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Abstract. Traditionally, Multi-task Learning (MTL) models optimize
the average of task-related objective functions, which is an intuitive ap-
proach and which we will be referring to as Average MTL. However, a
more general framework, referred to as Conic MTL, can be formulated
by considering conic combinations of the objective functions instead; in
this framework, Average MTL arises as a special case, when all combi-
nation coefficients equal 1. Although the advantage of Conic MTL over
Average MTL has been shown experimentally in previous works, no the-
oretical justification has been provided to date. In this paper, we derive a
generalization bound for the Conic MTL method, and demonstrate that
the tightest bound is not necessarily achieved, when all combination co-
efficients equal 1; hence, Average MTL may not always be the optimal
choice, and it is important to consider Conic MTL. As a byproduct of
the generalization bound, it also theoretically explains the good exper-
imental results of previous relevant works. Finally, we propose a new
Conic MTL model, whose conic combination coefficients minimize the
generalization bound, instead of choosing them heuristically as has been
done in previous methods. The rationale and advantage of our model is
demonstrated and verified via a series of experiments by comparing with
several other methods.

Keywords: Multi-task Learning, Kernel Methods, Generalization Bound,
Support Vector Machines.

1 Introduction

Multi-Task Learning (MTL) has been an active research field for over a decade,
since its inception in [1]. By training multiple tasks simultaneously with shared
information, it is expected that the generalization performance of each task
can be improved, compared to training each task separately. Previously, various
MTL schemes have been considered, many of which model the t-th task by a
linear function with weight wt, t = 1, · · ·T , and assume a certain, underlying
relationship between tasks. For example, the authors in [2] assumed all wt’s to
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be part of a cluster centered at w̄, the latter one being learned jointly with
wt. This assumption was further extended to the case, where the weights wt’s
can be grouped into different clusters instead of a single global cluster [3,4].
Furthermore, a widely held MTL assumption is that tasks share a common,
potentially sparse, feature representation, as done in [5,6,7,8,9,10,11], to name a
few. It is worth mentioning that many of these works allow features to be shared
among only a subset of tasks, which are considered “similar” or “related” to
each other, where the relevance between tasks is discovered during training.
This approach reduces and, sometimes, completely avoids the effect of “negative
transfer”, i.e., knowledge transferred between irrelevant tasks, which leads to
degraded generalization performance. Several other recent works that focused
on the discovery of task relatedness include [12,13,14,15]. Additionally, some
kernel-based MTL models assume that the data from all tasks are pre-processed
by a (partially) common feature mapping, thus (partially) sharing the same
kernel function; see [16,17,18], again, to name a few.

Most of these previous MTL formulations consider the following classic set-
ting: A set of training data {xi

t, y
i
t} ∈ X × Y, i = 1, · · · , Nt is provided for the

t-th task (t = 1, · · · , T ), where X , Y are the input and output spaces correspond-
ingly. Each datum from the t-th task is assumed to be drawn from an underlying
probability distribution Pt(Xt, Yt), where Xt and Yt are random variables in the
input and output space respectively. Then, a MTL problem is formulated as
follows

min
w∈Ω(w)

T∑

t=1

f(wt,xt,yt) (1)

where w � (w1, · · · ,wT ) is the collection of all wt’s, and, similarly, xt �
(x1

t , · · · ,xNt
t ), yt � (y1t , · · · , yNt

t ). f is a function common to all tasks. It is
important to observe that, without the constraint w ∈ Ω(w), Problem (1) de-
grades to T independent learning problems. Therefore, in most scenarios, the
set Ω(w) is designed to capture the inter-task relationships. For example, in
[16], the model combines MTL with Multiple Kernel Learning (MKL), which is
formulated as follows

f(wt,xt,yt) �
1

2
‖wt‖2 + C

Nt∑

i=1

l(wt, φt(x
i
t),y

i
t)

Ω(w) � {w = (w1, · · · ,wT ) : wt ∈ Hθ,γt
, θ ∈ Ω(θ),γ ∈ Ω(γ)}

(2)

Here, l is a specified loss function, φt : X → Hθ,γt
is the feature mapping

for the t-th task, Hθ,γt
is the Reproducing Kernel Hilbert Space (RKHS) with

reproducing kernel function kt �
∑M

m=1(θm + γm
t )km, where km : X × X →

R,m = 1, · · · ,M are pre-selected kernel functions. ‖wt‖ �
√〈wt,wt〉 is the

norm defined in Hθ,γt
. Also, Ω(θ) is the feasible set of θ � (θ1, · · · , θM ), and,

similarly, Ω(γ) is the feasible set of γ � (γ1, · · · ,γT ). It is not hard to see that,
in this setting, Ω(w) is designed such that all tasks partially share the same
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kernel function in a MKL manner, parameterized by the common coefficient θ
and task-specific coefficient γt, t = 1, · · · , T .

