
DevOpSlang – Bridging the Gap
between Development and Operations

Johannes Wettinger, Uwe Breitenbücher, and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart
{wettinger,breitenbuecher,leymann}@iaas.uni-stuttgart.de

Abstract DevOps is an emerging paradigm to eliminate the split and
barrier between developers and operations personnel that traditionally
exists in many enterprises today. The main promise of DevOps is to en-
able continuous delivery of software in order to enable fast and frequent
releases. This enables quick responses to changing requirements of cus-
tomers and thus may be a critical competitive advantage. In this work
we propose a language called DevOpSlang in conjunction with a method-
ology to implement DevOps as an efficient means for collaboration and
automation purposes. Efficient collaboration and automation are the key
enablers to implement continuous delivery and thus to react to changing
customer requirements quickly.

Keywords: DevOps, DevOps Specification, Devopsfile, Deployment Au-
tomation, Application Evolution, Cloud Computing.

1 Introduction

Today, many enterprises face a common, major challenge in terms of software
delivery: customers and users expect fast responses to their constantly chang-
ing requirements, concerning both functional and non-functional properties of
a software [6]. Frequent releases are vital to satisfy such expectations, which
is indeed a crucial competitive advantage. However, technical and non-technical
challenges have to be addressed in order to implement short release cycles. Cloud
computing [10,2] introduced key enablers such as on-demand provisioning of re-
sources (virtual machines, storage, network, platform-level services, etc.) and
the pay-per-use model to tackle some of the major technical challenges. With
these properties Cloud computing provides a means to support different ser-
vice models such as infrastructure as a service (IaaS) and platform as a service
(PaaS) combined with different deployment models (public, private, or hybrid
Cloud) [10]. Beside these technical enablers, further conditions are required to
enable fast and continuous delivery of software. The DevOps paradigm [6,7,17]
addresses another major challenge, namely the split and barrier between devel-
opers and operations personnel. To overcome such a split that is predominant in
many organizations today, organizational changes, cultural changes, and techni-
cal frameworks are required. In terms of organizational changes teams consisting

M. Villari et al. (Eds.) : ESOCC 2014, LNCS 8745, pp. 108–122, 2014.
c© IFIP International Federation for Information Processing 2014

DevOpSlang – Bridging the DevOps Gap 109

of both developers and operations people may be established. Moreover, ’Dev-
Ops’ may be introduced as a new role for people mainly working on coordinating
the collaboration between both. Major companies such as Facebook1, Yahoo2,
and others3 are seriously implementing DevOps.

The DevOps paradigm is not bound to Cloud computing. Although combining
these two makes a lot of sense as outlined before, DevOps could also be imple-
mented in conjunction with other computing paradigms. In this work we mainly
focus on enabling DevOps in combination with Cloud computing to reveal the
full potential of DevOps. Our major contributions in this context are:

– We define a methodology to implement the DevOps paradigm in practice
with a high degree of automation.

– We propose a language to be used to support the aforementioned methodol-
ogy for collaboration and automation purposes.

– Based on the requirements stated in the motivating scenario we implement
and evaluate DevOps-centric artifacts to deploy and operate an application,
following our methodology and using the language we introduce.

The remaining of this paper is structured as follows: Section 2 refines the prob-
lem statement based on the introduction presented here. Moreover, a motivating
scenario is introduced. Derived from this scenario and the problem statement in
general, Sect. 3 defines a DevOps-centric methodology to deploy and operate
applications in an automated manner. Section 4 introduces a language to practi-
cally support our proposed methodology. The evaluation of both the methodol-
ogy and the language is described in Sect. 5. Finally, Sect. 6 and Sect. 7 present
related work, conclusions, and future work.

2 Problem Statement and Motivating Scenario

In the previous Sect. 1 we briefly introduced the DevOps paradigm, aiming to
eliminate the traditional split and barrier between developers and operations
personnel. This split causes long release cycles for applications in many enter-
prises, very often several months. However, most users and customers today
expect much faster responses to their changing and growing requirements. Thus,
it becomes a critical competitive advantage to deliver software continuously [6],
incorporating users’ feedback and requirements as fast as possible. One major
precondition to implement continuous delivery of software is to automate the
whole deployment process in a repeatable way [6], including steps such as:

– Retrieve sources from version control
– Build binaries using build scripts
– Verify correctness of built binaries and run unit tests

