
Free Typed Text Using Keystroke Dynamics

for Continuous Authentication

Paulo Pinto, Bernardo Patrão, and Henrique Santos

Watchful Software, Coimbra, Portugal
Universidade do Minho - Dep. de Sistemas de Informação, Braga, Portugal

prpinto@itgrow.pt,bernardo.patrao@watchfulsoftware.com,

hsantos@dsi.uminho.pt

http://www.watchfulsoftware.com, http://www.uminho.pt

Abstract. Information is increasingly in a digital-only format and al-
most everything we do nowadays depends on a digital identity for au-
thentication and authorization. No matter how strong the authentication
system is, after the authentication phase, there is no continuous verifi-
cation that user is still the same human being that successfully logged
in, thus leaving the system unprotected. This paper presents a usable
breakthrough approach for continuous authentication with free typed
text through the use of biometric techniques based on keystroke dynam-
ics. Our main purpose is to achieve a reduction of the required sample
size, while improving (or at least not worsen) precision performance, by
adapting and improving parameters on a keystroke dynamics algorithm.

Keywords: Identity verification, User authentication, Biometrics,
Keystroke dynamics, Host-based intrusion detection, Security.

1 Introduction

In a world governed by digital information, computing is the main activity and
user authentication plays an important role in access control. One of the most
common situations of intrusion occurs when a worker leaves his/her workstation
unlocked or when someone knows a user password and tries to use a false identity
to do something malicious (for example, to send an e-mail, to change a document,
to write on facebook or twitter)[1,2].

Keystroke dynamics, as a biometric for authentication, can be used to mitigate
the above threat, continuously detecting intrusions[3]. But false alarms in such
intrusion detection systems are quite common[4] and the european standard for
access-control systems (EN-50133-1) specifies a false alarm rate of less than 1%
for this type of solution [5]. For that reason, it is crucial to optimize algorithms
to achieve low false rejection rate (FRR) and false acceptance rate (FAR).

In this paper, we present an heuristic optimization of an algorithm based on
keystroke dynamics and results obtained from a real experiment, for validation
purposes.

The rest of the paper is organized as follows. Section 2 is dedicated to the
study of keystroke dynamics and how it can be used to verify user identity and

B. De Decker and A. Zúquete (Eds.): CMS 2014, LNCS 8735, pp. 33–45, 2014.
c© IFIP International Federation for Information Processing 2014

http://www.watchfulsoftware.com
http://www.uminho.pt


34 P. Pinto, B. Patrão, and H. Santos

section 3 is the state of the art. In section 4, we start defining main functions used
for the intrusion detection and we also define the decision criterion. In section 5
we present techniques that will allow us to improve the algorithm as well as how
these techniques can be implemented. On the same section we describe a new
decision criterion that will allow us to get FRR lower than 1% (validated with
results on a real environment) and in section 6 we write the main conclusions of
this work.

2 Biometrics and Keystroke Dynamics

Using biometrics, each individual can be uniquely identified by physical and
behavioural characteristics and, unlike passwords, biometrics can not be lost,
stolen or copied. There are several biometric techniques such as fingerprints,
the way you walk, your eye geometry or even the way you speak[6]. Each one
can be used to identify or to authenticate. In a very simplified way, identification
involves the comparison of a given biometric pattern with all of previously stored
patterns. Authentication is similar but involves only one comparison with the
pattern belonging to someone claiming identity checking. In both cases, one main
concern is to avoid false rejections and false acceptances: for access control the
objective of the application is to not allowing access to unauthorized individuals
under all circumstances while granting access to all legitimate users. It is clear
that the surveillance software has to be set up with a very low FAR even if it
comes at the price of a higher FRR. On the other hand, identification within
surveillance software has to be set up with a low FRR even if FAR gets higher.

Keystroke dynamics is a technique aiming to find patterns based on timing
information from pressed and released keys when a person is typing at a key-
board. Most common features are dwells (time between key down and key up of
a specific key), flights (time between key up and key down of two consecutive
keys), digraphs, trigraphs and fourgraphs[3]. Weather conditions, fatigue, stress
or any sort of influence, can drastically impact the result but with a constant
user profile update, even the effect of these weird behaviours can be drastically
reduced.

