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Abstract. This paper studies the following problem: Given an SVM (kernel)-
based binary classifier C as a black-box oracle, how much can we learn of its
internal working by querying it? Specifically, we assume the feature space R?
is known and the kernel machine has m support vectors such that d > m (or
d >> m), and in addition, the classifier C is laconic in the sense that for a
feature vector, it only provides a predicted label (1) without divulging other
information such as margin or confidence level. We formulate the problem of un-
derstanding the inner working of C as characterizing the decision boundary of
the classifier, and we introduce the simple notion of bracketing to sample points
on the decision boundary within a prescribed accuracy. For the five most common
types of kernel function, linear, quadratic and cubic polynomial kernels, hyper-
bolic tangent kernel and Gaussian kernel, we show that with O(dm) number of
queries, the type of kernel function and the (kernel) subspace spanned by the sup-
port vectors can be determined. In particular, for polynomial kernels, additional
O(m?®) queries are sufficient to reconstruct the entire decision boundary, pro-
viding a set of quasi-support vectors that can be used to efficiently evaluate the
deconstructed classifier. We speculate briefly on the future application potential
of deconstructing kernel machines and we present experimental results validating
the proposed method.
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1 Introduction

This paper proposes to investigate a new type of learning problems we called decon-
structive learning. While the ultimate objective of most learning problems is the de-
termination of classifiers from labeled training data, for deconstructive learning, the
objects of study are the classifiers themselves. As its name suggests, the goal of decon-
structive learning is to deconstruct a given classifier C by determining and character-
izing (as much as possible) the full extent of its capability, revealing all of its powers,
subtleties and limitations. Since classifiers in machine learning come in a variety of
forms, deconstructive learning correspondingly can be formulated and posed in many
different ways. This paper focuses on a family of binary classifiers based on support
vector machines [1], and deconstructive learning will be formulated and studied using
geometric and algebraic methods without recourse to probability and statistics. Specif-
ically, the (continuous) feature space in which the classifier C is defined is assumed to
be a d-dimensional vector space R, and the classifier C is given as a binary-valued
function C : R — {—1, +1}, indicating the class assignment of each feature x € R.
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As a kernel machine, C is specified by a set of m support vectors y1,--- ,y,, € R?
and a kernel function K(x, y) such that the decision function ¥(x) is given as the sum

\I’(X) = le(Xa yl) + - 'WmK(Xa ym)> (1)

where wy, - - -, wy, are the weights. With the bias b,
+1 if¥(x) <b,
C = 1 ITTX) @
-1 if ¥(x)>b.

The classifier C is also assumed to be laconic in the sense that except for the binary
label, it does not divulge any other potentially useful information such as margin or
confidence level. With these assumptions, we formulate the problem of deconstructing
C through the following list of four questions (ordered in increasing difficulty)

Can the kernel function K(x,y) be determined?

Can the subspace Sy spanned by the support vectors be determined?
Can the number m of support vectors be determined?

Can the support vectors themselves be determined?

Without loss of generality, we will henceforth assume b = 1. Therefore, if the support
vectors and the kernel function are known, the weights w; can be determined completely
given enough points x on the decision boundary

Y={x|xcR ¥x)=b }. 3)

That is, a kernel machine C can be completely deconstructed if its support vectors and
kernel function are known.

The four questions above are impossible to answer without further quantification on
the type of kernel function and the number of support vectors. In this paper, we assume
1) the unknown kernel function belongs to one of the following five types: polynomial
kernels of degree one, two and three (linear, quadratic and cubic kernels), hyperbolic
tangent kernel and RBF kernel, and 2) the number of support vectors is less than the
feature dimension, d > m (or d >> m) and they are linearly independent. For most
applications of kernel machines, these two assumptions are not particularly restrictive
since the five types of kernel are arguably among the most popular ones. Furthermore,
as the feature dimensions are often very high and the support vectors are often thought
to be a small number of the original training features that are critical for the given
classification problem, it is generally observed that d > m. With these two assumptions,
the method proposed in this paper shows that the first three questions can be answered
affirmatively. While the last question cannot be answered for transcendental kernels, we
show that using recent results on tensor decomposition (e.g., [2]), a set of quasi-support
vectors can be computed for a polynomial kernel that recover the decision boundary
exactly.

