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Abstract. Common approaches to generating confidence bounds
around ROC curves have several shortcomings. We resolve these weak-
nesses with a new ‘rate-oriented’ approach. We generate confidence
bounds composed of a series of confidence intervals for a consensus curve,
each at a particular predicted positive rate (PPR), with the aim that
each confidence interval contains new samples of this consensus curve
with probability 95%. We propose two approaches; a parametric and a
bootstrapping approach, which we base on a derivation from first prin-
ciples. Our method is particularly appropriate with models used for a
common type of task that we call rate-constrained, where a certain pro-
portion of examples needs to be classified as positive by the model, such
that the operating point will be set at a particular PPR value.

Keywords: Confidence bounds, rate-averaging, ROC curves, rate-
constrained.

1 Introduction

ROC curves are informative visualisations of model performance that show the
ranking performance at different regions of a ranking, or the performance of a
scoring classifier at each possible choice of operating point. ROC curves are of-
ten used to determine if one model is better than other, and confidence bounds
provide a measure of the uncertainty such that this can be determined, for a spec-
ified confidence level. In general when several independent sample ROC curves
are generated, such as with m-fold cross validation, the variation between them
can be used to estimate a confidence around the average (consensus) ROC curve.
Several methods have been proposed to generate confidence bounds, mainly para-
metric approaches such as vertical [13] or threshold [5] averaging.

Vertical averaging is the most common approach, where the false positive
rate is fixed and the mean and confidence interval across the true positive rate
is calculated at each false positive rate value. Horizontal averaging is a similar
approach that instead fixes the true positive rate and calculates the confidence
interval across false positive rate values. However, these approaches have several
shortcomings. Firstly, the false and true positive rates are metrics over which
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we have little control, such that it is difficult to set a threshold at a particular
value. It is therefore preferable to evaluate a ROC curve with respect to a metric
with which setting the threshold is simple in practice. Furthermore, vertical
and horizontal averaging are not invariant to swapping the classes, such that
if the x-axis and y-axis of ROC space become the false and true negative rate
respectively, equivalent points will have different confidence bounds. Finally,
depending on the distributional assumptions of points at each false (or true)
positive rate value, the confidence bounds may not be constrained to the bounds
of ROC space, such that tpr � �0, 1� and fpr � �0, 1� (where tpr and fpr are the
true and false positive rates respectively).

Threshold-averaging is similar to vertical (and horizontal) averaging but in-
stead fixes the score and averages over each cloud of points in ROC space with
the same score. This has the advantage that we can easily use thresholds set at a
particular score, classifying each example by whether its score is below or above
this threshold value. However, how best to generate confidence bounds for a set
points that are not constrained to a single dimension is not obvious. Fawcett
et al [5] suggest averaging separately across false and true positive rates, but
this creates a rectangular shaped bound for each score where a smoother bound
would seem more natural.

To address these shortcomings of existing methods, we specify a set of prop-
erties we would like our confidence bounds to satisfy. Firstly, the generated con-
fidence bounds should be invariant to swapping the classes, by which we mean
that if the positive and negative classes are swapped such that the x-axis and
y-axis of ROC space refer to the false and true negative rate respectively, of
the original class labels, then the confidence bounds of these two ROC curves
should be symmetrical about the line tpr � 1� fpr (the descending diagonal).
Secondly, the confidence bounds should be constrained to sit within the bounds
of ROC space at all points along the lower and upper confidence bounds.

Furthermore, there is a specific type of task in which we are particularly
interested. A task may be constrained to a certain proportion of examples that
should be classified as positive by the model, the predicted positive rate (PPR).
We call these tasks rate-constrained, and these are common in many fields. For
example, screening a database of customers to decide who should be targeted
in a direct sales campaign, where time and monetary budgets mean it is only
possible to approach a proportion of the potential customers. Furthermore, the
PPR value, hence also the operating point it infers, may not be known precisely,
such as the task described by Millard et al. [12], of ranking research articles for
rapid reviews in epidemiology.

