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Abstract. Prét a Voter is an end—to—end verifiable voting scheme, that
uses paper based ballot forms that are turned into encrypted receipts.
The scheme was designed to be flexible, secure and to offer voters a famil-
iar and easy voting experience. Secrecy of the vote in Prét a Voter relies
on encoding the vote using a randomized candidate list in the ballots.
In a few variants of Prét a Voter a verifiable shuffle was used in the
ballot generation phase in order to randomize the candidates. Verifiable
shuffles are cryptographic primitives that re-encrypt and permute a list
of ciphertexts. They provide proofs of correctness of the shuffle and pre-
serve secrecy of the permutation. This paper proposes a new verifiable
shuffle “D—Shuffle” that is efficient. We provide a security proof for the
D-Shuffle. Furthermore, we show that using the D—shuffle for generating
ballots in Prét a Voter scheme ensures its security against: “Authority
Knowledge Attack” and “Chain of Custody Attack”.
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1 Introduction

A shuffle is a permutation and re-randomization of a set of ciphertexts. Shuffling
itself is relatively easy; the challenge is to provide a proof of correctness of a
shuffle that anyone can verify without revealing the permutation. A mix-net is a
series of chained servers each of which applies a shuffle to some input ciphertexts,
before passing the output to the next server. Mix-nets were used widely in e-
voting schemes. The main motivation in using them is to submit encrypted votes
into a mix-net where every mix-server shuffles the votes. The output of the mix-
net is then decrypted providing anonymity to the voters. Using verifiable shuffles
prevents mix-servers from cheating.

In this paper we focus on one of the well known end-to-end verifiable schemes:
Prét a Voter . The Prét a Voter approach to verifiable voting, randomizing
candidate order on ballot to encode votes, was first proposed by Ryan in [16].
Since then several papers were introduced to add extra interesting properties to
the original scheme [16, 18, 21]. Verifiable shuffles were used in Prét & Voter either
to mix the encrypted receipts before publishing them on a public bulletin board,
and/or to randomize the candidates on the ballot. The shuffle we propose in this
paper is focused on the latter case.
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1.1 Prét a Voter Overview

In “Prét a Voter ” ballots are given to voters via a confidential channel. The
ballot has a left hand side (LHS) with a randomly permuted list of candidates,
and a right hand side (RHS) which carries an encryption of the order of the
candidates in the LHS, usually referred to as the onion for historical reasons.
Each ballot has a unique serial number (which could be a hash of the onion),
(SN), for administrative purposes such as searching for the ballot on the bulletin
board, etc (See Figure 3, Original scheme).

The voting takes place in the polling station. In the booth, the voter places a
mark next to the name of the candidate she wants to vote for. She separates the
RHS from LHS, shreds the LHS and takes the RHS to an official who scans and
sends it to the tallying authority. A signed copy of the RHS is given to the voter
to keep. The onions are used in the tabulation to interpret the voter’s mark on
the scanned RHS, enabling the tallying authorities to count the votes. The voter
can verify that her vote has been received by checking the onion, serial number
and choice of index, against the published results on the bulletin board.

The details of the procedure of tabulation, randomization of ballots, tallying,
distributing the ballots, etc, varies in the different versions of Prét a Voter [16,
18, 21]. On a conceptual level the procedure is the same. Random auditing of
the ballots is used in all versions of Prét a Voter to ensure the well-formedness
of ballot forms. The auditing procedure involves decrypting onions on selected
ballot forms and checking that they correspond to the LHS order. Given that the
authorities responsible of creating the ballots can not predict which ballots will
be chosen for auditing, it is hard to cheat without a high possibility of getting
caught.

1.2 Motivation and Contribution

The Victorian State elections [5, 4, 3] considered developing the first state
government-level universally verifiable public e-voting system in the world, based
on Prét a Voter . The proposed mechanism of constructing the ballot was adopted
from [21] and is based on using a verifiable shuffle to permute the candidates on
the ballot. The proof of shuffle is used as proof of well formness of the ballot.
The scheme in [21] had two vulnerabilities:

— Authority knowledge attack: All ballots are generated by one authority.
Therefore this authority is trusted to maintain both privacy and receipt-
freeness. Generating the ballots in a distributed fashion is desirable, because
it ensures that no one but the voter ever learns the candidate ordering.
However, there are three major obstacles preventing from that in [21]:

e Proving the ballot is well-formed in the distributed fashion.