Another example, Sparse MTL [17], has the following formulation:

f(wt,xt,yt) �
Nt∑

i=1

l(wt, φt(x
i
t),y

i
t)

Ω(w) � {w = (w1, · · · ,wT ) : wt � (w1
t , · · · ,wM

t ),

M∑

m=1

(

T∑

t=1

‖wm
t ‖q)p/q ≤ R}

(3)
where wm

t ∈ Hm, ∀m = 1, · · · ,M, t = 1, · · · , T , wt ∈ H1 × · · · ×HM , 0 < p ≤ 1,
1 ≤ q ≤ 2. Note that although the original Sparse MTL is formulated as follows

min
w

M∑

m=1

(

T∑

t=1

‖wm
t ‖q)p/q + C

T∑

t=1

Nt∑

i=1

l(wt, φt(x
i
t),y

i
t) (4)

due to the first part of Proposition 12 in [19], which we restate as Proposition 1
below1, it is obvious that, for any C > 0, there exists a R > 0, such that
Problem (1) and Problem (4) are equivalent.

Proposition 1. Let D ⊆ X , and let f, g : D 
→ R be two functions. For any
σ > 0, there must exist a τ > 0, such that the following two problems are
equivalent

min
x∈D

f(x) + σg(x) (5)

min
x∈D,g(x)≤τ

f(x) (6)

The formulation given in Problem (1), which we refer to as Average MTL, is
intuitively appealing: It is reasonable to expect the average generalization per-
formance of the T tasks to be improved, by optimizing the average of the T
objective functions. However, as argued in [20], solving Problem (1) yields only
a particular solution on the Pareto Front of the following Multi-Objective Opti-
mization (MOO) problem

min
w∈Ω(w)

f(w,x,y) (7)

where f (w,x,y) � [f(w1,x1,y1), · · · , f(wT ,xT ,yT )]
′. This is true, because

scalarizing a MOO problem by optimizing different conic combinations of the
objective functions, leads to the discovery of solutions that correspond to points
on the convex part of the problem’s Pareto Front [21, p. 178]. In other words, by

1 Note that the difference between Proposition 1 here and Proposition 12 in [19] is
that, Proposition 1 does not require convexity of f , g and D; these are requirements
necessary for the second part of Proposition 12 in [19], which we do not utilize here.
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conically scalarizing Problem (7) using different λ � [λ1, · · · , λT ]
′, λt > 0, ∀t =

1, · · · , T , the optimization problem

min
w∈Ω(w)

T∑

t=1

λtf(wt,xt,yt) (8)

yields different points on the Pareto Front of Problem (7). Therefore, there is
little reason to believe that the solution of Problem (8) for the special case of
λt = 1, ∀t = 1, · · · , T , i.e., the Average MTL’s solution, is the best achievable. In
fact, there might be other points on the Pareto Front that result in better gener-
alization performance for each task, hence, yielding better average performance
of the T tasks. Therefore, instead of solving Problem (1), one can accomplish
this by optimizing Problem (8).

A previous work along these lines was performed in [20]. The authors consid-
ered the following MTL formulation, named Pareto-Path MTL

min
w∈Ω(w)

[

T∑

t=1

(f(wt,xt,yt))
p]1/p (9)

which, assuming all objective functions are positive, minimizes the Lp-norm of
the objectives when p ≥ 1, and the Lp-pseudo-norm when 0 < p < 1. It was
proven that, for any p > 0, Problem (9) is equivalent to Problem (8) with

λt =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(wt,xt,yt)
p−1

∑
T
t=1(f(wt,xt,yt))

p if p > 1

1 if p = 1
∑T

t=1(f(wt,xt,yt))
1−p
p

f(wt,xt,yt)
1−p if 0 < p < 1

, ∀t = 1, · · · , T (10)

Thus by varying p > 0, the solutions of Problem (9) trace a path on the Pareto
Front of Problem (7). While Average MTL is equivalent to Problem (9), when
p = 1, it was demonstrated that the experimental results are usually better
when p < 1, compared to p = 1, in a Support Vector Machine (SVM)-based
MKL setting. Regardless of the close correlation of the superior obtained results
to our previous argument, the authors did not provide a rigorous basis of the
advantage of considering an objective function other than the average of the T
task objectives. Therefore, use of the Lp-(pseudo-)norm in the paper’s objective
function remains so far largely a heuristic element of their approach.