1 Facebook uses Chef (DevOps tool): http://www.getchef.com/customers/facebook
2 DevOps at Flickr (Yahoo): http://goo.gl/XBKq
3 Companies moving to DevOps: http://www.getchef.com/solutions/devops

http://www.getchef.com/customers/facebook
http://goo.gl/XBKq
http://www.getchef.com/solutions/devops

110 J. Wettinger, U. Breitenbücher, and F. Leymann

– Provision infrastructure resources using provisioning scripts
– Deploy middleware and application components using deployment scripts

Ideally, the implementation of such an overarching automated process takes
place in parallel to the development of the application itself, always taking into
account changing and growing requirements of the application. The necessary
constant collaboration between developers and operations is enabled by imple-
menting the DevOps paradigm. Optionally, the automation of the deployment
process can also be implemented afterwards, e.g., for legacy applications that
still need to be maintained. In this paper we consider applications that are con-
tinuously delivered based on a fully automated deployment process. We assume
that an application always consists of two major building blocks:

1. Business functionality such as the business logic, user interfaces, APIs, etc.
2. Supporting functionality such as the operations logic, tests, etc.

The operations logic is the fundamental enabler to implement a fully auto-
mated deployment process because it provides the necessary artifacts such as
build scripts to create the application’s binaries and deployment scripts to re-
peatable deploy the application to different environments (development, test,
production, etc.). Most of today’s enterprises and Web applications that aim for
fast and frequent releases fall into this category of applications4. However, there
are other kinds of applications such as legacy applications running in production
that are maintained using highly manual processes without any means to deploy
or re-deploy the application in an automated and repeatable manner. Our re-
search does not focus on such applications without full deployment automation.

We put emphasis on creating and operating applications that have an evolu-
tionary emerging and changing architecture, mostly by following agile software
development practices [1]. This is a common way to create new applications in
these days because a huge variety of IaaS and PaaS [10] offerings such as Ama-
zon Web Services5, Google Cloud Platform6, and Heroku7 with many add-on
services8 are easy to use and fast to integrate with each other. Thus, applica-
tion developers start with some basic offerings such as a simple virtual machine
(VM) or a Ruby runtime for an initial version of their application and add or
remove additional services such as data stores, caching, queues, and monitoring
services as they require it. This results in an evolutionary emerging and chang-
ing application architecture according to the requirements of the application’s
stakeholders.

Figure 1 shows an example for the architecture evolution of a simple chat
application. Initially, the application is simply running in a Node.js runtime en-
vironment. Then, a database based on MongoDB is added to store some chat
4 DevOps at Flickr (Yahoo): http://goo.gl/XBKq
5 Amazon Web Services: http://aws.amazon.com
6 Google Cloud Platform: http://cloud.google.com
7 Heroku: http://www.heroku.com
8 Heroku add-ons: http://addons.heroku.com

http://goo.gl/XBKq
http://aws.amazon.com
http://cloud.google.com
http://www.heroku.com
http://addons.heroku.com

DevOpSlang – Bridging the DevOps Gap 111

Node.js
Runtime

Chat
Application

MongoDB
Server

Chat Logs
Database

Node.js
Runtime

Chat
Application

Node.js
Runtime
[cluster]

Chat
Application

MongoDB
Server

[cluster]

Chat Logs
Database

Node.js
Runtime

Chat
Application

MongoDB
Server

[2 instances]

Chat Logs
Database

Redis
Server

Cache

Node.js
Runtime
[cluster]

Chat App.

MongoDB
Server

[cluster]

Chat Logs
Database

Log Analyzer

…

Fig. 1. Evolution of chat application architecture

logs. As the application needs to get more scalable, two instance of MongoDB
are run. Moreover, a Redis server is used for caching purposes. However, this
architecture does not seem to scale. Thus, the MongoDB server and the Node.js
runtime environment are both run as clusters. The Redis server gets removed.
In the next iteration, a log analyzer gets introduced as another application com-
ponent to extract valuable information from the chat logs. The evolution may
continue in this fashion including further aspects such as changing the underly-
ing infrastructure. Whereas the first iterations may be hosted on local VMs or
VMs provided by an IaaS provider such as Amazon, later versions of the appli-
cations might be hosted on PaaS offerings such as Heroku and MongoHQ9 to
address scalability issues.