We suggest that when a task is rate-constrained, the consensus curve should be
generated by averaging a set of sample ROC curves while fixing the rate, which
we call rate-averaging. Furthermore, the comparison of several models should
use confidence intervals also created at each PPR value, which we call a rate-
oriented approach, such that they can be compared with respect to the PPR. We
illustrate this with Figure 1, which shows two ROC curves and their consensus
curve, created by vertical- (left) and rate-averaging (right). Each point on the
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Fig. 1. Illustration of generating consensus curves (broken green curves) from two ROC
curves. Left: vertical-averaging, right: rate-averaging. Dotted lines show false positive
rate and PPR isometrics, in the left and right figures, respectively.

rate-averaged consensus curve gives the average performance of all sample ROC
curves at a particular PPR value. In order for the confidence interval to give the
uncertainty of a rate-averaged consensus curve, this should also be generated for
each PPR value.

Our aim is to generate confidence intervals for a consensus curve at each PPR
value, such that at significance level σ new samples generated from this consensus
curve pass between the lower and upper confidence limits at a given PPR value,
with probability 1 � σ. The series of confidence intervals creates a confidence
bound around the consensus curve. We call these point-wise confidence bounds
in line with [10] in order to differentiate from the common meaning of ROC
confidence bands, where the confidence refers to the proportion of whole curves
sitting entirely inside the confidence band. Where we discuss methods that are
solely used to generate a bound around the whole curve, we explicitly refer to
these as bands.

Our main contribution is an approach to generate rate-oriented point-wise
confidence bounds. We derive our approach from first principles and demonstrate
its effectiveness experimentally.

2 Notation and Basic Definitions

We follow the notation of [7]. We assume a two-class classification problem with
instance space X . The positive and negative classes are denoted by 0 and 1, re-
spectively. The learner outputs a score s�x� � �0, 1� for each instance x � X . The
score densities (lower scores suggest positive class) and cumulative distributions
are denoted by fy and Fy for class y � �0, 1	. Given a threshold at score t the
true positive rate (also called sensitivity or positive recall) is P �s�x� 
 t�y �
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0� � F0�t� and the false positive rate is P �s�x� 
 t�y � 1� � F1�t�. The true
negative rate, also called specificity or negative recall, is 1� F1�t�.

The proportions of positives and negatives are denoted by π0 and π1 respec-
tively. The score density of the mixed distribution is denoted by f and given by:

f�t� � π0 � f0�t� 
 π1 � f1�t� (1)

The probability of a positive at score t is given by:

π0,t �
π0 � f0�t�

π0 � f0�t� 
 π1 � f1�t�
(2)

The cumulative distribution of the mixed density distribution is denoted by F
and given by:

F �t� � π0 � F0�t� 
 π1 � F1�t� (3)

This is also the proportion of positive predictions at threshold t known as the
predicted positive rate (PPR), which we abbreviate to the rate.

A ROC curve is a plot of true positive rate on the y-axis against false positive
rate on the x-axis. A ROC table, such as that shown in Table 1, is a matrix
with m rows and n columns, containing the results of independent tests using
m samples, such as m-fold cross-validation.

Table 1. Example ROC table, with
m � 4 samples and n columns, num-
bers of positive examples in each col-
umn posk

k
yi,k 1 2 3 . . . n-1 n
Sample 1 0 0 1 . . . 1 1
Sample 2 0 1 1 . . . 0 1
Sample 3 0 0 0 . . . 0 1
Sample 4 0 1 0 . . . 1 1
posk 4 2 2 . . . 2 0

Table 2. Example Si,k values (number
of positive examples up to column k in
a sample) for example ROC table(left)

Si,k Si,1 Si,2 Si,3

Sample 1 1 2 2
Sample 2 1 1 1
Sample 3 1 2 3
Sample 4 1 1 2

Each cell contains the label yi,k � �0, 1� of the example at position k along the
ranking of sample i, where the examples of each sample are ranked by increasing
score. A segment of consecutive positions in a ranking having the same score
are assigned a fractional label to account for this – the average of the labels in

this segment, calculated as 1
1�q��q

�q�

j�q yj where q and q� are, respectively, the
start and end of the position range with equal score. The number of positives
and negatives in a ranking are denoted by n0 and n1 respectively, such that
n � n0 
 n1.