In light of the just-mentioned potential drawbacks of Average MTL and the
lack of supporting theory in the case of Pareto-Path MTL, in this paper, we
analytically justify why it is worth considering Problem (8), which we refer to
as Conic MTL, and why it is advantageous. Specifically, a major contribution
of this paper is the derivation of a generalization bound for Conic MTL, which
illustrates that, indeed, the tightest bound is not necessarily achieved, when
all λt’s equal to 1. Therefore, it answers the previous question, and justifies the
importance of considering Conic MTL. Also, as a byproduct of the generalization
bound, in Section 2, we theoretically show the benefit of Pareto-Path MTL: the
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generalization bound of Problem (9) is usually tighter when p < 1, compared to
the case, when p = 1. Therefore, it explains Pareto-Path MTL’s superiority over
Average MTL.

Regarding Conic MTL, a natural question is how to choose the coefficients
λt’s. Instead of setting them heuristically, such as what Pareto-Path MTL does,
we propose a new Conic MTL model that learns the λt’s by minimizing the
generalization bound. It ensures that our new model achieves the tightest gen-
eralization bound compared to any other settings of the λt values and, poten-
tially, leads to superior performance. The new model is described in Section 3
and experimentally evaluated in Section 4. The experimental results verified our
theoretical conclusions: Conic MTL can indeed outperform Average MTL and
Pareto-Path MTL in many scenarios and, therefore, learning the coefficients λt’s
by minimizing the generalization bound is reasonable and advantageous. Finally,
we summarize our work in Section 5.

In the sequel, we’ll be using the following notational conventions: vector and
matrices are denoted in boldface. Vectors are assumed to be columns vectors. If
v is a vector, then v′ denotes the transposition of v. Vectors 0 and 1 are the all-
zero and all-one vectors respectively. Also, �, 
, � and ≺ between vectors will
stand for the component-wise ≥, >, ≤ and < relations respectively. Similarly,
for any v, vp represents the component-wise exponentiation of v.

2 Generalization Bound

Similar to previous theoretical analyses of MTL methods [22,23,24,25,26,27], in
this section, we derive the Rademacher complexity-based generalization bound
for Conic MTL, i.e., Problem (8). Specifically, we assume the following form of
f and Ω(w) for classification problems:

f(wt,xt,yt) �
1

2
‖wt‖2 + C

N∑

i=1

l(yit〈wt, φ(x
i
t)〉)

Ω(w) � {w = (w1, · · · ,wT ) : wt ∈ Hθ, θ ∈ Ω(θ)}
(11)

where l is the margin loss:

l(x) =

⎧
⎪⎨

⎪⎩

0 if ρ ≤ x

1− x/ρ if 0 ≤ x ≤ ρ

1 if x ≤ 0

(12)

φ : X → Hθ is the common feature mapping for all tasks. Hθ is the RKHS de-
fined by the kernel function k �

∑M
m=1 θmkm, where km : X × X → R,m =

1, · · · ,M are the pre-selected kernel functions. Furthermore, we assume the
training data {xi

t, y
i
t} ∈ X × Y, t = 1, · · · , T, i = 1, · · · , N are drawn from

the probability distribution Pt(Xt, Yt), where Xt and Yt are random variables
in the input and output space respectively. Note that, here, we assumed all
tasks have equal number of training data and share a common kernel function.
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These two assumptions were made to simplify notation and exposition, and they
do not affect extending our results to a more general case, where an arbitrary
number of training samples is available for each task and partially shared kernel
functions are used; in the latter case, only relevant tasks may share the common
kernel function, hence, reducing the effect of “negative transfer”.

Substituting (11) into Problem (8) and based on Proposition 1, it is not hard
to see that for any C in Eq. (11), there exist a R > 0 such that Problem (8) is
equivalent to the following problem

min
w∈Ω(w)

T∑

t=1

Nt∑

i=1

λtl(y
i
t〈wt, φ(x

i
t)〉)

s.t.