In a conventional setup with development and operations split across different
departments it would be hard or even impossible to catch up with such constantly
changing operations requirements of an application. The DevOps paradigm aims
to improve the situation for such scenarios by moving together development and
operations. However, repeatable and fast processes can only be achieved with
comprehensive automation, reducing manual intervention as much as possible.
Manual processes to deploy and operate applications are error-prone, slow, and
costly [14]. To implement such automated processes not only integrated tool
9 MongoHQ: http://www.mongohq.com

http://www.mongohq.com

112 J. Wettinger, U. Breitenbücher, and F. Leymann

support is required. However, in today’s discussions this seems to be the focus
beside the cultural change that is necessary to implement DevOps. Thus, in the
following Sect. 3 we describe a comprehensive DevOps-centric methodology to
support the evolutionary process of creating and operating applications, aiming
for a maximum degree of automation.

3 DevOps-centric Methodology to Operate Applications

This section describes a methodology to implement the DevOps paradigm in
practice with a high degree of automation. Our goal is to support DevOps sce-
narios such as the one outlined in Sect. 2 by automating the processes involved
as much as possible. Figure 2 provides an overview of our proposed methodology,
consisting of two major building blocks: (i) the upper part focuses on developing
the application and preparing its operation in a tightly integrated manner; (ii)
the lower part describes the actual deployment and operation of the application.

Develop App & Prepare Ops

Optional: Generate or update
DevOps Spec by analyzing

App Implementation
(Automated)

Define or update
DevOps Spec

(Manual)

if error

Evaluate DevOps Spec and
propose improvements

(Automated)

Deploy & Operate App

Run ‘deploy’ operation
to build and monitor
deployment pipeline

(Automated)

Create or improve
App Implementation

(Manual)

Run ‘undeploy’
operation

(Automated) finish or cont. improvement

if error

Optional: Run
further operations

(Automated)

manual trigger automatic trigger

Fig. 2. Overview of our DevOps-centric methodology

DevOpSlang – Bridging the DevOps Gap 113

Syntactically, Fig. 2 describes our methodology as a cyclic, directed graph.
Each node represents a step of the methodology; the edges define the order of
the steps. Dashed lines denote optional steps and paths. An edge can be seen
as a trigger of the step to which it points. Depending on the annotation of the
edge, the following step may be triggered automatically or manually. The entry
point of the whole methodology is the creation of the application implementation.
Obviously, we consider this step as a mainly manual process. As implied in Sect. 2
it does not only cover the implementation of the business functionality such as
the business logic and the user interfaces; supporting functionality such as the
operations logic are part of the implementation, too. Then, a central artifact in
our methodology comes into play, namely the DevOps Spec, i.e., the DevOps
specification:

Definition 1 (DevOps Spec). A DevOps Spec specifies all developer- and
operations-related aspects of a particular application to deploy it fully automated.
For this purpose, an executable ’deploy’ operation is defined in the DevOps Spec.
This operation may utilize developer-centric operations such as ’build’, ’test’,
and ’start’ defined in the DevOps Spec, too. Moreover, operations to manage the
application (e.g., ’scale’, ’backup-database’, ’undeploy’, etc.) are specified to be
triggered either automatically or manually after a successful deployment.

Developers and operations people work closely together when maintaining
the DevOps Spec, so the DevOps Spec serves as an important means to enable
efficient collaboration between the two parties. As shown in Fig. 2 the DevOps
Spec for an application may be created manually, either after a first iteration of
the application implementation has been created or in parallel to creating the
implementation. Optionally, an initial version or a skeleton of the DevOps Spec
can be generated by analyzing the application implementation to find out some
initial deployment requirements of the application. Such an analysis may be
based on common conventions for application components such as the existence
and the content of certain descriptor files [18]. For instance, a Node.js application
typically owns a package.json file specifying its dependencies and the command
to start the application.

The next step, triggered automatically or manually, is the automated eval-
uation of the DevOps Spec. The goal of this step is to use a set of rules to
find possible conflicts, errors, missing parts, or weaknesses. Based on these find-
ings, improvements are proposed to refine the DevOps Spec. As an example, a
set of platform-bound commands to deploy a particular middleware component
may be better replaced by a portable, tested, open-source artifact such as a Chef
cookbook10 maintained by the DevOps community. Based on these improvement
suggestions the DevOps Spec may be updated accordingly.