The number of positives across samples at column k in the ROC table, denoted
posk, is given in Equation 4 (and examples are given in Table 1). The number
of positives up to position k of row i in the ROC table, which we refer to as the
true positive value (as opposed to the true positive rate) and denote by Si,k, is
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given in Equation 5 (and examples are given in Table 2 for the ROC table shown
in Table 1).

posk �
m�
i�1

�1� yi,k� (4) si,k �
k�

j�1

�1� yi,j� (5)

The number of positives up to position k across all samples in the ROC table,
denoted sk, is given by:

sk �
k�

j�1

posj �
m�
i�1

si,k (6)

Recall (of the positive class) is the proportion of positive examples, correctly
classified as positive, at a given point on the ROC curve (also known as the true
positive rate). We specify this in terms of rates. The recall tpri,k of sample i
with operating point at position k is given by:

tpri,k �
si,k
n0

(7)

We denote an unsorted list of n items as a1, a2 . . . an and a sorted list as
a�1�, a�2� . . . a�n�.

3 Generating Confidence Bounds

In this section we give our approach to generating rate-oriented point-wise con-
fidence bounds. This includes a new approach to generating samples that uses
the ROC curve, rather than the common approach of sampling from the score
probability density function of each class (Section 3.2). We begin by describ-
ing a simple approach of inferring confidence bounds, used as a baseline in our
experiments (Section 4).

3.1 Baseline Method

We use a simple parametric approach as a baseline method. This method is sim-
ilar to previous approaches such as vertical-averaging, but we fix the rate rather
than the false positive rate, in line with our aims. We calculate the mean and
variance of recall across samples and, after making an assumption of the under-
lying distribution across the ROC points of each sample at each rate, calculate
the 95% confidence intervals. Here we use positive recall as a distance measure
along rate isometrics in ROC space, but any metric that varies linearly along
rate isometrics could also be used (such as negative recall or accuracy).

The variance of mean sample recall at each position k along the ranking is
given by:

σ2
k �

1

m � �m� 1�

m�
i�1

�tpri,k � �tprk�2 (8)

where m is the number of samples, tpri,k is the recall for sample i at position k
and �tprk is the mean recall across the samples, at position k. The additional m
in the denominator is because we need the variance of the sample mean.
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In order to infer a confidence interval we need to assume a particular distri-
bution across the recall at each position k. Assuming a normal distribution the
confidence intervals are given by �tprk � 1.96 � σk.

We also test this method using a beta distribution, which is bounded by �0, 1�
such that we can constrain our confidence intervals to the bounds of ROC space.
To use the beta distribution we rescale, at each position k, each sample recall

value from the range max
�
0, r�π1

π0

�
. . .min

�
1, r

π0

�
, where r � k

n is the rate at

k, to the range 0 . . . 1. We calculate the mean and standard deviation of these
scaled recall values at each position k and use these to calculate the α and β
parameters of the beta distribution. We find the lower and upper limits of the
95% confidence interval of this distribution, and then rescale this back to the
original range.

3.2 Generating Sample ROC Curves

Given the score densities of each class, sample rankings can be generated using
this distribution. For instance, for each example in the new ranking we can
sample a score from the mixed distribution and then sample a label using the
probabilities of each class at this score (shown in Table 3 left).

However, the score distribution is not determined by the ROC curve and hence
may not be known. In this case we can sample using the ROC curve instead of
the score densities, by sampling across the rate. The gradient on the ROC curve
is the class likelihood ratio, from which we can calculate the class probabilities
at this point on the curve, and then sample the label using this.

