
C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 435–445, 2014.
© IFIP International Federation for Information Processing 2014

PPMS: A Peer to Peer Metadata Management Strategy
for Distributed File Systems

Di Yang, Weigang Wu, Zhansong Li, Jiongyu Yu, and Yong Li

Department of Computer Science, Sun Yat-sen University
Guangzhou 510006, China

{yangdi5,lizhans,yujiongy,liyong36}@mail2.sysu.edu.cn,
wuweig@mail.sysu.edu.cn

Abstract. Distributed file system is one of the key blocks of cloud computing
systems. With the fast increase of user scale and data amount, metadata
management has become a crucial point affecting the overall performance of a
distributed file system. In this paper, we design and implement PPMS, a novel
metadata management strategy in a peer to peer way. Different from existing
metadata management methods, we adopt a two layer structure to achieve high
scalability and low latency. The upper layer is metadata index server, which is
used to store metadata of directories, while the lower layer consists of metadata
servers to store the metadata of files. More importantly, the lower layer is
organized in a peer to peer way to further improve scalability. We implement a
prototype file system based on PPMS and evaluate its performance via
experiments. The results show that our design can achieve high performance
with in terms of time latency and system throughput.

Keywords: Distributed File System, Metadata Management, Scalability, Low
Latency, Peer-to-Peer.

1 Introduction

Distributed file system is one of the key enabling technologies for distributed
computing, especially cloud computing [7][8][17]. Although metadata usually
accounts for only a very small part of a distributed file system in terms of data size,
more than half (50%~80%) of file operations are involved with metadata [1].
Metadata management has become one of key issues in distributed file system [13],
and it can significantly affect the overall performance and scalability in large-scale
distributed file system [2][17].

In most existing distributed file systems, such as HDFS of Hadoop [7] and GFS
from Google [8], there is only one single metadata server (MDS for short), which is
likely to become a bottleneck as users and the quantity of files increase. With the
rapid increase of user scale, such metadata management is definitely not scalable
enough.

Although there have been quite a number of distributed metadata management
solutions proposed by researchers, including static subtree partitioning [1], dynamic

436 D. Yang et al.

subtree partitioning [4], such tree-based metadata management strategies cannot scale
well due to the tight coupling among metadata servers. To address this problem, peer
to peer based metadata management strategies [5] have been recently proposed, which
organize metadata servers in an ad hoc way. Such metadata management strategies
are well scalable, but they cannot achieve fast metadata access due to the lack of
connections among metadata servers and consideration of user behaviors.

In this paper, we propose a novel peer to peer based metadata management
strategy, named PPMS (Peer-to-Peer Metadata Service), which also organizes
metadata servers in a peer to peer way. However, different from existing peer to peer
metadata management, we combine hierarchy structure with peer to peer way. More
precisely, we propose the concept of metadata index server (MIS for short). Our
design has two layers of servers, which are in charge of metadata of directories and
files respectively. MIS is in the upper layer and takes charge of managing the
metadata of directories. MDSs compose the lower layer and manage the metadata of
files. The correspondence between a file metadata and its local MDS is established
based on the location of the client that creates the file. Compared with existing
metadata management strategies, PPMS can achieve a better tradeoff between
scalability and latency.

To validate the correctness of PPMS and evaluate its performance, we have also
developed a prototype file system, named PPFS. We test PPFS using the popular
benchmark tool Postmark [16] and the RES trace. Various operations, including read,
creation, are executed to measure access latency and system throughput. MooseFS
[14] is also tested for comparison purpose. The results show that PPMS can
outperform MooseFS in nearly all cases.

The rest of the paper is organized as follows. Section 2 briefly reviews existing
solutions for metadata management, especially peer to peer based ones. We describe
the design of PPMS and PPFS in Section 3. Section 4 presents the performance
evaluation based on experiments. Finally, Section 5 concludes the paper and suggests
future directions.

2 Related Works

With the emergency of large-scale distributed file systems that separate metadata
from file read/write operations, metadata management strategies has become a hot
research topic and quite a number of metadata management strategies have been
proposed.

Static subtree partitioning [1] divides the whole file directory tree into non-
overlapped partitions, which are assigned to different MDSs by the system
administrator. The partitioning is static and can only be changed manually. This
strategy is very simple and easy to implement. However, it is not flexible and may
face the problem of workload imbalance among MDSs. Re-balancing will cause large
overhead. Dynamic subtree partitioning [4] is proposed to solve the load imbalance
problem of static partitioning. It divides the whole directory tree into overlapped
partitions, each of which is assigned to one MDS dynamically. By migrating heavily

 PPMS: A Peer to Peer Metadata Management Strategy for Distributed File Systems 437

workload metadata automatically and overlapping popular partitions, the workload
among different MDSs can be well balanced [12]. However, such design requires
additional mechanism to maintain consistency among different copies of the same
piece of metadata.