Given the laconic nature of C, it seems that the only effective approach is to probe
the feature space by locating points on the decision boundary ¥ and to answer the
above questions using local geometric features computed from these sampled points.
More precisely, the proposed algorithm takes the classifier C and a small number of
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positive features in R¢ as the only inputs. Starting with these small number of positive
features, the algorithm proceeds to explore the feature space by generating new features
and utilizing these new features and their class labels provided by C to produce points
on the decision boundary. The challenge is therefore to use only a comparably small
number of sampled features (i.e., queries to C) to learn enough about 3 in order to
answer the questions, and our main contribution is an algorithm that has complexity (to
be defined later) linear in the dimension d of the ambient space.

Sampling points on 3 can be accomplished easily using bracketing, the same idea
used in finding the root of a function (e.g., [3]). Given a pair of positive and negative
features (PN-pair), the intersection of 3 and the line segment joining the two features
cannot be empty, and bracketing allows at least one such point on ¥ to be determined
up to any prescribed precision. Using bracketing as the main tool, the first two ques-
tions can be answered by exploring the geometry of 3 in two different ways. First,
the decision boundary X is given as the implicit surface of the multi-variate function,
W(x) = b. With high-dimensional features, it is difficult to work directly with 3 or
W(x); instead, the idea is to examine the intersection of 3 with a two-dimension sub-
space formed by a PN-pair. The locus of such intersection is in fact determined by the
kernel function, and by computing such intersection, we can ascertain the kernel func-
tion on this two-dimensional subspace. For the second question, the answer is to be
found in the normal vectors of the hypersurface 3. Using bracketing, the normal vector
at a given point on X can be determined, again in principle, up to prescribed precision.
From the parametric forms of the kernel functions, it readily follows that the normal
vectors of X are generally quite well-behaved in the sense that they either belong to the
kernel subspace Sy spanned by the support vectors or they are affine-translations of the
kernel subspace Sy . For the former, a quick application of singular value decomposi-
tion immediately yields the kernel subspace Sy, and for the latter, the kernel subspace
Sy can be computed via a rank-minimization problem that can be solved (in many
cases) as a convex optimization problem with the nuclear norm. If we define the com-
plexity of the algorithm as the required number of sampled points in the feature space,
it will be shown that the complexity of the proposed method is essentially O(dm) as
it requires O(m) normal vectors to determine the m-dimensional kernel subspace and
O(d) points to determine the normal vector at a point in R%. The constant depends on
the number of steps used for bracketing, and if the features are assumed to be drawn
from a bounded subset in R?, this constant is then independent of the dimension d.

We note that for a polynomial kernel of degree D, its decision function ¥(x) is a
degree- D polynomial with d variables. Therefore, in principle, C can be deconstructed
by fitting a polynomial of degree D in R? given enough sampled points on X. However,
this solution is in general not useful because it does not extend readily to transcendental
kernels. Furthermore, the number of required points is in the order of d”, and cor-
respondingly, a direct polynomial fitting would require the inversion of a large dense
(Vandermonde) matrix that is in the order of d” x dP. With a moderate dimension of
d = 100 and D = 3, this would require 10° points and the inversion of a 105 x 106
dense matrix. Our method, on the other hand, encompasses both the transcendental and
polynomial kernels and at the same time, it avoids the direct polynomial fitting in R?
and has the overall complexity that is linear in d, making it a truly practical algorithm.
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We conclude the introduction with a brief discussion on the potential usefulness of
deconstructive learning, providing several examples that illustrate its significance in
terms of its future prospects for theoretical development as well as practical applica-
tions. The geometric approach taken in this paper shares some visible similarities with
low-dimensional reconstruction problems studied in computational geometry [4], and
in fact, it is partially inspired by various 3D surface reconstruction algorithms studied in
computational geometry (and computer vision) [5] [6]. However, due to the high dimen-
sionality of the feature space, deconstructive learning offers a brand new setting that is
qualitatively different from those low-dimensional spaces studied in computational ge-
ometry and various branches of geometry in mathematics. High dimensionality of the
feature space has been a hallmark of machine learning, a realm that has not be actively
explored by geometers, mainly for the lack of interesting examples and motivation. Per-
haps deconstructive learning’s emphasis on the geometry of the decision boundary in
high dimensional space and its connection with machine learning could provide stimu-
lating examples or even counterexamples unbeknown to the geometers, and therefore,
provide the needed motivation for the development of new type of high-dimensional
geometry [7].