3 State of the Art

Keystroke dynamics is a behavioural based furtive biometric technique[7] that
does not require any special resources (hardware), besides a normal keyboard
and the support low-level software usually available in any PC like system. These
properties make it a good candidate for continuous authentication[8]. Recently
this research topic received some important contributions, being evident that
one of the main issues is the training data used. Solami et. al present a generic
model for a Continuous Biometric Authentication System (CBAS), discussed
some proposed solutions and propose a classification based on the type of target
scenario: class I, when legitimate users’ profiles are available and the identities



Free Typed Text Using Keystroke Dynamics for Continuous Authentication 35

of all possible impostors are known (i.e., a closed system); class II, otherwise[9].
In this work we are targeting a class I system, aiming to improve only its per-
formance over the internal user universe.

4 Software Design and Algorithm

4.1 Architecture

The base of the software architecture is the one proposed in[8,10]. It is composed
of a central server, a database where user profiles are saved and a constant
validation mechanism for each sample produced by the user (see above references
for more detailed information).

The mechanism receives an attempt sample and needs to decide whether it
is an intrusion or not (see Fig. 1). The decision algorithm is the heart of the
mechanism and, as we will see later, with a generalization of the scores function
proposed in [3] (by defining new parameters and new metrics), varying accep-
tance thresholds and implementing a dynamic decision criterion, it is possible
to substantially decrease the FRR, the FAR and the attempt sample size.

Fig. 1. Algorithm architecture



36 P. Pinto, B. Patrão, and H. Santos

4.2 Absolute Scores

The user profile, stored in the database, consists essentially in one merged sample
with all characteristic user features. This profile is constructed and constantly
updated every time the user produces a new valid sample.

Let us define AS(l) as the set of all features from an attempt sample with
length l and DB as the set of all features from the merged sample stored on
the database. Let us also define, if exist, DW (x(y)) as the average of x(y) where

x(y) ∈ IDW (y) = {all dwells in y}
and

y ∈ J = {AS(l), DB}.
Intuitively, we define FL(x(y)), DI(x(y)), TR(x(y)) and FR(x(y)) for flights, di-
graphs, trigraphs and fourgraphs, respectively, andthe corresponding sets IFL(y)=
{all f lights in y}, IDI(y) = {all digraphs in y}, ITR(y) = {all trigraphs in y}
and IFR(y) = {all fourgraphs in y}.

For each feature x on the merged sample (x(DB)), we define the acceptance
neighbourhood as

V (x(DB)) = [(2− p(z))z(x(DB)), p(z)z(x(DB))],

where

z(x(y)) =

⎧
⎪⎨

⎪⎩

DW (x(y)) if x is a dwell in y,
FL(x(y)) if x is a flight in y,
DI(x(y)) if x is a digraph in y,
TR(x(y)) if x is a trigraph in y,
FR(x(y)) if x is a fourgraph in y.

and p(z) ∈ [1, 2] is a parameter that defines the interval around z(x(y)). Note
that we write z without arguments in p(z) because we are referring to the type of
feature and not to some specific feature, meaning that features of the same type
(for example dwells) all have the same parameter value to define his acceptance
neighbourhood.

For each feature x ∈ AS(l) that is shared with the merged samples, the
acceptance feature function is defined as

A(x) =

{
1 if z(x(AS(l))) ∈ V (x(DB)),
0 otherwise.

Defining N(z) as the number of shared features between AS(l) and DB of the
type z (for example, if z = DW then N(z) is the number of all shared dwells
between the attempt sample and the merged sample), we write the absolute
score as

Ab(AS(l)) =
∑

z∈Z

(

w(z)

(
1

N(z)

∑

x∈Iz

A(x)

))

,

with
∑

w(z) = 1, where w(z) is the weight parameter associated to each type of
feature. Note that the formula proposed by Monrose and Rubin[3] is a particular
case of the absolute score defined here.