We do not need to know the scores because the rate also determines the
order of the examples in the ranking, and the ROC curve determines the class
probabilities at each rate. We call this the ‘rate-first’ approach, given in Table 3
(right).

Table 3. Two sampling approaches. Left. Score-first approach. Right: Rate-first ap-
proach.

Score-first: Rate-first

Repeat n times:
Sample score sj � f

Sample label yj �
bernoulli�π0,sj �
Rank labels by score sj

Repeat n times:
Sample rate rj � uniform�0, 1�
π0,rj � calculated from gradient at rj on ROC

curve
Sample label yj � bernoulli�π0,rj �

Rank labels by rate rj

3.3 Overview of Our Approaches

We assume a random process that generates ROC tables of size n �m from the
usually unknown score densities. Let us denote by Si,k the random variable of



410 L.A.C. Millard, M. Kull, and P.A. Flach

the sum of the number of positives at position k. Formally, for any fixed true
positive value s at this position, with n0 and n1 all fixed, we want to estimate:

p �Si,k � s �Si,n � n0� �
p �Si,k � s, Si,n � n0��
s� p �Si,k � s�, Si,n � n0�

(9)

We condition on the class distribution to reflect the fact that a data sample
has a finite number of examples with a certain number of each class. This also
corresponds to the fact that ROC curves must pass through the points �0, 0�
and �1, 1�. We present two alternative methods, a parametric and a bootstrap
approach. We derive the probability distribution across the number of positives
up to a position, k, in a sample, and use this to infer these two approaches. We
develop bootstrap approaches for cases where the distributional assumptions of
the parametric approach are invalid.

Importantly, our approach is naturally invariant to swapping the classes. In
ROC space, swapping the classes means that the x-axis becomes the false nega-
tive rate (1� tpr), and the y-axis becomes the true negative rate (1� fpr). The
corresponding ROC curve in this ‘swapped’ ROC space is simply a line mirror-
ing of the original ROC curve along the descending diagonal (tpr � 1 � fpr).
Furthermore, the rates are given by r��t� � π0�1� tpr� 
π1�1� fpr�. Therefore
it follows that r��t� � 1�r�t�. Hence, for each set of points along a rate isometric
in the original space, there is a corresponding rate isometric in the ‘swapped’
space along which this set of points also lie. The confidence bands along these
corresponding rate isometrics will have equivalent confidence intervals.

3.4 Parametric Approach

We find the probability distribution across the number of positives from the
first position to a position k in the ranking, Si,k. We first derive an analytical
solution (Theorem 1), and then provide an empirical version that can be used
when only the ROC curve (and not the score densities) is available, as is usually
the case. At this point we fix i as we refer only to a single sample, such that Si,k

is denoted Sk and Si,n is denoted Sn.

Theorem 1. Let the score densities, F0 and F1, and the number of examples of
each class in the sample, n0 and n1, be fixed. Then:

p�Si,k � s, Si,n � n0�

�

� 1

0

�binom�s, k � 1, π�r
0 � � �1� π�r

0 � 
 binom�s� 1, k � 1, π�r
0 � � �π�r

0 ��

� binom�n0 � s, n� k, π�r
0 � � p�Rk � r�dr

(10)

where
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π�r
0 �

π0F0�t�

π0F0�t� 
 π1F1�t�
(11)

π�r
0 �

π0�1� F0�t��

π0�1� F0�t�� 
 π1�1� F1�t��
(12)

π�r
0 �

π0f0�t�

π0f0�t� 
 π1f1�t�
(13)

t � F�1�r�, p�Rk � r� � beta�r, k, n � k 
 1�, Rk is the rate from which the
example at position k was sampled and binom�kb, nb, pb� is the binomial distribu-
tion for kb successes in nb trials, with probability of success pb, and beta�x, a, b�
is the probability of value x for beta distribution with α � a and β � b.