On the practical side, we believe that deconstructive learning can provide a greater
flexibility to the users of Al/machine learning products because it allows the users to
determine the full extent of an AI/ML program/system, and therefore, create his/her
own adaptation or modification of the given system for specific and specialized tasks.
For example, once a kernel machine has been deconstructed, it can be subject to various
kinds of improvement and upgrade in terms of its application scope, runtime efficiency
and others. Imagine a kernel machine that was originally trained to recognize humans
in images. By deconstructing the kernel machine and knowing its kernel type and pos-
sibly its support vectors, we can improve and upgrade it to a kernel machine that also
recognizes other objects such as vehicles, scenes and other animals. The actual pro-
cess of upgrading the kernel machine can be managed using existing methods such as
incremental SMV or online SVM [8] [9], and at the same time, its efficiency can be
improved using, for example, suitable parallelization. This provides the users with the
unprecedent capability of modifying a kernel machine without access to its source code,
something that to the best of our knowledge has not been studied or reported in the ma-
chine learning literature. As the kernel machines are often the main workhorse of many
existing machine learning programs/systems, the ability to deconstruct a given kernel
machine should have other surprising and interesting consequences and applications
unforeseen at this point. Furthermore, in the context of adversarial learning [10] [11],
deconstructive learning allows a kernel machine to be defeated and its deficiencies re-
vealed. For example, how would an UAI reviewer know that a submitted binary code of
a paper really does implement the algorithm proposed in the paper, not some clever im-
plementation of a kernel machine? Deconstructive learning proposed in this paper offers
a possible solution without the need to ask for the source code'. For more interesting
examples in this direction, we leave it to the reader’s imagination. Finally, perhaps the
most compelling reason (to the authors) for studying deconstructive hboxlearning is

! Asking for source code is certainly not an affordable panacea for all tech problems.
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inscribed by the famous motto uttered by David Hilbert more than eighty years ago:
we must know and we will know! Indeed, when presented with a black-box classifier
(especially the one with great repute), we have found the problem of determining the
secret of its inner working by simply querying it both fascinating and challenging, a
problem with its peculiar elegance and charm.

Related Work To the best of our knowledge, there is no previous work on de-
constructing general kernel machines as described above. However, [10] studied the
problem of deconstructing linear classifiers in a context that is slightly different from
ours. This corresponds to linear kernel machines and consequently, their scope is con-
siderably narrower than ours as (single) linear classifiers are relatively straightforward
to deconstruct. Active learning (e.g., [12] [13] [14]) shares certain similarities with de-
constructive learning (DL) in that it also has a notion of querying a source. However,
the main distinction is their specificities and outlooks: for active learning, it is gen-
eral and relative while for DL, it is specific and absolute. More precisely, for active
learning, the goal is to determine a classifier from a concept class with some prescribed
(PAC-like) learning error bound using samples generated from the underlying joint dis-
tribution of feature and label. In this model, the learning target is the joint distribution
and the optimal learned classifier is relative to the given concept class. On the other
hand, in DL, the learning target is a given classifier and the classifier defines an ab-
solute partition of the feature space into two disjoint regions of positive and negative
features. Furthermore, the classifier is assumed to belong to a specific concept class
(e.g., kernel machines with known types of kernel function) such that the goal of DL
is to identify the classifier within the concept class using the geometric features of the
decision boundary. In this absolute setting, geometry replaces probability as the joint
feature-label distribution gives way to the geometric notion of decision boundary as the
main target of learning. In particular, bracketing is a fundamentally geometric notion
that is generally incompatible with a probabilistic approach, and with it, DL possesses
a much more efficient and precise tool for exploring the spatial partition of the feature
space, and consequently, it allows for a direct and geometric approach without requiring
much probability.

2 Preliminaries

Let R? denote the feature space equipped with its standard Euclidean inner product,
and for x,y € R%, [|x —y||? = (x —y) " (x — y). For the kernel machines studied in
this paper, we assume their kernel functions are of the following five types:

Linear Kernel K(x,y) = x'y,

Quadratic Kernel K(x,y) = (x"y+1)

Cubic Kernel K(x,y)=(x'y+1)%

Hyperbolic Tangent Kernel K(x,y) = tanh(ax 'y + 8),
o2

Gaussian Kernel K(x,y) = exp(— Ll ),

202
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for some constants «, 8, 0. We will further refer to the three polynomial kernels and
the hyperbolic tangent kernel as the Type-A kernels and the Gaussian kernel as the
Type-B kernel. This particular taxonomy is based on their forms that can be generically
written as

Kxy) =fx'y), Ky =g(x-yl),

for some smooth univariate function f, g : R — R.

Given the forms of the kernel function, an important consequence is that the decision
boundary 3 is determined in large part by its intersection with the kernel subspace Sy
spanned by the support vectors. More precisely, for x € R¢, let x denote the projection
of x on Svy:

x = arg min [|x — y|*.
yESy

For Type-A kernel K(x,y) = f(x'y), we have K(x, y;) = K(x, y;) for every
support vector y;. In particular, x is on the decision boundary if and only if x is. For
Type-B kernels, we have (using Pythagorean theorem with ¢ = ||x||? — ||x[|?)