T∑

t=1

λt‖wt‖2 ≤ R

(13)

Obviously, solving Problem (13) is the process of choosing the w in the hy-
pothesis space Fλ, such that the empirical loss, i.e., the objective function of
Problem (13), is minimized. The relevant hypothesis space is defined below:

Fλ � {w = (w1, · · · ,wT ) :

T∑

t=1

λt‖wt‖2 ≤ R,wt ∈ Hθ, θ ∈ Ω(θ)} (14)

By defining the Conic MTL expected error er(w) and empirical loss êrλ(w)
as follows

er(w) =
1

T

T∑

t=1

E[1(−∞,0](Yt〈wt, φ(Xt)〉)] (15)

êrλ(w) =
1

TN

T∑

t=1

N∑

i=1

λtl(y
i
t〈wt, φ(x

i
t)〉) (16)

one of our major contribution is the following theorem, which gives the general-
ization bound of Problem (13) in the context of MKL-based Conic MTL for any
λt ∈ (1, rλ), ∀t = 1, · · · , T , where rλ is a pre-specified upper-bound for the λt’s.

Theorem 1. For fixed ρ > 0, rλ ∈ N with rλ > 1, and for any λ = [λ1, · · · , λT ]
′,

λt ∈ (1, rλ), ∀t = 1, · · · , T , w ∈ Fλ, 0 < δ < 1, the following generalization
bound holds with probability at least 1− δ:

er(w) ≤ êrλ(w) +

√
2rλ
ρ

R(Fλ) +

√√√√ 9

TN
ln

(
2rλ
T

T∑

t=1

1

λt

)
+

√
9 ln 1

δ

2TN
(17)
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where R(Fλ) is the empirical Rademacher complexity of the hypothesis space Fλ,
which is defined as

R(Fλ) �
2

TN
E[ sup

w∈Fλ

T∑

t=1

N∑

i=1

σi
t〈wt, φ(x

i
t)〉] (18)

and the σi
t’s are i.i.d. Rademacher-distributed (i.e., Bernoulli(1/2)-distributed

random variables with sample space {−1,+1}).
Based on Theorem 1, one is motivated to choose λ that minimizes the gen-

eralization bound, instead of heuristically selecting λ as in Eq. (10), which was
suggested in [20]. Indeed, doing so does not guarantee obtaining the tightest
generalization bound.

However, prior to proposing our new Conic MTL model that minimizes the
generalization bound, it is still of interest to theoretically analyze why Pareto-
Path MTL, i.e., Problem (9), usually enjoys better generalization performance
when 0 < p < 1, rather than when p = 1, as described in Section 1. While the
analysis is not given in [20], fortunately, we can provide some insights of the
good performance of the model, when 0 < p < 1, by utilizing Theorem 1 and
with the help of the following two theorems.

Theorem 2. For λ 
 0, the empirical Rademacher complexity R(Fλ) is mono-
tonically decreasing with respect to each λt, t = 1, · · · , T .
Theorem 3. Assume f(wt,xt,yt) > 0, ∀t = 1, · · · , T . For λ that is defined in
Eq. (10), when 0 < p < 1, we have λt > 1 and λt is monotonically decreasing
with respect to p, ∀t = 1, · · · , T .

Based on Eq. (10), if f(wt,xt,yt) > 0, ∀t = 1, · · · , T , there must exist a
fixed rλ > 0, such that λt ∈ (1, rλ), ∀t = 1, · · · , T . Therefore we can analyze the
generalization bound of Pareto-Path MTL based on Theorem 1, when 0 < p < 1.
Although Theorem 1 is not suitable for the case when p = 1, we can approximate
its bound by letting p to be infinitely close to 1.

The above two theorems indicate that the empirical Rademacher complexity
for the hypothesis space of Pareto-Path MTL monotonically increases with re-
spect to p, when 0 < p < 1. Therefore, the second term in the generalization
bound decreases as p decreases. This is also true for the third term in the bound,
based on Theorem 3. Thus, it is not a surprise that the generalization perfor-
mance is usually better when 0 < p < 1 than when p = 1, and it is reasonable
to expect the performance to get improved when p decreases. In fact, such a
monotonicity is reported in the experiments of [20]: the classification accuracy is
usually monotonically increasing, when p decreases. It is worth mentioning that,
although rarely observed, we may not have such monotonicity in performance, if
the first term in the generalization bound, i.e., the empirical loss, grows quickly
as p decreases. However, the monotonic behavior of the generalization bound
(except the empirical loss) is still sufficient for explaining the experimental re-
sults of Problem (9), which justifies the rationale of employing an arbitrarily
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weighted conic combination of objective functions instead of using the average
of these functions.

Finally, we provide two theorems that not only are used in the proof of The-
orem 1, but also may be of interest on their own accord. Subsequently, in the
next section, we describe our new MTL model.