Once the DevOps Spec is declared to be in a condition to be ready for de-
ployment (by addressing the reported issues or by ignoring them), we switch to
the second part of our methodology to deploy and operate the application. The
’deploy’ operation is run to build the deployment pipeline:
10 Chef cookbooks: http://community.opscode.com/cookbooks

http://community.opscode.com/cookbooks

114 J. Wettinger, U. Breitenbücher, and F. Leymann

Definition 2 (Deployment Pipeline). A deployment pipeline is an auto-
mated manifestation of the process for getting software from its sources (e.g.,
from version control) to be deployed to the target environment (e.g., develop-
ment, test, production, etc.) [6]. The ’deploy’ operation defined in the DevOps
Spec prescribes how to build the deployment pipeline.

The deployment pipeline, i.e., the execution of the ’deploy’ operation is moni-
tored. If an error occurs, the ’undeploy’ operation is run automatically. All error
logs are stored for later analysis. Optionally, further operations such as ’scale’
or ’backup-database’ may run to manage the application. These runs may be
triggered manually or automatically. In any case after the ’undeploy’ operation
has been run, it depends on a manual decision to go back to the first part to
continuously improve the application implementation, update the DevOps Spec,
and eventually re-deploy the application. Alternatively, the application is not
targeted for re-deployment, e.g., in case the application is decommissioned com-
pletely. In this case, running the ’undeploy’ operation is the final step. Moreover,
we may also go back to the first part improving the application implementation
and updating the DevOps Spec while the application is already deployed and
operated. We could, for instance, deploy an updated version of the application
in parallel and decommission older versions once the updated version is consid-
ered to run correctly. In the context of this paper we focus on the first part of
our methodology (Develop App & Prepare Ops), especially on the automated
and manual steps to define, generate, update, and evaluate the DevOps Spec.
For this purpose, the next Sect. 4 proposes a language to be used to create and
maintain a DevOps Spec.

4 DevOpSlang – A Language to Bridge the Gap
Based on the need to implement DevOps in practice (Sect. 1 and Sect. 2) we
introduced a DevOps-centric methodology to deploy and operate applications
(Sect. 3). We defined the notion of a DevOps Spec (Definition 1) as a key
artifact to enable the implementation of our methodology. However, in the
methodology’s context we do not define how such a DevOps Spec is structured
technically. This is absolutely necessary to implement the methodology in prac-
tice and to implement automated processes in particular. In this section we pro-
pose DevOpSlang, a new domain-specific language to be used for implementing
DevOps Specs. The most important goal of DevOpSlang in conjunction with our
methodology (Sect. 3) is to enable and support efficient collaboration between
developers and operations, leading to automated processes as much as possible.
Technically, DevOpSlang is a domain-specific language based on JavaScript Ob-
ject Notation (JSON) [4]. We use JSON Schema [8] to define a formal schema
for DevOpSlang that may be used for validation purposes. Devopsfiles are the
technical artifacts rendered using DevOpSlang:

Definition 3 (Devopsfile). A Devopsfile is the technical implementation of
a DevOps Spec using DevOpSlang. A Devopsfile orchestrates arbitrary artifacts
(Unix shell commands, Chef scripts, etc.) to implement operations.

DevOpSlang – Bridging the DevOps Gap 115

globalconfig

runner config

config

host

postoptest

1

* 1

1

* 1 1

1

1 1 1

owns
depends on

*

1
action

operation

Devopsfile

Fig. 3. Structure of a Devopsfile based on DevOpSlang

Figure 3 shows the structure of a Devopsfile based on DevOpSlang. The com-
plete JSON schema definition of DevOpSlang is publicly available on GitHub11.
An arbitrary number of operations can be defined. A single operation is imple-
mented by a collection of actions that may depend on each other. Each action
may implement an individual step of an operation. To make an action executable
a runner is used. For instance, an operation may consist of two actions. The first
one may be a Ruby script, using a Ruby runner to execute the script. The second
one may be a single Unix shell command, using a command runner to execute the
command. This makes the runners to be the actual workers to execute operations
defined in a Devopsfile.

Definition 4 (Runner). A runner is an executable enabler in the context of a
runner framework (Fig. 4). It enables the execution of a certain action defined
in a Devopsfile.