K(x, yi) = g(Ix = yill*) = g(llx = yill* + ¢*),
,
and with the Gaussian kernel g, we have g(||x — yi[|2 + ¢2) = e~ 202 g(||x — yi|?). It
then follows that for any x € 33, its projection x on Sy must satisfy

‘12 ‘12
P(x) =e202 P(x) = e202 b.

In other words, the decision boundary X is essentially determined by the level-sets of
W (x) on the kernel subspace Svy.

Since the decision boundary X is given as the implicit surface ¥(x) = b, a normal
vector n(x) at a point x € S can be given as the gradient of ¥(x):

n(x) = V¥ (x) = ZwivxK(x, Vi) 4)
i=1

For the two types of kernels we are interested in, their gradient vectors assume the
following forms:

ViK(x,y) = f'(x"y)y, (5)
ViK(x,y) =2¢'(|Ix — y|*) (x — y). (6)

Using the above formulas, it is clear that for Type-A kernels, the normal vector n(x)
depends on x only through the coefficients in the linear combination of the support
vectors, while for Type-B kernels, x actually contributes to the vectorial component of
n(x). It will follow that an important element in the deconstruction method introduced
below is to exploit this difference in how the normal vectors are computed for the two
types of kernels. For example, for a polynomial kernel of degree D, a normal vector at
apointx € X is

n(x) =Y Duw(x'yi+1)" 'y, 7)
=1
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As a special case, for linear kernel D = 1, we have

m
l'l(X) - Z Wi Yi,
=1

that is independent of x. For the Gaussian kernel, we have

m .12
ni) =3 4 (-1 Y ey, ®)
i=1

3 Deconstruction Method

The deconstruction algorithm requires two inputs: 1) an SVM-based binary classifier
W(x) that uses one of the five kernel types indicated above, and 2) a small number of
positive and negative features. The algorithm uses the small number of input features
to generate other pairs of positive and negative features. For a pair p, n of positive and
negative features (a PN-pair), we can be certain that the line segment joining p, n must
intersect the decision boundary in at least one point. Using bracketing, we can locate
one such point x on the decision boundary within any given accuracy, i.e., we can use
bracketing to obtain a PN-pair p, n such that |p — n|| < € for some prescribed ¢ > 0.
With a small enough ¢, the midpoint between p, n can be considered approximately
as a sampled point x on X and its normal vector can then be estimated. The algorithm
proceeds to sample a collection of points and their normals on the decision boundary 32,
and using this information, the algorithm first computes the kernel subspace Sy and this
step separates the Type-A kernels from the Type-B kernels (Gaussian kernel). The four
Type-A kernels can further be identified by computing the intersection of 3 with a few
randomly chosen two-dimensional subspaces. These two steps provide the affirmative
answers to the first three questions in the introduction. For polynomial kernels, we can
determine a set of quasi-support vectors that provide the exact recovery of the decision
boundary 3. However, no such results for the two transcendental kernels are known at
present and we leave its resolution to future research.

3.1 Bracketing

Given a PN-pair, p, n, the decision boundary must intersect the line segment joining
the two features. Therefore, we can use bracketing, the well-known root-finding method
(e.g., [3]), to locate the point on X. Note that bracketing does not require the function
value, only its sign. This is compatible with our classifier C that only gives binary
values £1. In particular, if we bisect the interval in each step of bracketing, the length
of the interval is halved at each iteration, and for a given precision requirement € > 0,
the number of steps required to reach it is in the order of |log e|. If we further assume
that the features are generated from a bounded subset of R? (which is often the case)
with diameter less than K, then for any PN-pair p, n, bracketing terminates after at
most

logy, K —log, e+ 1 ©))

steps, a number that is independent of the ambient dimension d.



Deconstructing Kernel Machines 41

3.2 Estimating Normal Vectors

Given the pair p, n, let p,n denote the two points near X after the bracketing step
and x denote their midpoint. To estimate the normal vector at x, we use the fact that
the (unknown) kernel function is assumed to be smooth and X is a level-surface of the
decision function W(x) that is a linear combination of smooth functions. Consequently,
a randomly chosen point on 3 is almost surely non-singular [15] in that it has a small
neighborhood in ¥ that can be well-approximated using a linear hyperplane (its tangent
space) in R?. Accordingly, we will estimate the normal vector at x by linearly fitting
a set of points on X that belong to a small neighborhood of x. More specifically, we
chose a small § > € > 0 and generate PN-pairs on the sphere centered at x with radius
0. Using bracketing and the convexity of the ball enclosed by the sphere, we obtain PN-
pairs that are near 32 and no more than ¢ away from x. Taking the midpoint of these PN-
pairs, we obtain a set of randomly generated O(d) points on 3. We linearly fita (d—1)-
dimensional hyperplane to these points and the normal vector is then computed as the
eigenvector associated to the smallest eigenvalues of the normalized covariance matrix.
The result can be further sharpened by repeating the step over multiple § and taking the
(spherical) average of the unit normal vectors. However, in practice, we have observed
that good normal estimates can be consistently obtained using one small § ~ 1073
(with € = 1075) and 2d sampled points?.