Hash based partition [3] can also solve the imbalance problem of static partition. A
hash function based on file identifier is used to distribute the workload among
metadata servers. With a well designed hash function, load balance among MDSs is
achieved easily. However, rename operations or change of MDSs may cause lots of
metadata migrations crossing MDSs. Another drawback is that hashing inherently
discards the advantage of locality.

All strategies above are based on portioning of the directory tree. Such strategies
can achieve high performance in terms of access latency, but may suffer from poor
scalability. On the other hand, with the increase of user scale and data scale,
scalability is becoming more and more important. To achieve high scalability in
metadata management, peer to peer based strategies have been proposed.

Hierarchical Bloom-Filter Array (HBA) [5] uses a two-tier probabilistic array, i.e.
Bloom filter array, to calculate corresponding MDS to the file a user want to query. In
the probabilistic array, the first layer has a higher accuracy ratio but only part of the
metadata stored, and the second layer stores all the metadata about the files but has a
lower accuracy ratio. When the number of files increases, HBA will have a demand of
large memory space to ensure a certain degree of accuracy.

Grouped Hierarchical Bloom-Filter Array (G-HBA) [6] is an extension of HBA by
introducing the concept of group of MDS. This scheme logically organizes MDSs into
a multi-layered query hierarchy and exploits grouped Bloom filters to efficiently route
metadata requests to desired MDS through the hierarchy.

Besides, there is some particular metadata management for special requiremnt
including Spyglass and SmartStore [9] [10] .

Although peer to peer metadata management based on Bloom filter can scale easily
due to the loose coupling among MDSs, such strategies are generally probabilistic in
terms of locating a file, and consequently may suffer from long access latency [11] .

3 The Design and Implementation of PPMS

3.1 Overview of PPMS

Basically, we follow the idea of peer to peer file sharing, where each node can access
data at other peers in a fully distributed way. Peer to peer approach can achieve high
scalability easily and is also suitable for metadata management. However, to avoid
long file access latency, we extend peer to peer based approach by introducing a two-
tier hierarchy.

Metadata generally includes directory information and file information in
distributed file system. And our proposed metadata strategy PPMS consists of two
types of servers, i.e. metadata index server (MIS) and metadata server (MDS)
correspondingly. MIS is mainly responsible for directory attributes, query and load
balancing, while MDS is primarily responsible for the file attributes. MIS and MDS
interact with each other, work together to complete the management of metadata, and

438 D. Yang et al.

accordingly handle a variety of user operations. In addition to the herein of metadata
types, there is a classification for MDS logically, i.e. the local MDS and the related
MDS. Local MDS is that a client mounts initially, while related MDSs represents
MDSs that are binding with individual directories and most likely to store nonlocal
file in that directory. The overall architecture of the PPMS is shown in Fig. 1.

Fig. 1. Overview of PPMS. There are one MIS and multiple MDSs in PPMS, and MDSs are
divided into local MDS and related MDS logically.

3.2 The Design of MIS

MIS manages the entire directory metadata information within PPMS, such as
directory name, permissions, user name, group name, related MDS list and so on.
MIS receives directory-related requests from MDS and provides directories
operations, such as directory deletion, directory creation and so on. If a client queries
for file metadata, the metadata that cannot be found in both the local MDS and related
MDS or there is no related MDS for the file’s parent directory, then the request will
be forwarded to MIS to retrieve the corresponding metadata.

Although it hasn't had time to realize, MIS is a coordinator for load balancing
among MDSs. MIS can monitor the workloads of MDSs via metadata requests
received. If some MDSs have too much more workloads than others, MIS will invoke
the migration procedure to migrate metadata from busy MDS to those with low
workloads. With such mechanism, workloads balance is achieved in the scope of
metadata service.

3.3 The Design of MDS

A MDS stores the metadata of files, including file name, permission, user name, user
group, size, etc. Each client is associated with its local MDS. When a client creates a
file, the file’s metadata will be stored at the local MDS, and the metadata of its parent
directory will be sent to the MIS.

One MDS becomes a local MDS once a client has mounted on it. As the local
MDS for a client, it is directly responsible for the client’s requests. Before mounting,
the client configures the IP and port information of the local MDS. Then the client
keeps contact with its local MDS. Also, the local MDS has become the only entrance
for the client to the entire metadata management system. Compare to the other MDSs,
the local MDS has a greater possibility to store the metadata that its corresponding
clients requests.