Free Typed Text Using Keystroke Dynamics for Continuous Authentication 37

4.3 Relative Scores

The relative score value is based in time disorder divided by the maximum
disorder. For each type of features in our AS(l), a list is created ordering all
features by time. Then this order is compared with the one from DB. Let us
define D(z, AS(l)) as the function that give us the disorder between all shared
features of the type z in AS(l) with DB(see [8], 5.3.2 for more details). Then,
the relative score is written as

Rl(AS(l)) = 1−
∑

z∈Z

D(z, AS(l))

Dm(z, AS(l))
,

where Dm(z, AS(l)) is the maximum possible disorder between AS(l) and DB
for some z type of feature.

4.4 Decision Criterion

The value to compare with a fixed threshold is a linear combination of the two
quantities defined before:

S(AS(l)) = wAbAb(AS(l)) + wRlRl(AS(l)), (1)

where wAb and wRl are weights.
We define 3 thresholds for different intrusion levels: yellow, orange and red

level represented by thy, tho and thr, respectively. The intrusion is detected
when

S(AS(l)) < thy.

4.5 Parameter Space

The parameter space is composed by p(z) ∀z ∈ Z, w(z) ∀z ∈ Z, thy, wAb, wRl

and l. The trivial configuration is the configuration where each event has the
same weight as well as each score function.

5 Validation

All results presented in this section come from a real environment composed,
most of the times, by more than 10 users. The users are, for the most part,
software developers, meaning their input can result from coding and/or writing,
both formally and informally, in English and Portuguese, in several distinct
software environments. In some sense it is the worst case scenario to classify
behaviour since there is a great variety on the user actions.

According to initial requirements we assume no other users have access, i.e.,
intruders are internal users trying to circumvent access control rules.



38 P. Pinto, B. Patrão, and H. Santos

5.1 Tool Description for Artificial Attacks

On the database, each user has his own merged sample with all characteristic
features. This merged sample is the user profile previously saved and constructed
using the user samples also saved on the database.

With all samples from the database we can test the algorithm. For a partic-
ular user, we can simulate authentications using the samples from the database
against the merged sample of the same user. In that way we can calculate the
FRR. Also, we can calculate the FAR of the entire group using all samples
against each merged sample. It is an artificial attack because people are not
intentionally attacking but it is the easiest way to simulate a large number of
attacks and it is according to the scenario specification.

5.2 Acceptance Neighbourhoods Study

Acceptance neighbourhoods are controlled by the parameters p(z). Considering
w(z) = 0.2 ∀z ∈ Z, wAb = 0.5 and wRl = 0.5 (trivial configuration), what we
study first is the ”best” (heuristically speaking) acceptance neighbourhoods for
each type of features looking at the FRR and FAR calculated from artificial
attacks. Fig. 2 is a summary of the best scenarios tested with l = 750. The first
column of the second table represents different thresholds to detect intrusion.

Fig. 2. Summary of the acceptance neighbourhoods study. All FRR and FAR values,
for each fixed configuration (A,B,C,D and E) and for each fixed threshold, were
obtained from 11 users each with 15 samples of 750 keys.



Free Typed Text Using Keystroke Dynamics for Continuous Authentication 39

As an example, for the value 0.06, thy is defined as thy = (S(DB)−0.06), where
S(DB) is the score from the user profile.

As we can see from Fig. 2, when we increase the threshold we get a high
FRR and when we decrease the threshold the FAR tends to increase. Situation
A produces a very high FRR with high security level (threshold= 0.06) and
situation E produces a very low FAR with low security level (threshold= 0.12).
The table shows that situation B is the one that produces the best results to
minimize FAR and FRR.

5.3 Transients Study for Sample Reduction

This part of the study allows us to understand if it is possible to reduce the size
of the attempt sample and how much we can reduce. The more information we
have, the more accurate are our decisions. On the other hand, the fewer keys
the intruder types, the less damage the intruder does before being detected. The
aim is always to find best of both parts.