3.3 Determining Kernel Subspace Sy

To determine the kernel subspace Sy, we will use the formulas for the normal vectors
given in Equations 5 and 6. Assume that we have sampled s > m points on X and their
corresponding normal vectors. Let N, X denote the following two matrices

X = [Xl X2...Xs], N= [1’11 1’12...1’13] (10)

that horizontally stack together the points x; and their normal vectors n;, respectively.
If all n; are correctly recovered (without noise), we have the following:

— For Type-A kernels, n; € Sy, i.e., n; is a linear combination of the support vectors.
— For Type-B kernels, n; € v;x; + Sy, for some v; € R, i.e.,, n; — v;x; € Sy.

Note that v; depends on x; and the two statements can be readily checked using Equa-
tions 4 - 6. Therefore, the kernel subspace Sy can be recovered, for Type-A kernels,
using Singular Value Decomposition (SVD). Specifically, let N = UDV " denote the
singular value decomposition of N. There are precisely m nonzero singular values and
Sv is spanned by the first m columns of U. For Type-B, a slight complication arises
because we must determine s constants 71, - - - , s such that the span of the following
matrix is Sv:

N-XI'= [1’11 1’12...1’13] — [’lel ’}/QXQ...’}/SXS], (11)

where I is a diagonal matrix with ~y; as its entries. Note that in general, N, X are of
full-rank min(d, s), and we are trying to find a set of ~y; such that the above matrix has

2 We note that for sufficiently small &, the angular error of the estimated normal is approximately
in the order of tan™"( 5; ).
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Fig. 1. Intersections of 3 and two-dimensional affine subspaces An SVM using the cubic
kernel is trained on MINST dataset. Top Row: Midpoints of PN-pairs near the decision boundary
3. after bracketing. Bottom Row: Sampled polynomial curves given the intersections of the
decision boundary with two-dimensional affine subspaces containing the images above.

rank m < s. However, for a generically chosen set of x5, - - - , X, the rank of N — X"
is at least m because the support vectors are linearly independent. Therefore, ~y; can be
determined via the following rank-minimization problem

arg n}ym Rank([n; ny ... ng] — [y1X1 Y2X2 ... VsXs))- (12)
As is well-known, a convex relaxation of the above problem uses the nuclear norm || - || «
(sum of singular values) as the surrogate
i N—-XI|, 13
arg  min || I (13)
and there are efficient algorithms for solving this type of convex optimization prob-
lem [16]. We note that for Type-A kernels, the rank is minimized aty; = --- = v, = 0.
In both cases, the span of N — X I gives the kernel subspace Sy . As the support vectors
are assumed to be linearly independent, the dimension of Sy then gives the number of
support vectors. For noisy recovery, the above method requires the standard modifica-
tion that uses the significant gap between singular values as the indicator. For Type-A
kernels, this is applied to the SVD decomposition of N directly, and for Type-B kernels,
this is applied to the SVD decomposition of N — X" with I" determined by the nuclear
norm minimization.

3.4 Determining Kernel Type

For determining the four Type-A kernels, we will examine the locus of the intersec-
tion of the decision boundary with a two-dimensional affine subspace containing a
point close to the decision boundary. More specifically, let x,,x_ denote a PN-pair
that is sufficiently close to the decision boundary ¥. We can randomly generate a
two-dimensional subspace containing x4, x_ by, for example, taking the subspace A
formed by x.,x_ and the origin. For a generic two-dimensional subspace A, its in-
tersection with 3 is a one-dimensional curve, and the parametric form of this curve
is determined by the (yet unknown) kernel function. See Figure 1. Take a polyno-
mial kernel of degree D as an example. By its construction, the intersection of the
decision boundary and the affine subspace A is nonempty, and the locus of the inter-
section formed a curve in A that satisfies a polynomial equation of degree D. This
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can be easily seen as follows: take x as the origin on A and choose (arbitrary) or-
thonormal vectors Uy, Uy € R< such that the triplet x, Uy, Uy identifies A with R2.
Therefore, any point p € A can be uniquely identified with a two-dimensional vector
p = [p1,p2] € R?as

p=x%x4 +p1U; + p2Us.

