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Abstract. We study the problem of performing cautious inferences for an ordi-
nal classification (a.k.a. ordinal regression) task, that is when the possible classes
are totally ordered. By cautious inference, we mean that we may produce partial
predictions when available information is insufficient to provide reliable precise
ones. We do so by estimating probabilistic bounds instead of precise ones. These
bounds induce a (convex) set of possible probabilistic models, from which we
perform inferences. As the estimates or predictions for such models are usually
computationally harder to obtain than for precise ones, we study the extension of
two binary decomposition strategies that remain easy to obtain and computation-
ally efficient to manipulate when shifting from precise to bounded estimates. We
demonstrate the possible usefulness of such a cautious attitude on tests performed
on benchmark data sets.

Keywords: Ordinal regression, imprecise probabilities, Binary decomposition,
Nested dichotomies.

1 Introduction

We are interested in the supervised learning problem known as ordinal classification [18]
or regression [9]. In this problem, the finite set of possible labels are naturally ordered.
For instance, the rating of movies can be one of the following labels: Very-Bad, Bad,
Average, Good, Very-Good that are ordered from the worst situation to the best. Such
problems are different from multi-class classification and regression problems, since in
the former there is no ordering between classes and in the latter there exists a metric on
the outputs (while in ordinal classification, a 5-star movie should not be considered five
times better than a 1-star movie).

A common approach to solve this problem is to associate the labels to their rank,
e.g., {1,2,3,4,5} in our previous film example, and then to learn a ranking function. In
the past years, several algorithms and methods [27] have been proposed to learn such
a function, such as SVM techniques [26,22,23,25], monotone functions [28], binary
decomposition [20], rule based models [14]. This is not the approach followed in this
paper, in which our goal is to estimate the probability of the label conditionally on the
observed instance. In this sense, our approach is much closer to the one proposed by
Frank et Hall [18].

A common feature of all the previously cited approaches is that, no matter how re-
liable is the model and the amount of data it is learned from, it will always produce a
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unique label as prediction. In this paper, we are interested in making partial predictions
when information is insufficient to provide a reliable precise one. That is, if we are un-
sure of the right label, we may abstain to make a precise prediction and instead predict
a subset of potentially optimal labels. The goal is similar to the one pursued by the
use of a reject option [2,8], and in particular to methods returning subsets of possible
classes [1,21]. Yet we will see in the experiments that the two approaches can provide
very different results.

Besides the fact that such cautious predictions can prevent bad decisions based on
wrong predictions, making such imprecise predictions in an ordinal classification set-
ting can also be instrumental in more complex problems that can be decomposed into
sets of ordinal classification problem, such as graded multi-label [7] or label ranking [6].
Indeed, in such problems with structured outputs, obtaining fully reliable precise pre-
dictions is much more difficult, hence producing partial but more reliable predictions is
even more interesting [5].

To obtain these cautious predictions, we propose to estimate sets of probabilities [10]
from the data in the form of probabilistic bounds over specific events, and to then derive
the (possibly) partial predictions from it. As computations with generic methods using
sets of probabilities (e.g., using imprecise graphical models [10]) can be quite complex,
we propose in Section 2 to consider two well-known binary decompositions whose
extension to probability sets keep computations tractable, namely Frank & Hall decom-
position [18] and nested dichotomies decompositions [17]. In Section 3, we discuss
how to perform inferences from such probability sets both with general loss functions
and with the classical 0/1 loss function. We end (Section 4) by providing several exper-
iments showing that our cautious approach can help identify hard to predict cases and
provides more reliable predictions for those cases.

2 Probability Set Estimation through Binary Decomposition

The goal of ordinal classification is to associate an instance x = x1× . . .× xp com-
ing from an instance space X = X 1× . . .×X p to a single label of the space Y =
{y1, . . . ,ym} of possible classes. Ordinal classification differs from multi-class classifi-
cation in that labels yi are ordered, that is yi ≺ yi+1 for i = 1, . . . ,m−1. An usual task is
then to estimate the theoretical conditional probability measure Px : 2Y → [0,1] associ-
ated to an instance x from a set of n training samples (xi, �xi) ∈X ×Y , i = 1, . . . ,n.