e Printing the ballot without the printer(s) learning the order.

e Ensuring robustness so that the scheme can be run even in the presence
of some dishonest election officials.
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— Chain of Custody: The ballot secrecy in Prét a Voter relies on the fact that no
one can know the order of the candidates unless they own the decryption key
of the onion. However, the ballot form LHS contains the candidate order as
plaintext. This means that the chain of custody between the ballot generation
and until the ballot reaches the voter should be trusted. Ryan and Peacock
have discussed an alternative approach [17] referred to as Print-on-Demand.
The idea is to print ballot forms at the point they are needed. The ballot will
have two onions—the LHS one which can be decrypted in the polling station,
and RHS one which can be decrypted by the Prét a Voter tellers as in the
original scheme.

The verifiable shuffle needs to be efficient to cope with the number of ballots
generated and verified in the election time. In this paper we propose an efficient
and secure verifiable shuffle for that purpose referred to as the D—shuffle (it uses
disjunctive proofs for verifying the shuffle hence the name). The D—shuffle can
also provide a distributed way of creating the ballot and can provide parallel
shuffling that enables Print—on-Demand with minimum computational cost.

2 The Design of the Verifiable D—Shuffle

In the design of the D-Shuffle we require an encryption scheme with Homo-
morphism and Re-encryption properties. Assume we have an encryption scheme
E = (KeyGen, Enc, Dec). Let the key pair generated be (pk, sk). Let 1,72
be the randomization factors used in encrypting. Let M, M7, My be plaintext
messages. The properties we require in this paper are:

— Homomorphism: Multiplying two ciphertexts results with a third ciphertext
such that: Enc(pk, My,r1).Enc(pk, Ma,r2) = Enc(pk, My + Ma, 1 + 72);

— Re-encryption: An encryption CT = Enc(pk, M,r1) can be re-encrypted
such that ReEnc(CT,ry) = Enc(pk, M,ri + r2).

The general idea behind our shuffle is derived from Theorem 1. We explain the
Theorem using Definition 1 and prove it as follows;

Definition 1. Sequence M = (ma,...,my) is a super—increasing sequence if
every element of the sequence is positive integers and is greater than the sum of
all previous elements in the sequence (i.e. my > Z;:ll m; ).

Theorem 1. Let M = (mq,...,my) be a super—increasing sequence and S =
Soami. If X = (21,...,2n) is a solution of

S = Zn:.%‘i
i=1

such thatVj € {1,...,n} 1 x; € M, then (x1,...,2y) is a permutation of M.
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Proof. Recall the subset sum problem: a sequence of integers M and an integer
S, find any non-empty subset X that sums to S. This problem is proven to
have either one unique solution or none [11] over super-increasing sequences.
Given Theorem 1 assumes the existence of the subset X C M and assumes that

n

S = an then by the uniqueness property X is a permutation of M.

=1

2.1 Intuition Behind the Design

We explain the intuition behind our design of the D—Shuffle using Theorem 1.
The general idea is to assume all elements of Theorem 1 are encrypted and
we prove the theorem holds using zero knowledge proofs. Let M be a super—
increasing sequence that is encrypted and fed to the D—Shuffle as input. Assume
the output is the encrypted version of X = (21, ..., 2, ). According to Theorem 1
the output is a permutation if the following two conditions hold:

1. The Belonging Condition: Vj € {1,...,n}:z; € M.
In the D—Shuffle this is equivalent to saying “All output ciphertexts belong
to the list of all input ciphertexts”. We require the disjunctive re-encryption
proof shown in Figure 1.

2. The Summation Condition: S =" m; = 1 | z}.
In the D—Shuffle this is equivalent to saying that the homomorphic summa-
tion of the input ciphertexts and the homomorphic summation of the output
ciphertexts are encryptions of the same plaintext value (i.e. the output sum
is just a re—encryption of the input sum). We require the re-encryption proof
shown in Figure 2.