 PPMS: A Peer to Peer Metadata Management Strategy for Distributed File Systems 439

Besides, every MDS also maintains a related MDS list for each directory of the
files whose metadata is stored locally. A related MDS is designed for directory, and it
is the node that has the file’s attributes under the same directory. That is, a related
MDS has metadata of files in the same directory. Related MDS also has a good
possibility to have files under the same directory, and can be queried when the
metadata requested is missed at the local MDS itself.

The design of related MDS is the core of PPMS. In the beginning, none of related
MDS is defined in each MDS. When a client reads the metadata of given file, which
is missing at the local MDS, MIS will be queried and the metadata of the file will be
found at another MDS through MIS. Then, the requested MDS is defined as the
related MDS for this file’s parent directory in the local MDS. Since the number of
MDS is uncertain, which the related MDS for a directory has one is not an effective
solution when there is a very large number of MDS. For each directory, there may be
more than one related MDSs. The number of MDS can be determined based on the
availability of storage space and other factors.

3.4 Data Access

PPMS provides low latency and improves service quality continually through three
layers of query structure after Related MDS appeared. The procedure of accessing a
file is shown in Figure 2.

Fig. 2. The procedure of accessing a file. The query of a file involves three levels: looking up
the storage of local MDS, looking up the related MDS and looking up MIS.

The first layer of the query structure is the local MDS, which has great probability
to meet client needs by directly dealing with write and read requests. In general, files
under the same directory have a great correlation and it is ordinary for a client who has
interests in the same types. Therefore, the related MDS has also a high hit ratio as the
second layer of the query structure. Moreover, the last layer of the query structure is
MIS, which masters all the directory information to satisfy all client requests and avoid
global broadcasting. As a result, PPMS has low latency to content clients’ requests
through hierarchical query structure after analyzing the user possible behavior.

3.5 PPFS -- A Prototype File System Using PPMS

In order to verify the feasibility and correctness of our strategy, we have implemented
a prototype system, called PPFS, using C programming language. The system consists
of three modules: metadata management module, chunk server (i.e. node storing file

440 D. Yang et al.

data) module, and client module. In addition, metadata management module, which is
also called PPMS module, is responsible for managing allover metadata and
namespace, and this module also includes MIS module and MDS module designed as
stated above. And the job of chunk server module is to store actual file data. In
addition, client can get file data in the distributed file system through client module on
the mounted point. To simplify the implementation, client module is developed based
on FUSE [15], a file system in user space included in the kernel of linux and widely
used by many fields system, such as ZFS, glusterfs and lustre. Besides, we have also
implemented client cache, MDS cache and chunk server cache to improve the
performance of file access referring to other file system. Figure 3 shows the overall
architecture of our PPFS prototype.

Fig. 3. Overview of PPFS. The system consists of three modules: PPMS module, chunk server
module, and client module.

4 Performance Evaluation

In order to evaluate the performance of PPMS, we deploy the PPFS prototype. To
make the experiment more persuasive, we did two experiments.

In the first experiment, this test was divided into two parts to show the advantage
of PPMS. In the first part, we simply choose MooseFS to compare, because the first
part just want to run PPFS with a MDS, and to look for a single MDS system to make
a comprision. In addition, PPFS implementation refers to MooseFS, which has only
one MDS, and MooseFS is a light weight distributed file system that has been widely
used for research and testing [19] with a single MDS [14] . In the second part, we test
the performance of the system by increasing the number of MDS isometric.

In the second experiments, we simulate the metadata operations using the RES
traces and measure the performance in terms of hit ratio of the local MDS and the
related MDS.

 PPMS: A Peer to Peer Metadata Management Strategy for Distributed File Systems 441

4.1 Testing Using Postmark

The testing is conducted using Postmark [16], a file system benchmarking software
widely used. Postmark generates an initial pool of random text files ranging in a
configurable size. Once this pool is created, a specified number of transactions,
including create, delete, read and append, are performed on these files randomly.
When all the transactions have completed, the remaining files and directories are
deleted and statistics are done to compute the performance metric values. We use
several metrics, including total time, number of operations per second, system
throughput, etc.

We installed MooseFS on a computer equipped with 1G memory and running
Ubuntu 11.10 and deployed PPFS on a machine with the same deployment. We use
four performance metrics to measure performance of PPMS. These four metrics
includes total time to complete all the transactions, number of transactions per second,
number of creation per second and number of read per second.