Proof. To compute the left hand side of Equation 9 it is sufficient to compute:

p �Sk � s, Sn � n0� (14)

The probability of S � s and Sn � n0 in the new sample depends on which rate
it was sampled from, such that:

p �Sk � s, Sn � n0� �

� 1

0

p �Sk � s, Sn � n0 � Rk � r� � p�Rk � r�dr (15)

The order statistic states that when sampling n values uniformly within
the range 0..1 and sorting these examples, the probability that an example
at position k was sampled from a rate r is beta distributed with α � k and
β � n� k 
 1 [1]. Therefore, p�Rk � r� of Equation 15 is the beta density.

The other component of Equation 15 is the probability of s positives up to a
position k, given the example at this position is sampled from a particular rate
r. There are two cases where value s is the number of positives up to a position
k: 1) s�1 positives occur before position k and the example at k is a positive, or
2) s positives occur before position k and the example at position k is a negative.
In either case there must also be n0 � s positives after position k to ensure that
the class distribution is correct.

The examples before position k can be sampled independently, with proba-
bility of a positive given by Equation 11. The examples after position k can also
be sampled independently, with probability of a positive given by Equation 12.
The independence between samples is valid because we are sampling a set of
unordered examples, and this means that the probabilities of the set of exam-
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ples before and after position k are binomially distributed, which infers:

p �Sk � s, Sn � n0�Rk � r�

�

�
p

�
k�1�
i�1

�1� yi� � s

�
p�yk � 1� 	 p

�
k�1�
i�1

�1� yi� � s� 1

�
p�yk � 0�

�

� p

�
n�

i�k�1

�1� yi� � n0 � s

�

�
�
binom�s, k � 1, π�r

0 � � �1� π�r
0 � 	 binom�s� 1, k � 1, π�r

0 � � �π�r
0 �

�
� binom�n0 � s, n� k, π�r

0 �

(16)

Using Equation 16 in Equation 15 concludes the proof.

To reiterate, a key point - while an example at position k has rate r � k
n

for this ROC table, we can imagine this table is sampled from a ROC curve
of all possible examples. The rate from which it is sampled from this ‘true’
ROC curve is probabilistic, corresponding to p�Rk � r� in Equation 10. The
class probabilities used to generate this example are determined by the class
distribution at the rate from which this example was sampled.

An important aspect of Theorem 1 is that the sampling probabilities before,
at and after rate r (Equations 11 - 13) can be computed solely using the ROC
curve. Recall from Section 3.2 that Equation 13 can be calculated from the
gradient at r on the ROC curve. We can also infer the values of Equations 11
and 12 from the ROC curve. Equation 11 is equivalent to the average probability
of sampling a positive across all rates before r, and this can be inferred from
the gradient of the straight line from point �0, 0� to the point at r on the ROC
curve. Similarly, Equation 12 can be inferred from the gradient of the straight
line from the ROC curve point at r to the point �1, 1�.

Theorem 1 gives the analytical calculation but we cannot use this directly
in practice, as we have empirical ROC curves / ROC tables rather than the
score densities. Firstly, our empirical ROC tables have discrete rates such that
in the discrete case the integral of Equation 15 is changed to a summation. We
implement this as an average of the joint probability, for a set of rates of the
CDF of the beta distribution (the sampling distribution for this k) at each 0.01
interval:

p �Sk � s, Sn � n0� �
99�
t�1

p
�
Sk � s, Sn � n0 � Rk � F�1

beta�0.01 � t�
�

(17)

such that we sample the rates at each 0.01 interval of the CDF of the beta
distribution (with α � k and β � n� k 
 1). This CDF models the probability



Rate-Oriented Point-Wise Confidence Bounds for ROC Curves 413

that an example at position k is sampled by each rate (according to the order
statistic).

We also require discrete versions of Equations 11- 13 that can also be used
with an empirical ROC table, and these are given in Equations 18- 20:

π�r
0 �

1

r � n �m

	
Si,�r	n� 
 d � pos�r	n�



(18)

π�r
0 �

1

m
pos�r	n� (19)

π�r
0 �

1

�1� r� � n �m

	
n0 � Si,�r	n� 
 �1� d� � pos�r	n�



(20)

where d � r � n � �r � n� is the relative distance of the rate between positions
�r � n� and �r � n�.