Statement: Given the ciphertext ¢; and list of ciphertexts {ci,...,cn} prove
the knowledge of r such that the following is true: [¢; = ReEnc(c;i, )] A e €
{c1,...,cn}]

Creating the proof:

m; = DRE.Proof({ci,...,cn}, ¢, 0k, 1)
Verifying:

{0,1} = DRE.Verify({ci,...,cn}, ¢, 0k, 7;)

Fig. 1. Disjunctive Re-Encryption (DRE)

Statement: Given two ciphertexts ¢, ¢ prove knowledge of r such that: ¢ =
ReEnc(c,r)

Creating the proof: m = RE.Proof(c,¢,r)

Verifying: {0,1} = RE.Verify(c,¢,m)

Fig. 2. Re-Encryption Zero Knowledge Proof (RE)

2.2 The Construction of the D—Shuffle

Let the plaintext we intend to encrypt and shuffle be the super—increasing se-
quence M = (my,...,my). We start with creating a list {ci,...,c,} such that
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¢k = Enc(pk, my, 1). Note that we can verify correctness of the encryption easily
since the randomization is 1.

The Shuffling Procedure:

1. Choose r1 ...7r, random values.

2. Create the output list {c1,...,¢,} of ciphertexts by re—encrypting and per-
muting such that ¢; = ReEnc(c,x) for some ¢ € {c1,...,¢n}.

3. Create m; = DRE.Proof({c1,...,¢n},¢j, pk, 7).

1

4. Let S = ka and R = Zrk.
k=1 k=1

n

5. Let C = Enc(pk,S,n+1) = Hck. Note that the randomization factor

k=1
equals n 4 1 since the randomization factors of the ¢ is all equal to 1.

6. Let C = H@k = Enc(pk,S,n+ 1+ R) = ReEnc(C, R).
k=1

7. Create Re-Encryption Zero Knowledge Proof # = RE.Proof(C, C, R).

One can have a mix—net where each mix—server ¢ runs the D—shuffle on the
output of the server i — 1.

Verifying the Shuffle:

1. Compute from the input ciphertexts C' = H Ck-

k=1

2. Compute from the output ciphertexts C = Hék.

k=1
3. Forall js.t.j € {1,...,n}; Check DRE. Verify({ci,...,cn}, ¢, pk,m;) = 1.
4. Check RE.Verify(C,C,7) =1.

2.3 Security of the D—Shuffle

There are three properties that a verifiable shuffle should achieve: secrecy of the
permutation, soundness of the proofs, and correctness of the proofs.

— Correctness of the verification of the shuffle implies that an honest prover
(shuffler) has to be able to create the re-encryption and zero knowledge proofs
such that they verify correctly. This is achieved by assuming correctness of
the zero knowledge proofs used in Figure 1 and Figure 2.

— Soundness of the verification of shuffle implies that no dishonest prover (shuf-
fler) can produce a proof of shuffle that verifies correctly. This is guaranteed
with the soundness of the proofs and the uniqueness property in Theorem 1.

— Secrecy of the permutation depends on two security notions, the zero knowl-
edge property of the proofs and on the security of the encryption scheme
(see appendix, IND-V-CPA,IND-V-CCA1, or IND-V-CCA2).
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2.4 On Instantiations of the D—Shuffle

The D-Shuffle requires homomorphic properties to verify the sums. Exponential
ElGamal and Paillier were heavily used for voting applications for their homo-
morphic properties. In the Victorian State elections [5, 4, 3] the suggestion was
to use Exponential ElGamal. In this paper we focus on having general construc-
tions of the D—shuffle and Prét a Voter . Recent security analysis showed that
using IND-CCA2 encryptions for creating ballots [1, 2, 9] is sufficient to guaran-
tee secrecy of vote. If we require both homomorphic properties and IND-CCA?2
security then we can use Naor—Yung encryptions [1, 2, 9] or Cramer—Shoup en-
cryption [13, 20]. The two mentioned encryption schemes have an extractable
part of the cipher that is homomorphic.

2.5 On the Efficiency of D—Shuffle

The main advantage of the D—Shuflle is the fact that it is non—interactive. The
first non-interactive verifiable shuffle was proposed in [7], however, the proofs
were extremely large 15n + 120, where n is the number of ciphertexts being
shuffled. In a more recent result by Lipmaa and Zhang [12], the size of the proof
dropped to 6n+ 11. In the D—shuffle assuming we use ElGamal Exponential, the
disjunctive zero knowledge proof for an ElGamal encryption is 2n and the zero
knowledge proof of Re-Encryption for ElGamal is two more elements, causing
the total to drop to 2n + 2. Jakobsson et al [8] proposed a technique for making
mix nets robust and efficient, called randomized partial checking. The general
idea is to ask each server to reveal a pseudo-randomly selected subset of its
input/output relations, therefore providing strong evidence of correctness. The
secrecy of the permutation also gets compromised using such a technique to a
certain level [10]. The D—shuffle allows the verifier to choose the balance between
“correctness proofs vs efficiency” as they require without compromising secrecy.
The verifier can choose randomly the number of disjunctive proofs he would like
to obtain since the proofs are independent and given the disjunctive proofs do
not reveal any input/output relations, the permutation remains secret.