Transient is a common term in differential equations theory and essentially
represents states that actually are not the common states on some dynamical
system. A simple example is throwing a rock to a lake: The waves produced by
the rock is a transient state since most of the time the lake has no waves. The
classical example for transients is the harmonic oscillator[11]. In our mechanism,
we have

S(AS(l))l→∞ −→ a

with a representing the characteristic value for the user (in theory close to 1).
Here, the transients are the values we get when l is too small and, consequently,
are not user representative. Identifying the minimum l for which we do not have
any more transients means identifying the minimum size of the sample to get a
reasonable value for a.

Fig. 3 shows the transients study using 3 samples with 750 keys each from
3 different users. The horizontal axis represents sample reduction process and
the vertical axis is the score defined in (1). In each iteration of the reduction
process, we erase 11 or 12 features from the samples (on the same proportion as
they exist for any sample with length l). This figure shows that after 11 sample
reductions, the value of S(AS(l)) starts to be a bit unstable. Using 11 as the
maximum number of reductions for the trivial configuration means that we can
reduce the sample size in 40% (around less 300 keys) but 450 keys is still a
considerable number for an attempt sample.

The question we would like to answer is: It is possible to get a better reduction
result with a different parameter configuration? Next section we answer this
question with an heuristic study of the weights.

5.4 Weights Study

The study of weights has three distinct phases. The first one is the absolute
and relative weights study. With the good weights from the first phase a study



40 P. Pinto, B. Patrão, and H. Santos

Fig. 3. Transients study. The horizontal axis represents the number of reductions that
were made on each sample. The vertical axis represents the scores defined in (1) for
each sample in different reduction phases. The more reductions we do, the smaller is
the sample. The initial sample size is 750 keys and this picture shows samples from 3
different users, the reduction process and the score in each reduction phase.

of the weights of each type of feature in the absolute score is done (the reason
we are only considering the absolute score is justified by the first phase study).
Finally, we check if, after the second phase, we still have the same weight results
for absolute and relative scores. There might be more efficient ways to conduct
this study like using genetic algorithms[12] but, apart from the fact that this
approach takes much less time, even using this simplified technique, the results
should be very similar to the ones from a genetic algorithm strategy.

In Fig. 4, the chart on the left shows how the gap between the average intrusion
score and the average user score increases at the same time as we increase the
weight of the absolute score. On the horizontal axis, we start with S(AS(l))
calculated using only the relative score. Then we increase the weight of the
absolute score until we have S(AS(l)) calculated using only the absolute score.
The gap represents how much separate is the intrusion score region and the user
score region. The chart on the right shows some stability when the absolute score
weight is more than 70%. We conclude, among all the distinct combinations, that
70%−30% or even 80%−20% are the best configurations for wAb−wRl to get an
higher gap and, at the same time, to consider the relative score in our evaluation.

Fig. 5 shows a summary of many simulations, using 80%−20% for wAb−wRl,
for many different parameters w(z) ∀z ∈ Z. From here we observe an important
fact: dwells, flights and digraphs are the most efficient type of features to identify
or to authenticate the user. On the other hand, in a real environment, when we
try to isolate the most important type of feature (dwell) the FAR typically
tends to increase because the validation mechanism tends to be more sensible.
We conclude that (42%− 24%− 16%− 10%− 8%) is, heuristically speaking, the
best configuration for w(z) and with this configuration the results from the first
phase (Fig. (4)) were exactly the same.



Free Typed Text Using Keystroke Dynamics for Continuous Authentication 41

Fig. 4. Absolute and relative weights study for user samples with 750 keys. The gap
between the typical intrusion score and the typical user score increases whenever we
increase the importance (weight) of the absolute score. On the other hand, it is impor-
tant to have more than one measure to evaluate identities, we should not ignore the
relative score at all. Instead of ignoring it, we should decrease his importance.