The probabilities of each Sk value computed in Theorem 1, correspond to only
a single row of the ROC table. We need the distribution across the number of
positives up to position k of all samples in the ROC table. For each Sk value we
need:

p

�
Sk � s ��i � 1 . . .m :

n�
j�1

�1� yi,j� � n0

�
(21)

Computing this exactly is computationally intractable, as for each possible
s at a position k the probability is given as the summation of the probabilities
of all possible combinations of values at position k that sum to this value. We
instead approximate the confidence intervals using the estimated variance of
this distribution. The mean and variance of the distribution of one sample up to
position k are given by:

μ1,k �
�
s

p �Sk � s �Sn � n0� � s (22)

σ2
1,k �

�
s

p �Sk � s �Sn � n0� � �s� μ1,k�
2 (23)

where 1 denotes that these functions correspond to a single sample. We assume
each row is identically distributed such that the mean and variance of s at
position k of the ROC table are given by:

μk �
m�
i�1

μi,k � m � μ1,k (24) σ2
k �

m�
i�1

σ2
i,k � m � σ2

1,k (25)

At each k we restrict to only the possible values of Sk, rescale these to between
zero and one, and use a scaled beta distribution to model this distribution and
estimate the confidence intervals. We calculate the mean and variance across Sk
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values at each position k, where the Sk values have been rescaled to the range
�0, 1�:

μk,β �
μk �minSk

maxSk �minSk
(26)

σ2
k,β �

σ2
k

�maxSk �minSk�2
(27)

where maxSk � m �maxS1,k and minSk � m �minS1,k and:

minS1,k � max�0, n0�n
k� (28)
maxS1,k � min�k, n0�

(29)

We use these to parameterise a beta distribution and infer a confidence interval,
which we then rescale to the original scale.

3.5 Bootstrap Approach

We generate 2,000 bootstrapped ROC tables each with m samples. Each sample
is generated independently using the rate-first sampling approach, as follows.

The rates are sampled uniformly and sorted:

r1, r2 . . . rn
sort
��� r�1�, r�2� . . . r�n� (30)

The probability distribution at each rate is found by:

π0,r �
1

m
pos�r	n� (31)

We then use this probability to generate a label at k:

lk � binom�π0,r� (32)

In this way we generate a set of 2,000 bootstrap ROC tables (generating 2, 000�m
samples in total).

This sampling procedure does not ensure that each sample has the correct
class distribution. This is needed so that the confidence intervals generated from
these samples reflect that at rates 0 and 1 we are certain the curve passes through
the points �0, 0� and �1, 1� in ROC space, respectively. A simple approach to re-
strict to a fixed class distribution discards all samples where the class distribution
is not correct. However, this approach is only feasible when the number of ex-
amples is low, as otherwise samples are rarely generated with the correct class
distribution and this method becomes too slow.

We propose another approach that can be used with a larger number of exam-
ples, where we adjust the rate and the number of true and false positives at each
position in order to correct the class distribution. The rates of the bootstrap
ROC tables are equally distributed along the ranking, as shown in Figure 2.
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For each sample individually we adjust these rates and the true positive values
at each position, by scaling each position according to a correction factor, a value
for each sample and class that rescales the ‘width’ of each example in the ranking
to correct the class distribution. This adjustment is illustrated in Figure 2, and
shows how the effect is to stretch or narrow the examples along the ranking.

Fig. 2. Illustration of rate adjustment to correct class distribution

We use the bootstrapped ROC tables with the corrected true positive values,
to estimate the confidence bound of the true ROC curve. For each ROC table,
and at each position k along the ranking, we calculate the average recall across
the samples: �tprk � 1

m � n0

m�
i�1

si,k (33)

Each position k in the ranking has a set of average recall values, one for each
sample ROC table. This now corresponds to the probability density function we
stated in Equation 9. The proportion of bootstrap ROC tables with recall value
between �tprk and 
tpr�k gives an estimate of the probability that the recall at
this position is between these values, given this sample has a particular class
distribution.