Theorem 4. Given γ � [γ1, · · · , γT ]′ with γ 
 0, define

R(Fλ,γ) =
2

TN
E[ sup

w∈Fλ

T∑

t=1

N∑

i=1

γtσ
i
t〈wt, φ(x

i
t)〉] (19)

For fixed λ 
 0, R(Fλ,γ) is monotonically increasing with respect to each γt.

Theorem 5. For fixed rλ ≥ 1, ρ > 0, λ = [λ1, · · · , λT ]
′, λt ∈ [1, rλ], ∀t =

1, · · · , T , and for any w ∈ Fλ, 0 < δ < 1, the following generalization bound
holds with probability at least 1− δ:

er(w) ≤ êrλ(w) +
rλ
ρ
R(Fλ) +

√
9 ln 1

δ

2TN
(20)

Note that the difference between Theorem 5 and Theorem 1 is that, Theorem 1
is valid for any λt ∈ (1, rλ), while Theorem 5 is only valid for fixed λt ∈ [1, rλ].
While the bound given in Theorem 1 is more general, it is looser due to the
additional third term in (17) and due to the factor

√
2 multiplying the empirical

Rademacher complexity.

3 A New MTL Model

In this section, we propose our new MTL model. Motivated by the generalization
bound in Theorem 1, our model is formulated to select w and λ by minimizing
the bound

êrλ(w) +

√
2rλ
ρ

R(Fλ) +

√√√√ 9

TN
ln

(
2rλ
T

T∑

t=1

1

λt

)
+

√
9 ln 1

δ

2TN
(21)

instead of choosing the coefficients λ heuristically, such as via Eq. (10) in [20].
Note that the bound’s last term does not depend on any model parameters,
while the third term has only a minor effect on the bound, when λt ∈ (1, rλ).
Therefore, we omit these two terms, and propose the following model:

min
w,λ

êrλ(w) +

√
2rλ
ρ

R(Fλ)

s.t. w ∈ Fλ,1 ≺ λ ≺ rλ1.

(22)

Furthermore, due to the complicated nature ofR(Fλ), it is difficult to optimize
Problem (22) directly. Therefore, in the following theorem, we prove an upper
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bound for R(Fλ), which yields a simpler expression. We remind the readers that
the hypothesis space Fλ is defined as

Fλ � {w = (w1, · · · ,wT ) :

T∑

t=1

λt‖wt‖2 ≤ R,wt ∈ Hθ, θ ∈ Ω(θ)} (23)

where Hθ is the RKHS defined by the kernel function k �
∑M

m=1 θmkm.

Theorem 6. Given the hypothesis space Fλ, the empirical Rademacher com-
plexity can be upper-bounded as follows:

R(Fλ) ≤ 2

TN

√√√√
T∑

t=1

1

λt
E

⎡

⎢⎣

√√√√ sup
w∈F1

T∑

t=1

(
N∑

i=1

σi
t〈wt, φ(xi

t)〉
)2
⎤

⎥⎦ (24)

where the feasible region of w, i.e., F1, is the same as Fλ but with λ = 1.

Note that, for a given Ω(θ), the expectation term in (24) is a constant. If we
define

s � E

⎡

⎢⎣

√√√√ sup
w∈F1

T∑

t=1

(
N∑

i=1

σi
t〈wt, φ(xi

t)〉
)2
⎤

⎥⎦ (25)

we arrive at our proposed MTL model:

min
w,λ

T∑

t=1

N∑

i=1

λtl(y
i
t〈wt, φ(x

i
t)〉) +

2
√
2srλ
ρ

√√√√
T∑

t=1

1

λt

s.t. wt ∈ Hθ, ∀t = 1, · · · , T

θ ∈ Ω(θ),

T∑

t=1

λt‖wt‖2 ≤ R,1 ≺ λ ≺ rλ1.

(26)

The next proposition provides an equivalent optimization problem, which is
easier to solve.

Proposition 2. For any fixed C > 0, s > 0 and rλ > 0, there exist R > 0
and a > 0 such that Problem (26) and the following optimization problem are
equivalent

min
w,λ,θ

T∑

t=1

λt(

M∑

m=1

‖wm
t ‖2

2θm
+ C

N∑

i=1

M∑

m=1

l(yit〈wm
t , φm(xi

t)〉))

s.t. wm
t ∈ Hm, ∀t = 1, · · · , T,m = 1, · · · ,M,

θ ∈ Ω(θ),

T∑

t=1

1

λt
≤ a,1 ≺ λ ≺ rλ1.