If p € A is a point in the intersection of A with the decision boundary ¥ (p) = b, we
have

Z wi((x1Y; +p1U] Y + poU; Yi)1)P = b, (14)
i=1

which is a polynomial of degree D in the two variables p;, p2. Therefore, to ascertain
the degree of the polynomial kernel, we can (assuming D < 4)

— Sample at least nine points on the intersection of the decision boundary and A.
— Fit a bivariate polynomial of degree D to the points. If the fitting error is sufficiently
small, this gives an indication that the polynomial kernel is indeed of degree D.

We note that up to a multiplicative constant, a bivariate cubic polynomial in R? has nine
coefficients and this gives the minimum number of points required to fit a cubic polyno-
mial. In addition, since the degree of the polynomial is invariant under any linear trans-
form, this shows that the choice of the two basis vectors is immaterial. The advantage of
the reduction from R? to R? is considerable as it implies that the complexity of this step
is essentially independent of the ambient dimension d. For a transcendental kernel such
as the hyperbolic tangent kernel, the locus of the intersection is generally not a polyno-
mial curve and this can be detected by the curve-fitting error. Although, in principle, one
affine subspace A is sufficient to distinguish between four Type-A kernels (as shown
by the above equation), in practice, due to various issues such as possible degeneracy
of the polynomial curve and the curve fitting error, we randomly sample several affine
subspaces and use a majority voting scheme to determine the kernel type.

3.5 Complexity Analysis and Exact Recovery of

The steps outlined above essentially aim to ascertain the parametric form of the decision
boundary X using a (relatively) small number of sampled points on 32. We note that the
bracketing error in general can be explicitly controlled, and there are only two steps
above that incur uncertainty: the normal estimate and the nuclear norm relaxation of the
rank minimization problem. Our approach of using the local linear approximation to
estimate the normal vector at a point is the standard one common in computational ge-
ometry and machine learning (e.g., [17,18] [19]), and the nuclear norm relaxation is the
standard convex relaxation for the original NP-hard rank minimization problem [20]. A
complete complexity analysis of the proposed algorithm would require detailed proba-
bilistic estimates pertaining to these two steps, and although there are partial and related
results scattered in the literature (e.g.,[20] [21]), we are unable to provide a definitive
result at this point. Instead, we present a simple complexity analysis below under the
assumption that these two steps can be determined exactly, i.e., the convex relaxation
using the nuclear norm gives the same result as the original rank minimization problem.

The computational complexity can be defined as the number of features (not neces-
sarily only on the decision boundary) in R? sampled during the process and this number
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is the same as the number of queries to the classifier C. From the above, it is clear that
to determine the m-dimensional kernel subspace, at least O(m) sampled normals are
required, i.e., N has at least m columns. Furthermore, to determine each normal vector
at a given point x O(d) number of points are required, as the ambient dimension is d.
Therefore, the total complexity is O(dm). The multiplicative constant here, as can be
readily seen, is bounded by the maximum number of steps required for the bracketing,
and this number is independent of the dimensions d, m, provided the features are drawn
from a bounded subset of R (Equation 9).

Once the kernel subspace Sy and the kernel type are determined, this allows us to
focus on the intersection ¥ N Svy. In the case m << d, this reduction from ¥ C R4
to ¥ NSy C Sy is computationally significant. In particular, for polynomial kernels,
we can sample O (m?) points on 3 N Sy to reconstruct the polynomial ¥(x) on Sy.
At this point, ¥ (x) is a degree-D polynomial in m variables, and using recent results
on tensor decomposition (e.g., [2] [22])3, we can decompose ¥ (x) (more precisely, its
homogenized version)

T(x) =) i(x)", (15)
i=1
where /1, - - - , £, are linear (homogeneous) polynomials. The smallest integer  for such

decomposition gives the rank of the (homogeneous) polynomial (as a symmetric tensor)
and in general, such decomposition is also possible for r greater than the rank. If we
write the linear polynomials (after de-homogenization) as ¢;(x) = z; x + 1 for some
vector z;, it is tempting to infer z; as the support vector y; from the above equation.
However, because the non-uniqueness of the decomposition, z; # y; in general. Nev-
ertheless, z; do act as if they are support vectors in the sense that the evaluation of
the polynomial ¥(x) becomes computationally trivial using the above decomposition.
For polynomial kernels, the recovery of these quasi-support vectors z; then determines
the decision boundary X exactly, essentially completing the deconstruction process.
Although the general algorithms for tensor decomposition [2] [22] require some math-
ematical machinery, the special case of quadratic kernels (degree-two polynomials) can
be readily solved using eigen-decomposition of a symmetric matrix (the details are pro-
vided in the supplemental material). For transcendental kernels, no similar results are
known at present. Although the reduction from X C R? to ¥ N Sy C Sy offers the
possibility of reconstructing the decision boundary in Sy, due to the nature of the tran-
scendental functions, the details are considerably more difficult than the polynomial
case, and we leave its resolution to future research.