An architecture overview of a runner framework that may be used to run such
operations is shown in Fig. 4. Runners that are stored in the runner repository are
reusable by different actions implementing operations in different Devopsfiles.
However, highly application-specific runners can be implemented and stored in-
side the runner repository, too. An operation is run by the operation executor. Each
action of the operation is executed by the action executor, considering the depen-
dencies among actions. To actually execute an action, the action executor retrieves
11 GitHub project DevOpSlang: http://github.com/jojow/devopslang

http://github.com/jojow/devopslang

116 J. Wettinger, U. Breitenbücher, and F. Leymann

Devopsfile

Operation

Artifact
… …

Runner Repository

Runner
Runner

Runner Ruby
Runner

Ruby
Script

Action refers to runner

(3) Retrieve runner
that is required
to execute action

(1) Read operation definition
and configuration

(2) For each action
of operation: trigger
execution of action

Action Executor

Operation

… Ruby Script Ruby Script

Ruby Runner

Operation Executor Ruby Script

Fig. 4. Architecture overview of runner framework

the corresponding runner from the runner repository. [19] presents a similar archi-
tecture that may serve as a foundation for such a runner framework. Hosts such as
VMs, containers, or platforms may be defined as a means to run different actions
on different hosts. If no host is defined for an action, the invoker of the Devopsfile
or the operation in particular determines where to run the action (e.g., localhost
or a sandbox). In terms of configuration there is a global configuration at the top.
Operationsmay have individual configurations that aremergedwith the the global
configuration and may override parts of the global one. The same is true for con-
figurations on the action level: they are merged with the operation’s configuration
and then with the global configuration, possibly overriding parts of them.

The following Sect. 5 presents the validation and evaluation of DevOpSlang
in conjunction with our methodology (Sect. 3). We stick to the motivating sce-
nario (Sect. 2) to create and refine Devopsfiles in an evolutionary manner as
proposed by our methodology. This is enabled by the evolution of Devopsfiles
and related runners.

5 Validation and Evaluation

The evaluation of our methodology in conjunction with DevOpSlang is twofold:
the first part shows how Devopsfiles can evolve based on the changing ar-
chitecture of an application and based on the collaboration between developers
and operations personnel. The second part outlines the possibility to orchestrate
multiple Devopsfiles recursively, so Devopsfiles remain maintainable even for

DevOpSlang – Bridging the DevOps Gap 117

large applications. Beside the Devopsfile schema all Devopsfiles discussed in
this section are completely and publicly available on GitHub12. We validated all
Devopsfiles against the Devopsfile schema using the JSON Schema Valida-
tor13.

5.1 Devopsfile Evolution

Based on the evolutionary developed chat application described in Sect. 2 the
following listing shows an initial version of a Devopsfile for the application:

1 {
2 "name" : " chat−app " ,
3 " v e r s i on " : " 0 . 1 " ,
4 " author " : " Johannes <wett inge r@iaas . uni−s t u t t g a r t . org>" ,
5 " d e s c r i p t i o n " : "Automated deployment and ope ra t i on s f o r chat app

" ,
6
7 " ope ra t i on s " : {
8 " bu i ld " : {
9 " a c t i on s " : {

10 " i n s t a l l −deps " : {
11 " runner " : "command−runner " ,
12 " comment" : "Node . j s 0.10+ must be i n s t a l l e d " ,
13 " c on f i g " : { "command" : "npm i n s t a l l " }
14 }
15 }
16 } ,
17 " s t a r t " : {
18 " a c t i on s " : {
19 " chatapp " : {
20 " runner " : "command−runner " ,
21 " comment" : "Node . j s 0.10+ must be i n s t a l l e d " ,
22 " c on f i g " : { "command" : " node app . j s " }
23 }
24 }
25 } ,
26 " deploy " : {
27 " a c t i on s " : {
28 " bui ld−app " : {
29 " runner " : " operat ion−runner " ,
30 " c on f i g " : { " operat ion " : " bu i ld " }
31 } ,
32 " s t a r t−app " : {
33 " runner " : " operat ion−runner " ,
34 " c on f i g " : { " operat ion " : " s t a r t " }
35 }
36 } ,
37 " dependenc i es " : [
38 [" s t a r t−app " , " bui ld−app "]
39]
40 }
41 }
42 }

Beside some meta data such as ’version’ and ’author’ this Devopsfile defines
a ’start’ operation consisting of a single action entitled ’chatapp’. This is a min-
imalist definition specifying the command to run the Node.js-based application.
Similarly, a ’build’ operation is defined to install the dependencies required to
12 Devopsfile schema and sample Devopsfiles:

http://github.com/jojow/devopslang
13 JSON Schema Validator: http://github.com/fge/json-schema-validator

http://github.com/jojow/devopslang
http://github.com/fge/json-schema-validator

118 J. Wettinger, U. Breitenbücher, and F. Leymann

run the application. The ’deploy’ operation in its initial version points to the
operations ’build’ and ’start’. Such initial definitions may be automatically de-
rived from existing application descriptor files such as the package.json14 file
for Node.js-based applications. For the next iteration of the chat application
the Node.js runtime solely is not enough. A database is used to store chat logs.
Thus, we need to start MongoDB as an additional component before running
the application (’chatapp’ action depends on ’mongodb’ action):