The confidence interval for position k is obtained from the mean recall values,�tprk, of the bootstrapped ROC tables as follows. For each position k we take the�tprk value of each ROC table, sort these values in ascending order, and select
the 2.5% and 97.5% percentiles as the lower and upper endpoints of the 95%
confidence interval. This gives a series of recall-rate pairs for the lower and upper
limits of the confidence interval at each position k. A confidence bound can be
created by interpolating between these points.

4 Experiments

Our experiments use a known ROC curve to generate samples for which we create
confidence bounds, specified by normally distributed score density functions with
mean 0 and 1 for the positive and negative class respectively, and a variance
of 1. These score distributions, and the corresponding ROC curve are shown in
Figure 3. Our tests use ROC tables with 10 samples and 50 examples per sample.

We evaluate whether the generated confidence intervals meet our aims, where
at significance level σ new samples generated from this consensus curve pass
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between the lower and upper confidence limits at a given PPR value, with prob-
ability 1 � σ. Given a single sample ROC table and its confidence bounds, we
generate 1,000 new sample ROC tables from this sample. We count, at each
rate, the number of consensus curves (of these samples) the confidence inter-
val contains. A true 95% confidence interval at a given rate, should contain the
consensus curve of new samples 95% of the time.

The results are shown in Figure 4. The results of the basic parametric ap-
proaches (Figures 4a and 4b) are highly variable. Our parametric approach (Fig-
ure 4c) reliably generates confidence bounds with close to 95% confidence, except
at the extremes. This indicates that the assumption that the number of positives
up to a particular position in the ranking is beta distributed is not valid in these
regions.

Our bootstrap approaches are also much more effective compared to the base-
line results. They are a little conservative, particularly at the extremes of the
distribution, due to the nature of bootstrap sampling, where the variation be-
tween bootstraps may be too low to calculate strict confidence intervals (for
instance, where the lower and upper bounds of the 95% limits are the same as
those for the 94 or 96% limits). For example if a bootstrap sample contained only
one value then the values at the 95% bounds would also be the same values as
for the 1% or 100% limits. This also justifies the shape of the graph in Figure 4f,
as where rates have a probability of a positive near to 1, there is little variation
across samples.

Figure 5a shows an example ROC curve generated using our analytical ap-
proach, and the equivalent rate-recall curve is shown in Figure 5b.
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Fig. 3. Score probability densities for two classes (positive class: μ � 0, σ2 � 1; negative
class: μ � 1, σ2 � 1), and corresponding ROC curve
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(a) Results of baseline with normal as-
sumption
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(b) Results of baseline with beta assump-
tion
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(c) Results of parametric approach
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(d) Results of bootstrap approach (with
discarding)
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(e) Results of bootstrap approach (with
adjustment)
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(f) Results of bootstrap approach (with dis-
carding) for score distributions with: μ0 �
0, σ2

0 � 1, μ1 � 1, σ2
1 � 0.2

Fig. 4. Mean (variance) of the proportion of 1000 new samples (sampled from ROC
table) within confidence interval at each rate, across 100 tests
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(a) Example ROC curve and confi-
dence bounds (confidence intervals
at a selection of rates shown for il-
lustration)
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(b) Equivalent rate-recall curve
[12] and confidence bounds for ROC
curve shown in Figure 5a. Grey lines
indicate bounds of rate-recall space.

Fig. 5. Example confidence bounds generated with our parametric approach, and the
equivalent rate-recall curve. Also shown are two curves: 1) The smooth true curve
specified by the score distributions and 2) The consensus curve from the original sample
(also shown in Figure 3 (right)).