(27)
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where Hm is the RKHS defined by the kernel function km, and φm : X → Hm.

It is worth pointing out that, Problem (27) minimizes the generalization bound
(21) for any Ω(θ). A typical setting is to adapt the Lp-normMKL method by let-

ting Ω(θ) � {θ = [θ1, · · · , θM ]′ : θ � 0, ‖θ‖p ≤ 1}, where p ≥ 1. Alternatively,
one may want to employ the optimal neighborhood kernel method [28] by letting

Ω(θ) � {θ = [θ1, · · · , θM ]′ :
∑T

t=1 ‖Kt − K̂t‖F ≤ Rk,Kt �
∑M

m=1 θmKm
t },

where Km
t ∈ R

N×N is the kernel matrix whose (i, j)-th element is calculated as

km(xi
t,x

j
t ), and K̂t’s are the kernel matrices evaluated by a pre-defined kernel

function on the training data of the t-th task.
By assuming Ω(θ) to be a convex set and electing the loss function l to be

convex in the model parameters (such as the hinge loss function), Problem (27)
is jointly convex with respect to both w and θ. Also, it is separately convex
with respect to λ. Therefore, it is straightforward to employ a block-coordinate
descent method to optimize Problem (27). Finally, it is worth mentioning that,
by choosing to employ the hinge loss function, the generalization bound in The-
orem 1 still holds, since the hinge loss upper-bounds the margin loss for ρ = 1.
Therefore, our model still minimizes the generalization bound.

3.1 Incorporating Lp-Norm MKL

In this paper, we specifically consider endowing our MTL model with Lp-norm
MKL, since it can be better analyzed theoretically, is usually easy to optimize
and, often, yields good performance outcomes.

Although the upper bound in Theorem 6 is suitable for any Ω(θ), it might be
loose due to its generality. Another issue is that the expectation present in the
bound is still hard to calculate. Therefore, as we consider Lp-norm MKL, it is
of interest to derive a bound specifically for it, which is easier to calculate and
is potentially tighter.

Theorem 7. Let Ω(θ) � {θ = [θ1, · · · , θM ]′ : θ � 0, ‖θ‖p ≤ 1}, p ≥ 1, and
Km

t ∈ R
N×N , t = 1, · · · , T,m = 1, · · · ,M be the kernel matrix, whose (i, j)-th

element is defined as km(xi
t,x

j
t ). Also, define vt � [tr(K1

t ), · · · , tr(KM
t )]′ ∈

R
M . Then, we have

R(Fλ) ≤ 2
√
2Rp∗

TN

√√√√
T∑

t=1

1

λt
‖vt‖p∗ (28)

where p∗ � p
p−1 .
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Following a similar procedure to formulating our general model Problem (27),
we arrive at the following Lp-norm MKL-based MTL problem

min
w,λ,θ

T∑

t=1

λt(

M∑

m=1

‖wm
t ‖2

2θm
+ C

N∑

i=1

M∑

m=1

l(yit〈wm
t , φ(xi

t)〉))

s.t. wm
t ∈ Hm, ∀t = 1, · · · , T,m = 1, · · · ,M,

θ � 0, ‖θ‖p ≤ 1,

T∑

t=1

‖vt‖p∗

λt
≤ a,1 ≺ λ ≺ rλ1.

(29)

which, based on (21) and (28), minimizes the generalization bound. Note that,
due to the bound that is specifically derived for Lp-norm MKL, the constraint∑T

t=1
1
λt

≤ a in Problem (27) is changed to
∑T

t=1
‖vt‖p∗

λt
≤ a in the previous

problem. However, when all kernel matrices Km
t ’s have the same trace (as is the

case, when all kernel functions are normalized, such that km(x,x) = 1, ∀m =
1, · · · ,M,x ∈ X ), for a given p ≥ 1, ‖vt‖p∗ has the same value for all t =
1, · · · , T . In this case, Problem (29) is equivalent to Problem (27).

4 Experiments

In this section, we conduct a series of experiments with several data sets, in
order to show the merit of our proposed MTL model by comparing it to a few
other related methods.