In order to derive cautious inferences, we shall explore in this paper the possibility to
provide a convex set Px of probabilities as an estimate rather than a precise probability
P̂x, with the idea that the size of Px should decrease as more data (i.e., information)
become available, converging to Px.

Manipulating generic sets Px to compute expectations or make inferences can be
tedious, hence it is interesting to focus on collections of assessments that are easy to
obtain and induce sets Px that allow for easy computations. Here we focus on the ex-
tensions of two particularly attractive binary decomposition techniques already used to
estimate a precise P̂x, namely Frank et Hall [18] technique and nested dichotomies [19].
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2.1 Imprecise Cumulative Distributions

In their original paper, Frank et Hall suggest [18] to estimate, for an instance x, the
probabilities that its output �x will be less or equal than yk, k = 1, . . . ,m− 1. That is,
one should estimate the m− 1 probabilities Px(Ak) := Fx(yk) where Ak = {y1, . . . ,yk},
the mapping Fx : Y → [0,1] being equivalent to a discrete cumulative distribution. The
probabilities Px(�x = yk) can then be deduced through the formula Px({yk}) = Fx(yk)−
Fx(yk−1).

The same idea can be applied to sets of probabilities, in which case we estimate the
bounds

Px(Ak) := Fx(yk) and Px(Ak) := Fx(yk),

where Fx,Fx : Y → [0,1] correspond to lower and upper cumulative distributions.
These bounds induce a well-studied [15] probability set Px([F ,F ]). For Px([F ,F ]) to
be properly defined, we need the two mappings Fx,Fx to be increasing with Fx(ym) =
Fx(ym) = 1 and to satisfy the inequality Fx ≤ Fx. In practice, estimates Fx,Fx ob-
tained from data will always satisfy the latest inequality, however when using binary
classifiers on each event Ak, nothing guarantees that they will be increasing, hence
the potential need to correct the model. Algorithm 1 provides an easy way to obtain
a well-defined probability set. In spirit, it is quite similar to the Frank et Hall estimates
Px(yk)=max{0,Fx(yk)−Fx(yk−1)}, where an implicit correction is performed to obtain
well-defined probabilities in case Fx is not increasing.

Algorithm 1. Correction of estimates Fx,Fx into proper estimates

Input: estimates Fx,Fx obtained from data
Output: corrected estimates Fx,Fx

1 for k=1,. . . ,m-1 do
2 if Fx(yk)> Fx(yk+1) then Fx(yk+1)← Fx(yk);
3 if Fx(ym−k+1)< Fx(ym−k) then Fx(ym−k)← Fx(ym−k+1);

2.2 Nested Dichotomies

The principle of nested dichotomies is to form a tree structure using the class values
yi ∈ Y . A nested dichotomy consists in recursively partitioning a tree node C ⊆ Y
into two subsets A and B such that A∩B = /0 and A∪ B = C, until every leaf-node
corresponds to a single class value (card(C) = 1). The root node is the whole set of
classes Y . To each branch A and B of a node C are associated conditional probabilities
Px(A|C) = 1−Px(B|C). In the case of ordinal classifications, events C are of the kind
{yi,yi+1, . . . ,y j} and their splits of the kind A= {yi,yi+1, . . . ,yk} and B= {yk+1, . . . ,y j}.

Generalizing the concept of nested dichotomies is pretty straightforward: it consists
in allowing every local conditional probability to be imprecise, that is to each node C
can be associated an interval [Px(A | C),Px(A | C)], precise nested dichotomies being
retrieved when Px(A | C) = Px(A | C) for every node C. By duality of the imprecise
probabilities [30, Sec.2.7.4.], we have Px(A | C) = 1−Px(B | C) and Px(A | C) = 1−
Px(B |C). Such an imprecise nested dichotomy is then associated to a set Px of joint
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probabilities, obtained by considering all precise selection Px(A |C)∈ [Px(A |C),Px(A |
C)] for each node C. Figure 1 shows examples of a precise and an imprecise nested
dichotomy tree when Y = {y1,y2,y3}.

