. We
propose a new method for malware detection that combines semantic set as a dynamic
feature with Naïve Bayes classifier to increase detection accuracy. In addition, the
simulating and extracting the malware behavior by our tracer tool help the detection
system reduce the detection time and get rid of the effect of malware behavior to sys-
tem. Further, our system was experimented on different datasets and gained highly
accuracy, which provides a new aspect for anti-malware researchers.

In order to improve the accuracy and realize the semantic set system, some future
works are listed:

1. Integrate semantic set with other methods to create a new malware detection that
can detect malware on a large scale and high precision.

2. Improve system’s performance by combining between parallel CPU and GPU pro-
gramming in order to build a real-time system for malware detection.

3. Develop tracer tool to be a debugger that extracts values on registers and variable
allocated memories more and more exactly and therefore increases the reliability
and exactness of malware detection system.

94.39

93.00

92.00
93.00
94.00
95.00

Semantic set
system

n-hexa byte
Naïve Bayes

Accuracy
98.73

96.50

95.00
96.00
97.00
98.00
99.00

Semantic set
system

Structure and
Behavior
feautures

Accuracy

700 V.N. Nguyen et al.

References

1. Infographic: The State of Malware, McAfee Security (2013),
http://www.mcafee.com/us/security-awareness/articles/
state-of-malware-2013.aspx

2. Rad, B.B., Masrom, M., Ibrahim, S.: Camouflage in Malware: From Encryption to Meta-
morphism. International Journal of Computer Science & Network Security (2012)

3. Nguyen, A.M., Schear, N., Jung, H., Godiyal, A., King, S.T., Nguyen, H.D.: MAVMM:
Lightweight and purpose built VMM for malware analysis. In: Computer Security Applica-
tions Conference (2009)

4. Jain, S., Meena, Y.K.: Byte Level n–Gram Analysis for Malware Detection. In: Venugopal,
K.R., Patnaik, L.M. (eds.) ICIP 2011. CCIS, vol. 157, pp. 51–59. Springer, Heidelberg
(2011)

5. Ghiasi, M., Sami, A., Salehi, Z.: DyVSoR: Dynamic Malware Detection Based on Extract-
ing Patterns fromValue Sets of Registers. The ISC International Journal of Information Se-
curity (2013)

6. Alazab, M., Layton, R., Venkataraman, S., Watters, P.: Malware detection based on struc-
tural and behavioural features of API calls. In: The Proceedings of the 1st International Cy-
ber Resilience Conference (2010)

7. Elhadi, A.A.E., Maarof, M.A., Osman, A.H.: Malware Detection Based on Hybrid Signa-
ture Behavior Application Programming Interface Call Graph. American Journal of Applied
Sciences (2012)

8. Pyew Python tool, https://code.google.com/p/pyew/
9. Virus heavens Snapshot, https://archive.org/details/vxheavens-2010-

05-18

	Semantic Set Analysis for Malware Detection
	1 Introduction
	2 Related Works
	3 Our Approach
	4 Implement and Experimental Result
	4.1Implementation
	4.2 Experimental Result

	5 Conclusion
	References