4.1 Experimental Settings

In our experiments, we specifically evaluate the Lp-norm MKL-based MTL
model, i.e., Problem (29), on classification problems using the hinge loss func-
tion. To solve Problem (29), we employed a block-coordinate descent algorithm,
which optimizes each of the three variables w, λ and θ in succession by holding
the remaining two variables fixed. Specifically, in each iteration, three optimiza-
tion problems are solved. First, for fixed λ and θ, the optimization with respect
tow can be split into T independent SVM problems, which are solved via LIBSVM
[29]. Next, for fixed w and θ, the optimization with respect to λ is convex and
is solved using CVX [30][31]. Finally, minimizing with respect to θ, while w and
λ are held fixed, has a closed-form solution:

θ∗ =

(
v

‖v‖ p
p+1

) 1
p+1

(30)

where v � [v1, · · · , vM ]′ and vm �
∑T

t=1 ‖wm
t ‖, ∀m = 1, · · · ,M . Although more

efficient algorithms may exist, we opted to use this simple and easy-to-implement
algorithm, since the optimization strategy is not the focus of our paper2.

2 Our MATLAB implementation is located at http://github.com/congliucf/ECML2014

http://github.com/congliucf/ECML2014
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For all experiments, 11 kernels were selected for use: a Linear kernel, a 2nd-
order Polynomial kernel and Gaussian kernels with spread parameter values{
2−7, 2−5, 2−3, 2−1, 20, 21, 23, 25, 27

}
. Parameters C, p and a were selected via

cross-validation. Our model is evaluated on 6 data sets: 2 real-world data sets
from the UCI repository [32], 2 handwritten digits data sets, and 2 multi-task
data sets, which we detail below.

The Wall-Following Robot Navigation (Robot) and Vehicle Silhouettes (Vehi-
cle) data sets were obtained from the UCI repository. The Robot data, consisting
of 4 features per sample, describe the position of the robot, while it navigates
through a room following the wall in a clockwise direction. Each sample is to be
classified according to one of the following four classes: “Move-Forward”, “Slight-
Right-Turn”, “Sharp-Right-Turn” and “Slight-Left-Turn”. On the other hand,
the Vehicle data set is a collection of 18-dimensional feature vectors extracted
from images. Each datum should be classified into one of four classes: “4 Opel”,
“SAAB”, “Bus” and “Van”.

The two handwritten digit data sets, namely MNIST 3 and USPS 4, consist
of grayscale images of handwritten digits from 0 to 9 with 784 and 256 features
respectively. Each datum is labeled as one of ten classes, each of which represents
a single digit. For these four multi-class data sets, an equal number of samples
from each class were chosen for training. Also, we approached these multi-class
problems as MTL problems using a one-vs.-one strategy and the averaged clas-
sification accuracy is calculated for each data set.

The last two data sets, namely Letter5 and Landmine6, correspond to pure
multi-task problems. Specifically, the Letter data set involves 8 tasks: “C” vs.
“E”, “G” vs. “Y”, “M” vs. “N”, “A” vs. “G”, “I” vs. “J”, “A” vs. “O”, “F” vs.
“T” and “H” vs. “N”. Each letter is represented by a 8× 16 pixel image, which
forms a 128-dimensional feature vector. The goal for this problem is to correctly
recognize the letters in each task. On the other hand, the Landmine data set
consists of 29 binary classification tasks. Each datum is a 9-dimensional feature
vector extracted from radar images that capture a single region of landmine
fields. The goal for each task is to detect landmines in specific regions. For the
experiments involving these two data sets, we re-sampled the data such that, for
each task, the two classes contain equal number of samples.

In all our experiments, we considered training set sizes of 10%, 20% and 50%
of the original data set. As an exception, for the Landmine data set, we did not
use the 10% of the original set for training due to its small size; instead, we used
20%, 30% and 50%.

We compared our method with five different Multi-Task MKL (MT-MKL)
methods. The first one is Pareto-Path MTL, i.e., Problem (9), which was origi-
nally proposed in [20]. One can expect our new method to outperform it in most
cases, since our method selects λ by minimizing the generalization bound, while

3 Available at: http://yann.lecun.com/exdb/mnist/
4 Available at: http://www.cs.nyu.edu/~roweis/data.html
5 Available at: http://multitask.cs.berkeley.edu/
6 Available at: http://people.ee.duke.edu/~lcarin/LandmineData.zip

http://yann.lecun.com/exdb/mnist/
http://www.cs.nyu.edu/~roweis/data.html
http://multitask.cs.berkeley.edu/
http://people.ee.duke.edu/~lcarin/LandmineData.zip
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Pareto-Path MTL selects its value heuristically via Eq. (10). The second method
we compared with is the Lp-norm MKL-based Average MTL, which is the same
as our method for λ = 1. As we argued earlier in the introduction, minimizing
the averaged objective does not necessarily guarantee the best generalization
performance. By comparing with Average MTL, we expect to verify our claim
experimentally. Moreover, we compared with two other popular MT-MKL meth-
ods, namely Tang’s Method [16] and Sparse MTL [17]. These two methods were
outlined in Section 1. Finally, we considered the baseline approach, which trains
each task individually via a traditional single-task Lp-norm MKL strategy.