Y = {y1,y2,y3}

C = {y1,y2}

{y1}

Px(y1 |C) = 0.6

{y2}

Px(y2 |C) = 0.4

Px({y1,y2}) = 0.7

{y3}

P(y3) = 0.3

Y = {y1,y2,y3}

C = {y1,y2}

{y1}

[Px(y1 |C),Px(y1 |C)] = [0.6,0.8]

{y2}

[Px(y2 |C),Px(y2 |C)] = [0.2,0.4]

[Px({y1,y2}),Px({y1,y2})] = [0.6,0.8]

{y3}

[Px(y3),Px(y3)] = [0.2,0.4]

Fig. 1. Precise (above) and imprecise (below) nested dichotomies

3 Inferences

In this section, we expose how inferences (decision making) can be done with our two
decompositions, both with general costs and 0/1 costs. While other costs such as the
absolute error cost are also natural in an ordinal classification setting [14], we chose
to focus on the 0/1 cost, as it is the only one for which a theoretically sound way to
compare determinate and indeterminate classifiers, i.e., classifiers returning respectively
precise and (potentially) imprecise classification, has been provided [33].

We will first recall the basic of decision making with probabilities and will then
present their extensions when considering sets of probabilities. Let us denote by ck :
Y → R the cost (loss) function associated to yk, that is ck(y j) is the cost of predicting
yk when y j is true. In the case where precise estimates Px(yk) are obtained from the
learning algorithm, obtaining the optimal prediction is

ŷ = arg min
yk∈Y

Ex(ck)
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with Ex the expectation of ck under Px, i.e. we predict the value having the minimal
expected cost.

In practice, this also comes down to build a preference relation
P on elements of Y ,
where yl 
Px yk iff Ex(ck)> Ex(cl) or equivalently Ex(ck−cl)> 0, that is the expected
cost of predicting yl is lower than the expected cost of predicting yk. When working
with a set Px of probabilities, this can be extended by building a partial order 
Ex on
elements of Y such that yl 
Ex

yk iff Ex(ck− cl)> 0 with

Ex(ck− cl) = inf
Px∈Px

Ex(ck− cl).

That is, we are sure that the cost of exchanging yk with yl will have a positive expec-
tation (hence yl is preferred to yk). The final cautious prediction Ŷ is then obtained by
taking the maximal elements of the partial order
Ex , that is

Ŷ = {y ∈ Y :� ∃y′ �= y s.t. y′ 
Ex
y}

and is known under the name maximality criterion [30,29]. In practice, getting Ŷ re-
quires at worst a number m(m−1)/2 of computations that is quadratic in the number
of classes. A conservative approximation (in the sense that the obtained set of non-
dominated classes includes Ŷ ) can be obtained by using the notion of interval domi-
nance [29], in which yl 
Ex yk if Ex(ck)>−Ex(−cl), thus requiring only 2m computa-
tions at worst to compare all classes, yet as m is typically low in ordinal classification,
we will only consider maximality here.

In particular, 0/1 costs are defined as ck(y j) = 1 if j �= k and 0 else. If we note 1(A)
the indicator function of A (1(A) (x) = 1 if x ∈ A, 0 else), then (ck− cl) = 1(yl)

− 1(yk)

as ck(y j)− cl(y j) =−1 if j = k, 1 if j = l and 0 if j �= k, l. Hence we have yl 
Ex yk iff
Ex(1(yl) − 1(yk) ) > 0. Table 1 provides an example of the functions over which lower
expectations must be computed for 0/1 losses in the case Y = {y1, . . . ,y5}.