Fig. 5. Features weights study

Finally, the transient study was repeated but this time taking into account
the previous best configurations (the best acceptance neighbourhood parameters
and the best weights previously presented). Fig. 6 shows S(AS(l)) for different
values of l. As we can see, the value stays stable during all the reduction process
(starting with l = 750). After 20 reductions, the value shows no relevant fluctu-
ations. This means a reduction of 80%, equivalent to a reduction of around 600
keys. At this point we are able to use attempt samples with 150 keys.

5.5 ROC Curve

The Receiver Operating Characteristics (ROC) curve illustrates the performance
as its discrimination threshold is varied. We present, in Fig. 7, a pseudo ROC
curve using the best parameters configuration presented here and attempt sam-
ples with 250 keys (l = 250). At this point we are able to produce rates close to
2%. Next section we present a simple way to reduce even more these rates.



42 P. Pinto, B. Patrão, and H. Santos

Fig. 6. Transients study with an improved configuration and considering only one user.
The initial sample size is 750 keys.

Fig. 7. Pseudo ROC curve (left) with logarithmic scale and DET curve (right) for an
improved configuration. The sample size is 250 keys and all simulations were done using
a group of 11 real users.

5.6 Evaluations Scheme

One of the main focus in any continuous detection system using keystroke dy-
namics is to reduce the size of the required sample to detect intrusions and, at
the same time, not increase FRR and FAR. For a static biometric system it is
important to know how often a wrong decision is made but the purpose of a
performance evaluation for a continuous biometric authentication system is not
to see if an impostor is detected, but how fast he is detected[13].

An interesting way to detect intrusions fast is dividing the evaluation process
in more than one part. Let us suppose that, after each l keys, we want intrusion
detection probability p. So, p is what we want after l keys and the question is:
What should we have in l/2 keys to achieve p in l keys?



Free Typed Text Using Keystroke Dynamics for Continuous Authentication 43

To simplify our example, let us divide the process in only two parts and let us as-
sume that l/2 ∈ N . If we defineX = ”number of authentications in 2 attempts”
then X −Bi(2,m) with

P (X = k) = (2k)m
k(1−m)2−k, k = {0, 1, 2}

If we define Y = ”detect intrusion” then we want to know m for P (Y ) ≈ p:

P (X ≥ 1) ≈ p ⇔ 1− P (X = 0) ≈ p ⇔ 1− (1−m)2 ≈ p ⇔ m ≈ 1− (1− p)1/2.

So,m < p for p �= {0, 1}meaning that we do not need p probability after each l/2
keys but usually much less! As a consequence, we do not need to be so accurate
with l/2 keys to have probability p in l keys and we have the opportunity to
catch the intrusion in less than l keys(in our example, in l/2). Another direct
consequence of not being so accurate is the fact that the FRR decreases.

As a conclusion, if we divide the process in two parts then we just need to
have intrusion probability m (less than p) and we automatically have a lower
FRR. Also, during this process, the yellow (thy) and orange (tho) warnings are
ignored and only red warnings are considered intrusion. At the end of the process
(in this example after each 2 evaluations) some particular situations with yellow
and orange warnings are considered intrusion. All these considerations on the
yellow and orange warnings will help us on the FRR reduction.

We already have some good and stable results using this approach and con-
sidering evaluations after each 125 keys but it is still a work in progress. Fig. 8
shows DET curve for 125 keys and for 250 keys (process divided in two parts)
from a real scenario of users (11 users) and considering the best configuration,
presented here, for the parameters.

Fig. 8. DET curve at the middle of the evaluation process and with 125 keys (left) and
DET curve at the end of the process and with 250 keys (right). In this example the
process was only divided in two parts.



44 P. Pinto, B. Patrão, and H. Santos

6 Conclusions

The purpose of this paper is to present improvements of some of the keystroke
dynamics biometrics to identify/authenticate users and to detect intrusions, us-
ing data from a real environment to validate.