4 Experiments

We present two sets of experiments in this section. The first set of experiments evaluates
various components of the proposed method and the second set of experiments applies
the proposed method to explicitly deconstruct a kernel machine and subsequently im-
prove it using incremental SVM [9].

3 Algorithm 5.1 in http://arxiv.org/pdf/0901.3706v2.pdf, the archived version
of [2].
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4.1 Evaluation of the Deconstruction Algorithm

We present two experiments using kernel machines whose support vectors are randomly
generated (first experiment) and support vectors trained using real image data (second
experiment). We remark that there is no qualitative differences between deconstructing
kernel machines with randomly-generated support vectors and deconstructing kernel
machines trained with real data since, in both cases, the kernel function and decision
function (Eq 1) are the same. Using randomly-generated kernel machines allow us to
study the behavior of the deconstruction algorithm over a much wider range of sup-
port vector configuration, demonstrating its accuracy and robustness. In the first set of
experiments, we set the feature dimension d = 30, and we randomly generate 12 sup-
port vectors. For determining the kernel type, we sample 25 points close to the decision
boundary ¥ and at each point, we compute the intersection of 32 and a two-dimensional
subspace. We fit a quadratic and then a cubic polynomial to these points, and the small-
est degree giving an error below some threshold value is declared as the degree of the
kernel. However, if in both cases the fitting errors are greater than the threshold value,
the kernel is declared to be a Gaussian kernel at this location. This is repeated at 25 sam-
pled locations and a majority vote is used to determine the kernel type. Once the kernel
type is determined, we use SVD to determine the dimension of the kernel subspace
S+ and the subspace itself. For the Gaussian kernel, the nuclear-norm minimization is
performed before using SVD to locate the subspace Sy . In this experiment, we sam-
ple s = 100 points on the decision boundary in order to form the matrices N, X and
the tolerance in the bracketing step is set at 1076, Let Sy denote the kernel subspace
computed by our method. We use the principal angles [23] between the two subspaces
Sv, Sy as the metric for quantifying the error.

Summary. The gap between the singular values of N is an important indicator of the
dimension of the kernel subspace, and it is affected by the accuracy of the normals.
Figure 2 shows the effect in terms of the radius ¢ used in computing the normals, show-
ing the expected result that the ratio of /e is directly related to the accuracy of the
recovered normals (larger ratios provide more accuracy). For determining the kernel
type, the specificity for the polynomial kernels is close to 100% with the specificity of
approximately 80% for the Gaussian kernel (and hyperbolic tangent kernel). This can
be attributed to the majority voting scheme used in assigning the kernel type, and we
leave it as important future work for designing more robust criteria. The accuracy of
the recovered kernel subspaces is shown in Figure 3 and 4a. The first figure shows the
means and variances of the (cosine of) twelve principal angles, taken over one hundred
randomly generated kernel machines using polynomial kernels. Note that cos~*(0.99)
is approximately 8° and this gives a good indication of the accuracy. In the second fig-
ure, the twelve principal angles computed before and after the rank-minimization are
shown, indicating the correctness and necessity of performing rank-minimization. Fi-
nally, each deconstruction makes between 60, 000 and 70, 000 queries to the classifier,
and on a typical 3Ghz machine, it takes no more than a few minutes to complete the
deconstruction process. Since the algorithm is readily parallelizable (which would be
important for deconstruction in high-dimensional feature spaces), a full parallelized and
optimized implementation can be expected to shorten the running time considerably,
perhaps in the range of only a few seconds.
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a polynomial cubic kernel with 12 support vectors. The expected gaps between the 12" and 13"
singular values are indicated by the green markers. Note that for a fixed tolerance ¢ = 10~°, the
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Fig. 3. Means and variances of the cosines of the twelve principal angles between Sy and Sy.
Means and variances are taken over one hundred independent deconstruction results for kernel
machines with twelve support vectors using a polynomial kernel (Quadratic kernel on the left and
cubic kernel on the right). (best viewed in color).