1 " s t a r t " : {
2 " a c t i on s " : {
3 " chatapp " : { . . . } ,
4 "mongodb" : {
5 " runner " : "command−runner " ,
6 " comment" : "MongoDB 2.6+ must be i n s t a l l e d " ,
7 " c on f i g " : { "command" : "mongod" }
8 }
9 } ,

10 " dependenc i es " : [
11 [" chatapp " , "mongodb"]
12]
13 }

Up to now, we assume the middleware components such as the Node.js run-
time and the MongoDB server are available already when running the ’deploy’
operation. This might be true for some developer machines. However, on a freshly
provisioned VM, for instance, these components need to be installed, too. Thus,
the operation definition may be extended as follows to retrieve and install all
components that are involved:

1 " deploy " : {
2 " a c t i on s " : {
3 " deploy−node j s " : {
4 " runner " : "command−runner " ,
5 " c on f i g " : {
6 "command" : " . . . && sudo apt−get i n s t a l l node j s "
7 }
8 } ,
9 " deploy−mongodb" : {

10 " runner " : "command−runner " ,
11 " c on f i g " : {
12 "command" : " . . . && sudo apt−get i n s t a l l mongodb−org "
13 }
14 } ,
15 " bui ld−app " : { . . . } ,
16 " s t a r t−app " : { . . . }
17 } ,
18 . . .
19 }

Defining actions on the level of commands might be a good starting point be-
cause this is what developers typically use for creating the first prototypes and
iterations of an application. However, the DevOps community publicly shares
and maintains reusable artifacts such as Chef cookbooks to deploy middleware
and application components. To increase the portability and reliability of opera-
tions it may make sense to reuse these artifacts instead of putting together a few
platform-specific commands. The following listing shows how this can be done
using a different runner for the ’mongodb’ action:
14 Package.json description: http://www.npmjs.org/doc/json.html

http://www.npmjs.org/doc/json.html

DevOpSlang – Bridging the DevOps Gap 119

1 " deploy " : {
2 " a c t i on s " : {
3 . . .
4 " deploy−mongodb" : {
5 " runner " : " chef−so lo−runner " ,
6 " c on f i g " : {
7 " f i l e s " : { "mongodb . tgz " : " http : / / . . . / mongodb . tgz " } ,
8 " r u n l i s t " : [" r e c i p e [mongodb : : d e f a u l t] "]
9 }

10 }
11 } ,
12 . . .
13 " po s top t e s t " : {
14 " runner " : "command−runner " ,
15 " c on f i g " : {
16 "command" : " export RESCODE=$(c u r l −sL −w \"%{http_code }\\

n\" \" http : // l o c a l h o s t :3000\" −o /dev/ nu l l) && [[\"
$RESCODE\" == \"200\"]] && true | | f a l s e "

17 }
18 }
19 }

Moreover, a ’postoptest’ is defined. It implements a test case that is executed
directly after the operation execution finished. This is to check whether the
operation was executed successfully. In this example we simply send an HTTP
request to our application and check if the response code is 200 (OK).

All Devopsfile iterations discussed so far assume that the whole application
is deployed to a single host such as a VM. To address scalability and performance
issues the application needs to be deployed in a distributed manner. As a first
step, the Node.js runtime and the MongoDB server are running on two distinct
VMs. Moreover, additional actions need to be included in the operation definition
to cover the provisioning of these VMs. This further improves the completeness
of the Devopsfile. The following listing provides a small extract of a more
advanced iteration of the Devopsfile15 to provision a new VM:

1 " deploy " : {
2 " a c t i on s " : {
3 " prov i s ion−app−vm" : {
4 " runner " : " j s−sandbox−runner " ,
5 " c on f i g " : {
6 " hostname" : " app−vm" ,
7 " f i l e s " : { " ec2−prov i s i on . j s " : " http : // ops−a r t i f a c t −

s t o r e /aws−management/ec2−prov i s i on . j s " } ,
8 " i n c l ude " : [" ec2−prov i s i on . j s "]
9 }

10 } ,
11 . . .
12 " deploy−node j s " : {
13 " host " : " app−vm" ,
14 . . .
15 } ,
16 . . .
17 } ,
18 . . .
19 }