5 Related Work

In the introduction we discussed two parametric approaches to generating con-
fidence bounds; vertical (horizontal) and threshold averaging. A non-parametric
approach, called fixed width bands [4, 11] works by displacing the whole ROC
curve up and left, and down and right, to create an upper and lower confidence
band respectively. The curve is displaced along the gradient �

�
�N��N�� (cho-

sen as an approximation of the standard deviation ratios of the two classes). Rate
isometrics have a gradient �N��N� such that if we changed the displacement
gradient to the gradient of the rate isometric this could be used as a rate-oriented
approach. However, the size of displacement is constant along the ROC curve
which does not constrain the confidence bounds to ROC space. Furthermore,
this is an approach for calculating the confidence around the whole curve, but
in this paper we are interested in point-wise confidence bounds instead.

Other approaches include a non-parametric approach by Tilbury et al., which
they derived from first principles [16], and the use of kernel estimation to esti-
mate the continuous probability density functions of the scores of each class [6].
We also refer the reader to comparisons of various approaches, performed by
Macskassy et al. [9, 10].

Early retrieval tasks are those where the top ranked examples are of most
interest [2], and metrics used for this task weight the importance of an example
by its position in the ranking. For instance, the rate-weighted AUC (rAUC)
[12] is a general measure where the distribution of weights along the ranking
can be chosen for the specific task at hand. Other metrics that are restricted
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to particular weight distributions include; discounted cumulative gain (DCG)
and normalised discounted cumulative gain (NDCG) [8] in information retrieval,
robust initial enhancement (RIE) [14], the Boltzmann-enhanced Discrimination
of ROC (BEDROC) [17], concentrated ROC (CROC) [15] and sum of the log
ranks (SLR) [18]. These metric all evaluate rankings with respect to the rate, such
that when assessing tasks that use these metrics in ROC space, we suggest it is
most appropriate to generate rate-averaged consensus curves with rate-oriented
point-wise confidence bounds.

Rate-averaging has been previously used [3,12] to generate consensus curves,
referred to as pooling in [3]. To our knowledge there is no approach in the
literature to infer rate-oriented confidence bounds. [9] claims that rate-averaging
makes the strong assumption that the rates are estimating the same point in
ROC space, and this is not appropriate. However, other approaches make this
similar assumptions across a different metric, such as the false positive rate in
vertical-averaging.

6 Conclusions

We have described a new approach to generate confidence bounds, which we call
rate-oriented point-wise confidence bounds. Our main aim was to address some
important weaknesses of other existing methods. Calculating the consensus and
confidences bounds at each rate is practical as rate is a measure over which we
have control in practice. On the other hand, vertical (or horizontal) averaging
fix the false positive rate (true positive rate) and average across the true positive
rate (false positive rate), but these metrics are not under our control so are of
little use in practice. Score-averaging creates confidence bounds around clouds
of points, and how best to do this is an open problem. Rate-averaging does not
have this problem because it constrains to a single dimension.

Our approach is also invariant to swapping the classes, and we suggest that
this property is sensible when generating confidence bounds. The confidence of a
point on the ROC curve should not depend on which class is labelled as positive.
Furthermore, our bounds have the advantage that they are smooth, due to the
sampling across rates we perform as part of our method.

Our secondary aim was to find appropriate bounds for assessing models used
specifically for rate-constrained tasks. Using a rate-oriented approach ensured
that the performance (and confidence interval) shown at a rate is an estimate
for this particular rate.

In this paper we analytically derived the probability distribution of the num-
ber of positives up to each position in the ranking, and then used this to develop
two methods, a parametric and a bootstrap approach. The parametric approach
gave confidence bounds having very close to the 95% confidence, except at the
extremes. The bootstrap approach did generate satisfactory bounds at the ex-
treme but also had greater variance around the 95% confidence level. Therefore,
we suggest that when the performance at the extremes of the ROC curve are of
little importance, the parametric approach should be used, but where this is not
the case the bootstrap approach can be used instead.
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