When transaction is 2000 and number of files increase, the results of total
execution time are plotted in Figure 4. First, we can see obviously the effect of
number of files. More files are in the system, more time is needed. This is expected.
Compared with MooseFS, PPFS can execute much faster in nearly all cases of file
numbers. This clearly shows the advantage of our design. In PPFS, two-layer
hierarchy helps much in locating a file.

Fig. 4. Total execution time Fig. 5. Number of transactions per second

Figure 5 demonstrates how many transactions can be completed per second. We
test different numbers of transactions to show the performance under different cases.
With the number of transaction increases from 2000 to 5000, the number of
transactions processed by either system decreases. This is because that, with more
transactions, there may be more conflicts in data update, and then fewer transactions
can be completed per second.

Compared with MooseFS, PPFS performs much better since PPFS is not affected
much by the increase of transaction number. With the help of MIS, which has a whole
view of PPFS, PPFS can avoid conflicts in operations and consequently handle more
transactions in the same time duration.

442 D. Yang et al.

Fig. 6. Number of creations per second Fig. 7. Number of read per second

Figure 6 and Figure 7 show the results of file creation and file read respectively.
Comparing PPFS and MooseFS, we can see that PPFS can read/create files faster than
MooseFS, in most cases. The difference increases with the increase of transaction
number. This can be explained as follows. When a file is created in MooseFS, not
only the metadata of the file need to be added, but also the hierarchical directory
structure needs to be updated at the MDS. In PPFS, two different nodes are used to
maintain the file metadata and directory metadata respectively, and obviously the task
can be conducted faster. Of course, collaboration between MDS and MIS may cause
addition overhead.

MooseFS is faster than PPFS only when the number of transactions is small. This
because that, with few files, the directory structure is simple and the benefit of
separating file metadata and directory metadata is counteracted by the overhead of
cooperating MIS and MDS.

Finally, we examine the effect of number of MDSs in terms of total time by
Postmark. Different from previous experiments, it has 14 machines, one of which
running Windows 7 and others still running Ubuntu 12.04. The only one running
Window 7 manipulates all Ubuntu machines using Xshell. Every client node creates
300 files and deletes all the files by Postmark at the same time. The results are plotted
in Figure 8. We vary the number of MDSs from one to four. As expected, the total
time decreases when the number of MDSs increases.

1 2 4
4

6

8

10

12

14

16

18

to
ta

l
ti

me
(s

)

num of MDS

total times(s)

Fig. 8. Average latency of each request

 PPMS: A Peer to Peer Metadata Management Strategy for Distributed File Systems 443

4.2 Trace Simulation

To verify our system better, we simulate the metadata operations using RES trace and
measure the performance in terms of hit ratio of the local MDS and the related MDS.
RES trace was collected from 13 machines on the desktops of graduate students,
faculty, and administrative staff of their research group project during one year at
University of California Berkeley in 1996 and 1997 [18]. These hosts were used for a
wide variety of tasks including document processing, program development,
graphically displaying research results, email, and web browsing [18].

We downloaded part of data from official website and analyze data referring to the
online prompts step. Since we only care about the metadata, operations that are not
related was not extracted. Due to PPFS does not have directories and files at the
beginning, we should create corresponding files and directories for replaying using a
appropriate strategy and then replay RES trace on PPFS.

Limited by the experiment environment, we deploy a mini systems composed of 9
machine. Because real data is not involved in the replay, the chunk server module was
not involved. In this system, there are one MIS, four MDSs, and four clients. After
different machines running corresponding processes separately, the results are shown
in Figure 9 and Figure 10.

Figure 9 and Figure 10 show hit ratio of MDSs by replaying RES trace on PPFS.
We can clearly tell that the hit ratio of local MDSs are at a high level from the first
figure. As time goes by and more traces are performed, the hit ratio of local MDSs are
almost increasing gradually. This is because that design of local MDS in PPMS refers
to the user's behavior, and it is directly responsible for user’s write and read
operations. At the same time, hit ratio of related MDSs has a common trend that the
hit ratio is getting higher and higher in a long time. At the beginning, related MDSs
need to establish and replace the antiquated, inefficient related MDSs, so the related
MDSs were not efficient at that time. Due to the design of related MDS is based on
user behavior in accessing files in the same directory with a high frequency and the
files in the same directory is more likely in one MDS. Related MDSs has a high hit
ratio overall with time increasing.

Fig. 9. Hit ratio of local MDS Fig. 10. Hit ratio of related MDS

444 D. Yang et al.

5 Conclusion and Future Work

Distributed file system is one of the key blocks for distributed computing systems
including cloud computing platforms. We focus on metadata management to achieve
high scalability and low access latency simultaneously. With the novel concept of
metadata index server, we divide metadata into two layers, i.e. file metadata and
directory metadata, and propose a corresponding two layer metadata management
strategy. In the lower layer, MDS servers are organized in a peer to peer way, so as to
achieve high scalability. In the upper layer, MIS is used to achieve low latency. We
have implemented a prototype file system and tested it using Postmark and RES.
Compared with MooseFS, our design can achieves significant improvement.