In this iteration of the Devopsfile we assume that the application is always
deployed to VMs at Amazon’s EC2 platform. However, this could be changed

15 Devopsfile v8: http://goo.gl/mda8c4

http://goo.gl/mda8c4

120 J. Wettinger, U. Breitenbücher, and F. Leymann

easily by using provider abstraction libraries such as fog16 to implement more
generic provisioning scripts or corresponding runners. In any case, actions of an
operation need to be annotated with a host for a distributed deployment, so
it is clear where the action should run. Further iterations of the Devopsfile17
may define additional management operations such as an ’expose’ operation to
explicitly make the application available to the outside world. Technically, this
could be a script to configure a security group of an Amazon EC2 VM, opening
port 80 for inbound traffic to retrieve HTTP requests.

We have seen that DevOpSlang provides an efficient means to change the level
of abstraction implementing operations seamlessly. Moreover, different abstrac-
tion levels may be combined consistently such as a ’deploy’ operation consisting
of actions on the level of Unix shell commands and actions using portable Chef
cookbooks.

5.2 Recursive Orchestration of Devopsfiles

As an application grows, the Devopsfile may get huge and thus more difficult
to maintain. To avoid such issues the application may be split into different
components that own their individual Devopsfiles.The ’operation-runner’ may
be utilized to transparently invoke operations defined in other Devopsfiles as
shown in the following listing. This approach enables the recursive orchestration
of Devopsfiles to keep them maintainable in size and thus enabling separation
of concerns.

1 " deploy " : {
2 " a c t i on s " : {
3 . . .
4 " deploy−app−core " : {
5 " runner " : " operat ion−runner " ,
6 " c on f i g " : {
7 " Devop s f i l e " : " . / core /Devops f i l e " ,
8 " operat ion " : " deploy "
9 }

10 } ,
11 . . .
12 } ,
13 . . .
14 }

6 Related Work

Our work is related to similar approaches in the field of Cloud computing that in-
troduce a domain-specific language to deploy and operate applications in an auto-
mated manner. On the IaaS level approaches such as Amazon CloudFormation18
or OpenStack Heat19 are used to orchestrate infrastructure resources (VMs, stor-
age, network, etc.). Moreover, middleware and application components can be
16 fog library: http://fog.io
17 Devopsfile v9: http://goo.gl/b6Fu0f
18 Amazon CloudFormation: http://aws.amazon.com/cloudformation
19 OpenStack Heat: http://wiki.openstack.org/wiki/Heat

http://fog.io
http://goo.gl/b6Fu0f
http://aws.amazon.com/cloudformation
http://wiki.openstack.org/wiki/Heat

DevOpSlang – Bridging the DevOps Gap 121

stacked and orchestrated using application topologies based on Ubuntu Juju20,
Amazon OpsWorks [16], Blueprints [15], or enterprise topology graphs [3]. The
Topology and Orchestration Specification for Cloud Applications (TOSCA) [12]
is an emerging standard to define portable application topologies. However, some
of these approaches are bound to specific providers or tools (CloudFormation,
OpsWorks, Juju, etc.); some are focused on defining the higher-level structure of
an application (TOSCA, Blueprints, etc.), so implementing automation requires
additional imperative logic such as build plans, or conventions for declarative
processing have to be defined. Others focus on prescribing fine-grained techni-
cal mechanisms how to implement automation, mainly considering operations-
related aspects. Thus, they can hardly be used as a means of collaboration to
fill the DevOps gap. Furthermore, there are modeling languages such as UML
deployment diagrams [13] that may be a nice fit for collaboration purposes, but
corresponding models are not executable.

DevOpSlang aims to fill this gap as a language to improve DevOps collabora-
tion and to enable comprehensive automation based on the fact that operations
defined in Devopsfiles are executable. However, to implement a framework to
process Devopsfiles, the aforementioned and other existing approaches [19,5]
may be used and combined to enable the automated run of operations. Fur-
thermore, the DevOps community proposes several domain-specific languages
centered around tools such as Puppet [9], CFEngine [20], and Chef [11]. How-
ever, these languages focus on the configuration of lower-level resources such as
middleware and application components installed on VMs. Moreover, they are
bound to a specific tool such as Chef or Puppet. Consequently, they are less ap-
propriate as a holistic means of collaboration and can hardly be used to automate
deployment and operations of applications based on an arbitrary combination
of tools and artifacts. However, they may perfectly complement DevOpSlang to
implement actions using these lower-level domain-specific languages.