3 The D-Shuffle Used for Prét a Voter

The ceremony of the voting, tabulation and verification of the vote remain un-
changed as described in §1.1. Each candidate is presented in a code m; such
that the set (mq,...,m,) is super—increasing and is publicly announced. The
onion contains an encrypted list of the different candidates i.e. a permutation of
{Enc(pk,m1,r1), Enc(pk, ma,72), ..., Enc(pk, mi,7)} that corresponds to the
order of the candidates on the LHS.

The ballot creation uses the D—Shuffle such that each mix—server i verifies the
zero knowledge proofs of server ¢ — 1, shuffles the outputs of i« — 1 and publishes
the new zero knowledge proofs on a bulletin board. The initial ciphertexts input
to mix—net, i.e. server i« = 1, is {Enc(pk,m1,1), ..., Enc(pk, mg, 1)} which is
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verifiable by everyone since the randomization factors are 1 and the candidate
codes is public information. The final list of ciphertexts is printed as the onion
on the ballot. The auditing of the ballot and checking its well formness can be
done in three ways depending on level:

— Extreme Auditing: Verifying all the zero knowledge proofs on the bulletin
board. This can be done by any entity that has the means and computational
powers. Partial checking of the proofs can be applied here.

— Basic Auditing: Checking the onion on the ballots against the Serial Number
SN on the bulletin board. This can be by any entity that is willing to act as
an observer to the elections and no computational power or cryptographic
knowledge is required.

— Voter Auditing: Decrypting the RHS and checking it against the LHS. This
is the traditional Prét a Voter technique used by the voters to audit the
ballots if they want too.

Among the three techniques, the voter auditing technique is the most user
friendly for the voters. However, ballots used for auditing using that technique
should not be used for voting. This can be enforced because the only way to
audit is to ask the authorities with the decryption key to reveal the candidates
order in the onion and at that point the SN is flagged as unusable for election.

Multi-authority Ballot Generation. Each mix-server in the mix-net can be
considered an independent authority such that the values that correspond to the
ciphertexts published on the final ballot are unknown to any of them. Therefore
the privacy and receipt-freeness can not be broken by any of the mix-servers or
any number of them. To break privacy and receipt-freeness all mix-servers have
to collude. This partially solves “Authority knowledge attack”:

— Proving the ballot is well-formed in the distributed fashion. Each mix-server
publishes enough zero knowledge proofs to verify that the shuffling is correct
and honest. Therefore the final printed ballot is proven well formed given all
the proofs published verify correctly.

— Ensuring robustness so that the scheme can be run even in the presence
of some dishonest election officials. This is done using the three auditing
techniques mentioned earlier.

Print—On—Demand vs Preprinted Ballots. In Prét a Voter secrecy of the
ballot relies on the assumption that the LHS was not revealed to any entity other
than the voter. This means that the chain of custody between the creation of a
ballot form and its use in a polling station needs to be trusted. Alternatively,
the ballot can be printed in the polling station at the time of the vote [19].
This is what is referred to as print—on—demand scenario. The ballot given to the
voter will have two onions one that can be decrypted in the booth in private
and printed out to resemble the LHS and the other is the traditional Prét a
Voter onion existing on the RHS (See Figure 3) which is decrypted in the tallying
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Print-on-Demand

Original
Echo Echo Echo
Bravo Bravo X Bravo X
Delta Delta Delta
Charlie Charlie Charlie
Alice Alice Alice
SN: 54241 SN: 54241 SN: 54241 SN: 54241
Empty Ballot Printed Ballot Chosen Candidate Shred Sign & Retain

Fig. 3. Prét a Voter : The Ceremony

Statement: Given the pair of ciphertext (c1,;,c2,;) and list of pair of ci-

phertexts {(c1,1,¢2,1), ..., (c1,n,c2,n)} prove the knowledge of 1,72 such that
the following is true: [c1; = ReEnc(cii,r1)] A [e2,; = ReEnc(cai,r2)] A
[(e1,isc24) € {(er,1,e2,1)5- -+, (Crn, e2,n) }]