Our design can be further improved and extended in many directions as the first
stage. One extension may be multiple MISs. In the current design, there is only one
MIS, which is prone to single point failure and may become a bottleneck in
performance. A peer to peer MIS layer will be obviously more scalable and reliable.
Another interesting work is metadata replication, which should be an effective way to
reduce metadata access latency and improve reliability. Finally, the system
implementation should be further improved.

Acknowledgments. This research is partially supported by National Natural Science
Foundation of China (No. 61379157), Guangdong Natural Science Foundation (No.
S2012010010670), and Pearl River Nova Program of Guangzhou (No.
2011J2200088).

References

1. Roselli, D.S., Lorch, J.R., Anderson, T.E.: A Comparison of File System Workloads. In:
USENIX Annual Technical Conference, General Track, pp. 41–54 (2000)

2. Brandt, S.A., Xue, L., Miller, E.L., et al.: Efficient metadata management in large
distributed storage systems. In: 2012 IEEE 9th International Conference on Mobile Ad-
Hoc and Sensor Systems (MASS 2012), p. 290. IEEE Computer Society (2012)

3. Corbett, P.F., Feitelson, D.G.: The Vesta parallel file system. ACM Transactions on
Computer Systems (TOCS) 14(3), 225–264 (1996)

4. Weil, S.A., Pollack, K.T., Brandt, S.A., et al.: Dynamic metadata management for
petabyte-scale file systems. In: Proceedings of the 2004 ACM/IEEE Conference on
Supercomputing, p. 4 (2004)

5. Zhu, Y., Jiang, H., Wang, J.: Hierarchical bloom filter arrays (hba): a novel, scalable
metadata management system for large cluster-based storage. In: 2004 IEEE International
Conference on Cluster Computing, pp. 165–174. IEEE (2004)

6. Hua, Y., Zhu, Y., Jiang, H., et al.: Scalable and adaptive metadata management in ultra
large-scale file systems. In: ICDCS, pp. 403–410 (2008)

7. Borthakur, D.: The hadoop distributed file system: Architecture and design. Hadoop
Project Website 11, 21 (2007)

8. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. ACM SIGOPS
Operating Systems Review 37(5), 29–43 (2003)

 PPMS: A Peer to Peer Metadata Management Strategy for Distributed File Systems 445

9. Leung, A.W., Shao, M., Bisson, T., et al.: Spyglass: Fast, Scalable Metadata Search for
Large- Scale Storage Systems. FAST, pp.153-166 (2009)

10. Hua, Y., Jiang, H., Zhu, Y., et al.: SmartStore: A new metadata organization paradigm
with semantic-awareness for next-generation file systems. In: Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis, pp. 1–12.
IEEE (2009)

11. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: A survey. Internet
mathematics 1(4), 485–509 (2004)

12. Weil, S.A., Brandt, S.A., Miller, E.L., et al.: Ceph: A scalable, high-performance
distributed file system. In: OSDI, pp. 307–320 (2006)

13. Wang, J., Feng, D., Wang, F., et al.: MHS: A distributed metadata management strategy.
Journal of Systems and Software 82(12), 2004–2011 (2009)

14. Moosefs, http://www.moosefs.org/
15. FUSE, http://fuse.sourceforge.net/
16. Katcher, J.: Postmark: A new file system benchmark. Technical Report TR3022, Network

Appliance (1997), http://www.netapp.com/tech_library/3022.html
17. Patil, S., Gibson, G.A.: Scale and Concurrency of GIGA+: File System Directories with

Millions of Files. In: FAST 2011, p. 13 (2011)
18. Trace,tracehost.cs.berkeley.edu
19. Yu, J., Wu, W., Li, H.: DMooseFS: Design and implementation of distributed files system

with distributed metadata server. APCloudCC, pp.42-47 (2012)

	PPMS: A Peer to Peer Metadata Management Strategy for Distributed File Systems
	1 Introduction
	2 Related Works
	3 The Design and Implementation of PPMS
	3.1 Overview of PPMS
	3.2 The Design of MIS
	3.3 The Design of MDS
	3.4 Data Access
	3.5 PPFS -- A Prototype File System Using PPMS

	4 Performance Evaluation
	4.1 Testing Using Postmark
	4.2 Trace Simulation

	5 Conclusion and Future Work
	References