7 Conclusions

In this paper we introduced a new domain-specific language called DevOpSlang
in conjunction with a methodology to enable the implementation of DevOps.
The language serves as an efficient means of collaboration and provides the
foundation to automate deployment and operations of an application. We evalu-
ated both DevOpSlang and the methodology based on an evolutionary emerging
application described in our motivating scenario. In terms of future work we
plan to implement a runner framework to process Devopsfiles based on De-
vOpSlang. We further plan to implement mechanisms to generate Devopsfile
skeletons based on existing descriptor files, evaluate Devopsfiles automati-
cally, and make suggestions how to improve a given Devopsfile. Moreover,
our goal is to provide alternative renderings of Devopsfiles based on XML
and YAML.

20 Ubuntu Juju: http://juju.ubuntu.com

http://juju.ubuntu.com

122 J. Wettinger, U. Breitenbücher, and F. Leymann

Acknowledgments. This work was partially funded by the BMWi project
CloudCycle (01MD11023).

References

1. Manifesto for Agile Software Development (2001), http://agilemanifesto.org
2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,

G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A View of Cloud Computing.
Communications of the ACM 53(4), 50–58 (2010)

3. Binz, T., Fehling, C., Leymann, F., Nowak, A., Schumm, D.: Formalizing the Cloud
through Enterprise Topology Graphs. In: Proceedings of 2012 IEEE International
Conference on Cloud Computing. IEEE Computer Society Conference Publishing
Services (2012)

4. Ecma International: The JSON Data Interchange Format (2013), http://json.org
5. Fischer, J., Majumdar, R., Esmaeilsabzali, S.: Engage: A Deployment Management

System. SIGPLAN Not. 47(6), 263–274 (2012)
6. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through

Build, Test, and Deployment Automation. Addison-Wesley Professional (2010)
7. Humble, J., Molesky, J.: Why Enterprises Must Adopt Devops to Enable Continu-

ous Delivery. Cutter IT Journal 24 (2011)
8. Internet Engineering Task Force: JSON Schema, http://json-schema.org
9. Loope, J.: Managing Infrastructure with Puppet. O’Reilly Media, Inc. (2011)

10. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. National Institute
of Standards and Technology (2011)

11. Nelson-Smith, S.: Test-Driven Infrastructure with Chef. O’Reilly Media, Inc. (2013)
12. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA)

Version 1.0, Committee Specification 01 (2013),
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html

13. OMG: Unified Modeling Language (UML), Version 2.4.1 (2011)
14. Oppenheimer, D., Ganapathi, A., Patterson, D.A.: Why do internet services fail,

and what can be done about it? In: USENIX Symposium on Internet Technologies
and Systems, Seattle, WA, vol. 67 (2003)

15. Papazoglou, M., van den Heuvel, W.: Blueprinting the Cloud. IEEE Internet Com-
puting 15(6), 74–79 (2011)

16. Rosner, T.: Learning AWS OpsWorks. Packt Publishing Ltd. (2013)
17. Shamow, E.: Devops at Advance Internet: How We Got in the Door. IT Journal,

14 (2011)
18. Wettinger, J., Andrikopoulos, V., Strauch, S., Leymann, F.: Characterizing and

Evaluating Different Deployment Approaches for Cloud Applications. In: Proceed-
ings of the IEEE International Conference on Cloud Engineering (IEEE IC2E 2014),
Boston, Massachusetts, USA, March 10-14. IEEE Computer Society (2014)

19. Wettinger, J., Binz, T., Breitenbücher, U., Kopp, O., Leymann, F., Zimmermann,
M.: Unified Invocation of Scripts and Services for Provisioning, Deployment, and
Management of Cloud Applications Based on TOSCA. In: Proceedings of the 4th
International Conference on Cloud Computing and Services Science. SciTePress
(2014)

20. Zamboni, D.: Learning CFEngine 3: Automated System Administration for Sites
of Any Size. O’Reilly Media, Inc. (2012)

http://agilemanifesto.org
http://json.org
http://json-schema.org
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html

	DevOpSlang – Bridging the Gap between Development and Operations

	1 Introduction
	2 Problem Statement and Motivating Scenario
	3 DevOps-centric Methodology to Operate Applications
	4 DevOpSlang – A Language to Bridge the Gap
	5 Validation and Evaluation
	5.1 Devopsfile Evolution
	5.2 Recursive Orchestration of Devopsfiles

	6 Related Work
	7 Conclusions
	References