Creating the proof:

7; = DDRE.Proof({(c1,1,¢2,1),---,(cin,c2n)}, (c1,5,¢2,5), Pk,7r1,72)
Verifying:

{0,1} = DDRE.Verify({(c1,1,¢2,1),. .- ,(c1,n,C2,n)}, (€1,5,€2,5), Pk, ;)

Fig. 4. Disjunctive Double Re-Encryption

phase. This avoids the chain of custody issues. Ballot forms can be audited in
the same way as previously, by printing the RHS first, and then checking that it
matches the LHS. The voting experience with the exception of printing the LHS
remains the same too. To achieve print—on—demand one can provide a double
ciphertext disjunctive zero knowledge proof as shown in the Figure 4 in place of
the disjunctive proofs used earlier.

The print-on-demand solves the remaining two problems:

— Chain of Custody: The ballots are generated such that parallel shuffling takes
place and no mix server knows the final order. The ballot generated does not
contain any plaintext and the LHS is encrypted from the point the ballot is
generated and until it reaches the polling station.

— Authority knowledge attack regarding printers: The double ciphered mix-
net can be implemented such that we have multiple printers in the booth.
Assume we have three printers in each booth, then we can replace the key
pair(pky, skr) with (pkp1, skp1), (Pkpe, skp2) and (pkps, skps). Each printer
outputs part of the LHS and none of the printers will fully know the ballot.
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4 Conclusion

We propose a new verifiable shuffle referred to as the D—Shuffle. The new shuffle
is efficient, sound, complete, and ofcourse reserves the secrecy of the permutation.
The D—shuffle when used for creating ballots in a Prét a Voter scheme, it prevents
“Authority Knowledge Attack” and “Chain of Custody Attack”.
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A Secrecy of the D—Shuffle

We recall the definition of IND-CCAZ2, given a public-key encryption scheme
that consists of the three algorithms (KeyGen, Enc, Dec).

Definition 2. A public-key encryption scheme achieves IND-CCAZ2 security if
any polynomial time attacker only has negligible advantage in the attack game,
shown in Fig. 5. Note that the advantage is defined to be | Pr[b/ = b] — J|.

1. Setup. The challenger takes the security parameter A as input, and runs
KeyGen to generate (pk, sk).

2. Phase 1. The attacker is given pk and can issue a polynomial number
of decryption queries with any input: Given C, the challenger returns
Dec(C, sk). At some point, the attacker chooses My, M1 of equal length
and sends them to the challenger for a challenge.

3. Challenge. The challenger selects b €r {0,1} and returns C, =
Enc(M,, pk) as the challenge.

4. Phase 2. The attacker can issue a polynomial number of decryption oracle
queries with any input except for Cj.

5. Guess: At some point the attacker terminates Phase 2 by outputting a
guess b’ for b.

Fig.5. IND-CCA2 Game

In Definition 2, if we remove Phase 2 in the attack game then it becomes the
definition for IND-CCA1. Furthermore, if we completely disallow the attacker
to access the decryption oracle then it becomes the standard IND-CPA security.

A.1 Indistinguishable Vectors of Ciphertexts

To facilitate our security analysis of the D—Shuffle, we proposed a different se-
curity model (i.e. IND-V-CCAZ2 security) for public key encryption schemes. We
show that this new security model is equivalent to the standard IND-CCA2.
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1. Setup. The challenger takes the security parameter A as input, and runs
KeyGen to generate (pk, sk).

2. Phase 1. The attacker is given pk and can issue a polynomial number
of decryption queries with any input: Given C, the challenger returns
Dec(C, sk). At some point, the attacker chooses a list M, ..., My of equal
length and two permutation Py, P; and sends them to the challenger for
a challenge.

3. Challenge. The challenger computes Vk € {1,...,n}; Cy = Enc(My, pk).
Tl}e challqnger computes them according to Py, P such that:
{C1,...,Cn} = B({C4,...,Cn})

{Cl,...,Cn}:P1({Cl,...,Cn}).\ . 5 y

The challenger sets Ey = ({Ci,...,Cn},{Ci1,...,Cr}) and E; =
({Ci,...,Cu},{Ch,...,Cn}). The challenger randomly chooses b € {0,1},
and sends E} to adversary.