In the second experiment, we train a kernel machine with cubic polynomial kernel
using 1000 images from MNIST dataset [24]. The positive class consists of images
of the digit 2 and the negative class consists of 0,5, 7, 8. The trained kernel machine
has 275 support vectors. Figure 1 displays the intersections of the decision boundary
with several two-dimensional affine subspaces, noticing the superpositions of the im-
ages of 2 with images of other digits. In this experiment, we randomly generate 200
two-dimensional affine subspaces and for each subspace, its vote on the type of kernel
is determined as above. Figure 4b shows the distribution of votes, clearly indicating the
correct result. For this experiment, the gap in the singular values of N indicates the cor-
rect dimension of the kernel subspace (275) and the kernel subspace is also successfully
recovered.
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Fig. 4. Left: Means and variances of the the twelve principal angles between Sy and Sy . Means
and variances are taken over one hundred independent deconstruction results for kernel machines
with twelve support vectors using a Gaussian kernel. The principal angles before and after rank
minimization are shown. (best viewed in color). Right:Distribution of Votes on Kernel Type
For a cubic kernel machine trained on 1000 MNIST images, the distribution of votes on kernel
type for 200 randomly sampled two-dimensional affine subspaces. The correct result is clearly
indicated.

4.2 Kernel Machine Upgrade without Source Code

In the second experiment, we demonstrate the possibility of upgrading a kernel machine
without access to the kernel machine’s source code. As outlined in the introduction,
we apply the deconstruction algorithm to deconstruct the kernel machine. This step
provides us with the kernel type and quasi-support vectors (for a polynomial kernel
machine). For the subsequent upgrade (or update), we use the incremental SVM algo-
rithm [9] to retrain the kernel machine given the new training data. Specifically, we first
train a kernel machine using MNIST dataset: images of digit 1 as positive samples and
the negative training samples comprise the remaining digits except 8. Dimensionality
reduction is applied to the images using PCA to a feature space of dimension 60. An
SVM with quadratic kernel is trained on these training samples, resulting in 97.30%
true positive detection rate and 99.17% true negative detection rate on the test dataset.
The initial kernel machine has 48 support vectors. During deconstruction, the kernel
subspace is recovered using 800 sampled normal vectors. Let N denote the matrix ob-
tained by horizontally stacking together the normal vectors and N = USD, its SVD
decomposition. The plot of the singular values is shown in Figure 5b and the signifi-
cant gap between the 48th and 49th singular values indicate the correct dimension (and
the number of support vectors). The principle angles between the kernel subspace esti-
mated by the first 48 columns of U and the ground-truth is shown in Figure 5a. Once
the kernel subspace is recovered, we proceed to recover the quasi-support vectors. The
kernel machine defined by the quasi-support vectors should be a good approximation
of the original kernel machine and this is shown in Table 1a, where we compare the
classification results using the recovered kernel machine and the original one. In this
example, the results as expected are quite similar, with the recovered kernel machine
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Fig. 5. Left:Cosines of the principal angles between the recovered kernel subspace and the
ground-truth kernel subspace. Right:Singular values of the matrix N. The gap between 48th and
49th singular values is significant as the gaps among the remaining singular values are substan-
tially smaller. The correct dimension of the kernel subspace (and the number of support vectors)
is 48.

actually performing slightly better. Once we have recovered the quasi-support vectors,
we next proceed to upgrade the kernel machine. The task is to upgrade a kernel ma-
chine that recognizes only digit 1 to a kernel machine that recognizes digits 1 and 8.
The classification results for the initial and upgraded kernel machines are tabulated in
Table 1b. As shown in the table, before the upgrade, the original kernel machine per-
forms poorly on the images of digit 8 and for the upgraded machine, both digits can
now be successfully classified.

Table 1. Left:Confusion matrices for the original kernel machine and the kernel machine de-
fined by the recovered quasi-support vectors. Both machines are tested on the same test dataset.
Right:Comparisons of classification results for the original kernel machine and the upgraded
kernel machine.

(@) (b)
Quasi-SV Machine Original Machine Classification Rate
outcome outcome Original Machine Upgraded Machine
+ve -ve +tve -ve Digit 1 97.30% 100.00%
Positive 100.00% 00.00% 97.30% 2.70%  Digit 8 00.00% 92.31%
Negative 3.73% 96.27% 0.83% 99.17% Negative 99.17% 97.93%

5 Conclusion

We have introduced the novel notion of deconstructive learning and proposed an
algorithm for deconstructing kernel machines. Preliminary experimental results have
demonstrated both the viability and effectiveness of the proposed method. Although
much work remains for the future, the results presented in this paper serve as a small
first step in understanding the full implication and potential of deconstructive learning.
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