4.2 Experimental Results

Table 1 provides the obtained experimental results based on the settings that
were described in the previous sub-section. More specifically, in Table 1, we

Table 1. Comparison of Multi-task Classification Accuracy between Our Method and
Five Other Methods. Averaged performances of 20 runs over randomly sampled training
set are reported.

Robot Our Method Pareto Average Tang Sparse Baseline

10% 95.83 95.07 95.16 93.93 94.69 95.54
20% 97.11 96.11 95.90 96.36 96.56 95.75
50% 98.41 96.80 96.59 97.21 98.09 96.31

Vehicle Our Method Pareto Average Tang Sparse Baseline

10% 80.10 80.05 79.77 78.47 79.28 78.01
20% 84.69 85.33 85.22 83.98 84.44 84.37
50% 89.90 88.04 87.93 88.13 88.57 87.64

Letter Our Method Pareto Average Tang Sparse Baseline

10% 83.00 83.95 81.45 80.86 83.00 81.33
20% 87.13 87.51 86.42 82.95 87.09 86.39
50% 90.47 90.61 90.01 84.87 90.65 89.80

Landmine Our Method Pareto Average Tang Sparse Baseline

20% 70.18 69.59 67.24 66.60 58.89 66.64
30% 74.52 74.15 71.62 70.89 65.83 71.14
50% 78.26 77.42 76.96 76.08 75.82 76.29

MNIST Our Method Pareto Average Tang Sparse Baseline

10% 93.59 89.30 88.81 92.37 93.48 88.71
20% 96.08 95.02 94.95 95.94 95.96 94.81
50% 97.44 96.92 96.98 97.47 97.53 97.04

USPS Our Method Pareto Average Tang Sparse Baseline

10% 94.61 90.22 90.11 93.20 94.52 89.02
20% 97.44 96.26 96.25 97.37 97.53 96.17
50% 98.98 98.51 98.59 98.96 98.98 98.49
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report the average classification accuracy of 20 runs over a randomly sampled
training set. Moreover, the best performance among the 6 competing methods
is highlighted in boldface. To test the statistical significance of the differences
between our method and the 5 other methods, we employed a t-test to compare
mean accuracies using a significance level of α = 0.05. In the table, underlined
numbers indicate the results that are statistically significantly worse than the
ones produced by our method.

When analyzing the results in Table 1, first of all, we observe that the opti-
mal result is almost always achieved by the two Conic MTL methods, namely
our method and Pareto-Path MTL. This result not only shows the advantage of
Conic MTL over Average MTL, but also demonstrates the benefit compared to
other MTL methods, such as Tang’s MTL and Sparse MTL. Secondly, it is ob-
vious that our method can usually achieve better result than Pareto-Path MTL;
as a matter of fact, in many cases the advantage is statistically significant. This
observation validates the underlying rationale of our method, which chooses the
coefficient λ by minimizing the generalization bound instead of using Eq. (10).
Finally, when comparing our method against the five alternative methods, our
results are statistically better most of the time, which further emphasizes the
benefit of our method.

5 Conclusions

In this paper, we considered the MTL problem that minimizes the conic combi-
nation of objectives with coefficients λ, which we refer to as Conic MTL. The
traditional MTL method, which minimizes the average of the task objectives
(Average MTL), is only a special case of Conic MTL with λ = 1. Intuitively,
such a specific choice of λ should not necessarily lead to optimal generalization
performance.

This intuition motivated the derivation of a Rademacher complexity-based
generalization bound for Conic MTL in a MKL-based classification setting. The
properties of the bound, as we have shown in Section 2, indicate that the opti-
mal choice of λ is indeed not necessarily equal to 1. Therefore, it is important
to consider different values for λ for Conic MTL, which may yield tighter gener-
alization bounds and, hence, better performance. As a byproduct, our analysis
also explains the reported superiority of Pareto-Path MTL [20] over Average
MTL.

Moreover, we proposed a new Conic MTL model, which aims to directly min-
imize the derived generalization bound. Via a series of experiments on six widely
utilized data sets, our new model demonstrated a statistically significant advan-
tage over Pareto-Path MTL, Average MTL, and two other popular MT-MKL
methods.
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