4. Phase 2. The attacker can issue a polynomial number of decryption oracle
queries with any input except for C' & Ey.

5. Guess: At some point the attacker terminates Phase 2 by outputting a
guess b’ for b.

Fig. 6. IND-V-CCA2 Game

1. Setup. The challenger takes the security parameter A as input, and runs
KeyGen to generate (pk,sk). He gives the public parameters to A who
forwards them to Af

2. Phase 1. Every time A queries the decryption oracle from Af, A" queries
the decryption oracle from the challenger. The response of the challenger
is forwarded to A.

3. Challenge. The A" sends Mo, ..., M, together with two permutations
(Po, P1), to A. A computes the ciphertexts C1,...,Cy such that C; =
Enc(M;,pk). The A forwards Mo, M; to the challenger. The chal-
lenger selects b €r {0,1} and returns C, = Enc(M,,pk) as the
challenge. A assigns Co = N C, and then permutes: {C‘l, ceey Cn} =
Po({Cy,...,Cn}); {Ch,...,Cn} = Pi({Ch,...,Cn}); A sets: Eo =
({Cl, ceey Cn}, {Cl, ey Cn}); Ei = ({Cl, ey Cn}, {Cl, e ,Cn}); Fmally
he flips a coin d and sends E4 to A

4. Phase 2. Querying the decryption oracle is constraint to not sending the
ciphertexts of the challenge.

5. Guess: A" returns a guess d. If d = d, the adversary A guesses b =0 else
flip a coin to decide on b

Fig. 7. IND-V-CCA2 versus IND-CCA2

Definition 3. A public-key encryption scheme achieves IND-V-CCA2 security
if any polynomial time attacker only has negligible advantage in the attack game,
shown in Fig. 6.

In the model in Figure 6, if we remove Phase 2 in the attack game then it be-
comes the definition for IND-V-CCA1 (equivalent to IND-CCA1). Furthermore,
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if we completely disallow the attacker to access the decryption oracle then it
becomes the standard IND-V-CPA (equivalent to IND-CPA) security.
We proof the following theorem:

Theorem 2. If there exist an Adversary A' that breaks the IND-V-CCA2 then
their exist an Adversary A that can break the IND-CCA2 (See Figure 7)

Note that if b = 1 the simulation is unfaithful, however the probability of guessing
the right b remains. Adding up the probability of winning when b = 0 leads to
g+ }1 and probability of winning when b = 1 is 411' Advantage of winning is:
Advinp—ccaz(k) = |Pr[A winning] — ;| = 4. This advantage is non-negligible
when € is non-negligible.

A.2 On the Secrecy of the D—Shuffle Permutation

The two properties of correctness and soundness derive directly from the Zero
Knowledge proofs. In this section we elaborate more on the secrecy of the per-
mutation. Imagine their exist an adversary A that can guess the permutation of
the verifiable D-Shuffle. This adversary can be used as a subroutine for A for
breaking the IND-V-(CPA,CCA1,CCA2) as follows:

— In the challenge, the adversary A chooses Mj, ..., M,, Py, and P; sends
them to C.

— He receives back Ej back. Note that Ej has two permuted lists.

— At chooses the first list and simulates the zero knowledge proofs.

— At sends the list and the simulated proofs to A.

— A should return either Py or Py. If Py is returned then A" answers back his
guess as b =0 otherwise b =1

Furthermore, the same adversary A can be used as a sub-routine for A* to
break the zero knowledge properties as follows:

— At encrypts a list of My ..., M, to obtain cy,...,cp,

— It permutes them to ¢y, ..., c,.

— It queries the zero knowledge oracle for the disjunctive proofs of each cipher.

— Computes the Zero knowledge of the sum as done in Figure 2.

— Sends the proofs together with ¢y, ..., ¢, to A.

— If the proofs are real then A should return back the expected permutation,
otherwise A gives a guess which is unlikely to be the permutation (probability
is n!) and implies the zero knowledge proofs were a simulation only.

B Non-interactive Zero knowledge proofs

Equality between discrete logs: Proving knowledge of the discrete logarithm
¥ to bases f,g € Zy, given h, k where h = f* mod p and k = ¢g* mod p [15, 6].

Sign. Given f,g,z, select a random nonce w €r Z;. Compute Witnesses f' =
f* mod p and ¢’ = g* mod p, Challenge ¢ = H(f’, ¢') mod ¢ and Response
s =w+ ¢z mod g. Output signature as (f',¢’, s)
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Verify. Given f,g,h,k and signature (f’, ¢, s,c), check f* = f’ - h¢ (mod p)
and ¢° = ¢’ - k° (mod p), where ¢ = H(f’, ¢’) mod q.