The main conclusions of this work are the huge importance of dwells (time
difference between key up and key down for any key) to identify/authenticate
users. Also, the importance of the right weights on all features to reduce the size
of the attempt sample (sample used to verify user identity or to detect intrusion)
and to reduce FAR and FRR at the same time. In our particular scenario, we
were able to get an amazing reduction of the sample size from 750 keys to 150
keys with FRR and FAR close to 2%. Also, using an evaluation scheme we were
actually able to get an impressive FRR and FAR lower than 1% with the strong
possibility to detect the intrusion after only 125 keys.

It is important to refer that in [8] all the presented simulations are with
samples of 750 keys and what we present here is a huge reduction of the sample
size which is crucial to have an earlier intrusion detection. Also, Kevin Killourhy
and Roy Maxion [4] referred, in a recent study, that at present no anomaly
detector has archived a false alarm rate specified in the european standards
which makes our results even more interesting.

We believe that the strategy presented here to calculate the weights in order
to improve the FAR, FRR and attempt sample reduction is something that can
be implemented in any group of users. Also, the weights study can be done
periodically, continuously calculating the best parameters for an specific group
of users.

Acknowledgements. This work has been supported by FCT - Fundação para
a Ciência e Tecnologia within the Project Scope: PEst-OE/EEI/UI0319/2014.
We would like also to thank Watchful for supporting this work and the Software
Development Team for helpful comments and data. The authors had financial
support from Watchful Software.

References

1. Lynch, D.M.: Securing Against Insider Attacks. Information Security Journal: A
Global Perspective 15, 39–47 (2006)

2. Schulz, E.E.: A Framework for Understanding and Predicting Insider Attacks.
Computers and Security 21, 526–531 (2002)

3. Monrose, F., Rubin, A.: Keystroke dynamics as a biometric for authentication.
Future Generation Computer Systems 16, 351–359 (2000)

4. Killourhy, K., Maxion, R.: Comparing Anomaly-Detection Algorithms for
Keystroke Dynamics. In: Dependable Systems and Networks, pp. 125–134 (2009)

5. CENELEC European standard EN 50133-1, Alarm systems. Access control systems
for use in security applications, European Committee for Eletrotechnical Standard-
ization (2002)



Free Typed Text Using Keystroke Dynamics for Continuous Authentication 45

6. Bergadano, F., Gunetti, D., Picardi, C.: User authentication through keystrokes
dynamics. ACM Transactions on Information and Systems Security 5, 367–397
(2002)

7. Magalhães, S.: Keystroke dynamics - stepping forward in authentication. GESTS
International Transactions on Computer Science and Engineering 29 (2006)

8. Ferreira, J., Santos, H., Patrão, B.: Intrusion detection through keystroke dynam-
ics. In: 10th European Conference on Information Warfare and Security (2011)

9. Al Solami, E.: Continuous Biometric Authentication: Can It Be More Practical? In:
12th IEEE International Conference on High Performance Computing and Com-
munications, pp. 647–652 (2010)

10. Ferreira, J., Santos, H.: Keystroke dynamics for continuous access control en-
forcement. In: Proceedings of the International Conference on Cyber-Enabled Dis-
tributed Computing and Knowledge, pp. 216–223 (2012)

11. Serway, R.A., Jewett, J.W.: Physics for Scientists and Engineers (2003)
12. Mitchell, M.: An Introduction to Genetic Algorithms (Complex Adaptive Systems)

(1998)
13. Boruc, P.: Continuous keystroke dynamics: A different perspective towards bio-

metric evaluation. Information Security Technical Report 17, 36–43 (2012)


	Free Typed Text Using Keystroke Dynamics
for Continuous Authentic

	1 Introduction
	2 Biometrics and Keystroke Dynamics
	3 State of the Art
	4 Software Design and Algorithm
	4.1 Architecture
	4.2 Absolute Scores
	4.3 Relative Scores
	4.4 Decision Criterion
	4.5 Parameter Space

	5 Validation
	5.1 Tool Description for Artificial Attacks
	5.2 Acceptance Neighbourhoods Study
	5.3 Transients Study for Sample Reduction
	5.4 Weights Study
	5.5 ROC Curve
	5.6 Evaluations Scheme

	6 Conclusions
	References