Table 1. 0/1 cost functions comparing y2 and y4

y1 y2 y3 y4 y5

c2 1 0 1 1 1
c4 1 1 1 0 1

c2−c4 0 −1 0 1 0

3.1 Inference with Imprecise Cumulative Distributions

If the probability set Px([F ,F ]) is induced by the bounding cumulative distributions
[Fx,Fx], then it can be shown1 that the lower expectation of any function f over Y can
be computed through the Choquet Integral: if we denote by () a reordering of elements
of Y such that f (y(1))≤ . . .≤ f (y(m)), this integral reads

Ex( f ) =
m

∑
i=1

( f (y(i))− f (y(i−1))Px(A(i)) (1)

1 For details, interested readers are referred to [15]. Shortly speaking, this is due to the super-
modularity of the induced lower probability.
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with f (y(0))= 0, A(i) = {y(i), . . . ,y(m)} and Px(A(i))= infPx∈Px([F,F ]) P(A(i)) is the lower
probability of A(i). In the case of imprecise cumulative distributions, the lower proba-
bility of an event A can be easily obtained: let C = [y j,y j] denote a discrete interval of

Y such that [y j,y j] = {yi ∈ Y : j ≤ i≤ j}, then Px(C) = max{0,Fx(y j)−Fx(y j−1)}
with Fx(y0) = Fx(y0) = 0. Any event A can then be expressed as a union of disjoint
intervals2 A =C1∪ . . .∪CM , and we have [15] Px(A) = ∑M

i=1 Px(Ci).

Table 2. Imprecise cumulative distribution

y1 y2 y3 y4 y5

Fx 0.15 0.5 0.55 0.95 1
Fx 0.1 0.4 0.5 0.8 1

Example 1. Consider the imprecise cumulative distributions defined by Table 2 to-
gether with a 0/1 loss and the function c2− c4 of Table 1. The elements used in the
computation of the Choquet integral (1) for this case are summarized in Table 3.

Table 3. Choquet integral components of Example 1

i y(i) f(i) A(i) Px(A(i))

1 y2 −1 Y 1
2 y1 0 {y1,y3,y4,y5} 0.6
3 y3 0 {y3,y4,y5} 0.5
4 y5 0 {y4,y5} 0.45
5 y4 1 {y4} 0.25

The lower probability of A(2) = {y1,y3,y4,y5}= {y1}∪{y3,y4,y5} is

Px(A(2)) = Px({y1})+Px({y3,y4,y5})
= max{0,Fx(y1)−Fx(y0)}+max{0,Fx(y5)−Fx(y2)}
= 0.1+ 0.5,

and the final value of the lower expectation Ex(c2− c4) = −0.15, meaning that y4 is
not preferred to y2 in this case. As we also have Ex(c4− c2) = −0.2, y2 and y4 are
incomparable under a 0/1 loss and given the bounding distributions Fx,Fx. Actually,
our cautious prediction would be Ŷ = {y2,y4}, as we have yi 
E y j for any i ∈ 2,4 and
j ∈ 1,3,5.

2 Two intervals [y j,y j], [yk,yk] are said disjoint if j+1 < k.



Cautious Ordinal Classification by Binary Decomposition 329

3.2 Inference with Nested Dichotomies

In the precise case, computations of expectations with nested dichotomies can be done
by backward recursion and local computations (simply applying the law of iterated
expectation). That is the global expectation Ex( f ) of a function f : Y →R can be done
by computing local expectations for each node, starting from the tree leaves taking
values f (y). This provides nested dichotomies with a computationally efficient method
to estimate expectations.

It has been shown [13] that the same recursive method can be applied to imprecise
nested dichotomies. Assume we have a split {A, B} of a node C, and a real-valued
(cost) function f : {A,B} → R defined on {A,B}. We can compute the (local) lower
expectation associated with the node C by :

Ex,C( f ) = min

{
Px(A |C) f (A)+Px(B |C) f (B),
Px(A |C) f (A)+Px(B |C) f (B)

}
(2)

Starting from a function such as the one given in Table 1, we can then go from the leaves
to the root of the imprecise nested dichotomy to obtain the associated lower expectation.