A valid proof asserts log; h = log, k; that is, there exists x, such that h =
f* mod p and k = ¢g* mod p.

Re-Encryption proofs for Exponential ElGamal Imagine you have two
Exponential El1Gamal ciphertexts for the key-pairs(y = g%, z):

L oc= (u1,v1) = (g™, y"g™),
2. ¢ = (ug,ve) = (g2, y"1H2g™).

In other words ¢ = ReEnc(c,r2). A zero knowledge proof of Re-Encryption is
simply done by the prover providing a zero knowledge proof of the equality
between discrete logs between ug/u; and ve/v; to the bases g,y respectively.

Disjunctive Re-encryption Proof for Exponential ElIGamal Let h = g¥.
Given (u;,v;) = (g%g%, h®-h¢-g™) is a re-encryption of (u,v) = (g%, h*-g™) for a
random ¢ € Zy. Prove that (u;, v;) belongs to the list {(u1,v1), ..., (un,vn)} [14].

Sign. Select random values di, ..., dn, r1,...,7, € Z;. Compute a; = (! Ydegre

, by = (‘;t)dth” where t € {1,...,4— 1,i+ 1,...,n}. Choose randomly
a nounce w € Zy. Let a; = ¢g* and b; = h*. Compute challenge ¢ =
’H(EHmH...Han\lblﬂ...an) where E = (u||v||ui]|vi]] ... [|un||vn). Com-

pute d; = ¢ — Z d,. Compute 7; = w — (d; then Witnesses di, ..., dn,

t=1,t%£i
Challenge ¢ and Response 71, ..., 7,. Output signature of knowledge (r, d;)
where ¢ € [1,n]
Verify. Let £1 = (! Yigr| ... H(“JL)d"gr". Let B2 = (! Yigm|. .. [ Ydngrn,

Check Y " d, = H(E||E1||E2)

t=1
A valid proof asserts that (u;,v;) € {(u1,v1),..., (tun,vn)}.

Disjunctive Double Re-Encryption Proofs for Exponential ElGamal
Given the following;:

— Let h = g¥. Let (CT,CT) be a pair of ElGamal Encryption for the same
message m.

— Let OT; = (uj,v;) = (g*1g%, h™ - hSt - g™) be a re-encryption of (u,v) =
(g*r,h®r - g™) for a random ¢ € Z;,.

— Let CT; = (u;, ;) = (g*2g%2, h*2 - hS2 - g™) be a re-encryption of (u,7) =
(g*2,h*2 - g™) for a random (3 € Z;,.

Prove that (CT;, CT;) belongs to the list {(CTy,CTh), ..., (CT,,CT,)}.

Sign. Select random values d1, ..., dy, 71,...,7n, R1,..., Ry € Z.
Forte{l,...,i—1,i+1,...,n}, compute:
oy = (ut . Ut)dt (g-h)™ and By = (u,t .zjt )4 (g - h)® and
u-v w-v
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Ut -Vt -V

Se=(" _ )l(g-m)ftT

Ut -V - U
Choose randomly the nounces wy,ws € Z5. Let a; = (9 -h)“ and B; =
(g-h)“2, and 0; = gz
Compute challenge ¢ = H(E||aa]| .- . [|an]|B1l] - - - ||Bnll01]] - - - ||0n) where E =
(ullv||ui||vi]| - - [Jun||vn). Let d; = ¢ — Z dy, i = w1 — C1d;, and R; =

t=1,t#i

wg — (od;. Witnesses is dy, ..., d,, Challenge is ¢ and Response is r1,...,7y,
Ri,...,R,.
Output signature of knowledge (r, dt, R;) where t € [1,n]

Verify. Let By = ((“;:zl)dl(g : h)“H...H(uzzzn)dn(g “h)™). Let By =
Uy - U1 di(, . )R Up, * Up, (. VB, Lot Fa — U V1 Vg,
(g . et By = (i

Up " Up ¥
RYFr=r [ ) (g - k)BT, Check Y dy = H(E||E1||Bs|Es).
R Iyt ). Check S di = H(EI|E B2l )

t=1
If true accept the signature of knowledge otherwise reject it.

A valid proof asserts that (u;,v;) € {(u1,v1),..., (tn,vn)}.
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