Example 2. Consider a problem where we have Y = {y1,y2,y3} and the same impre-
cise dichotomy as in Figure 1. Figure 2 shows the local computations performed to ob-
tain the lower expectation of c1− c3. For instance, using Eq. (2) on node C = {y1,y2},
we get

Ex,{y1,y2}(c1− c3) = min{−1 ·0.8+ 0 ·0.2,−1 ·0.6+0 ·0.4}
We finally obtain Ex,Y (c1− c3) = −0.44, concluding that y3 is not preferred to y1. As
the value Ex,Y (c3− c1) = −0.04 is also negative, we can conclude that y1 and y3 are
not comparable. Yet we do have Ex,Y (c2− c1)> 0, meaning that y1 is preferred to y2,
hence Ŷ = {y1,y3}.

Y = {y1,y2,y3}

C = {y1,y2}

{y1}

[0.6,0.8]

{y2}

[0.2,0.4]

[0.6,0.8]

{y3}

[0.2,0.4]
Ex,Y

=−0.8 ·0.8+1 ·0.2

−1 0

1
Ex,{y1,y2}

=−1 ·0.8+0 ·0.2
=−0.8

Fig. 2. Expectation computation for c1−c3
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4 Experimentations

This section presents the experiments we achieved to compare decomposition methods
providing determinate predictions and their imprecise counterpart delivering possibly
indeterminate predictions.

4.1 Learning Method

In our experiments, we consider a base classifier which can be extended easily to output
interval-valued probabilities, so that we can evaluate the impact of allowing for cau-
tiousness in ordinal classification. For this reason, we use the Naive Bayesian Classifier
(NBC) which has an extension in imprecise probabilities : the Naive Credal Classifier
(NCC) [32].

The NCC preserves the main properties of NBC, such as the assumption of attribute
independence conditional on the class. In binary problems where we have to differenti-
ate between two complementary events A and B, NBC reads

P(A|x1, . . . ,xp) =
P(A)∏p

i=1 P(xi | A)
∏p

i=1 P(xi | A)P(A)+∏p
i=1 P(xi | B)P(B) , (3)

where (x1, . . . ,xp) are the feature variables and A,B are the two events whose probability
we have to estimate. The NCC consists in using probability bounds in Eq. 3, getting

P(A|x1, . . . ,xp) = min

⎧⎪⎪⎨
⎪⎪⎩

P(A)∏p
i=1 P(xi |A)

∏p
i=1 P(xi|A)P(A)+∏p

i=1 P(xi |B)P(B) ,

P(A)∏p
i=1 P(xi|A)

∏p
i=1 P(xi |A)P(A)+∏p

i=1 P(xi|B)P(B)

⎫⎪⎪⎬
⎪⎪⎭

= 1−P(B|x1, . . . ,xp). (4)

and P(B|x1, . . . ,xp) = 1−P(A|x1, . . . ,xp) can be obtained in the same way. Using the
Imprecise Dirichlet Model (IDM) [4], we can compute these probability estimates from
the training data by simply counting occurrences :

P(xi | A) = occi,A

occA + s
, P(xi | A) = occi,A + s

occA + s
(5)

and

P(A) =
occi,A

nA,B + s
, P(A) =

occi,A + s
nA,B + s

(6)

where occi,A is the number of instances in the training set where the attribute X i is
equal to xi and the class value is in A, occA the number of instances in the training set
where the class value is in A, nA,B is the number of training sample whose class is either
in A or B. The hyper-parameter s that sets the imprecision level of the IDM is usually
equal to 1 or 2 [31].



Cautious Ordinal Classification by Binary Decomposition 331

4.2 Evaluation

Comparing classifiers that return cautious (partial) predictions in the form of multiple
classes is an hard problem. Indeed, compared to the usual setting, measures of perfor-
mance have to include the informativeness of the predictions in addition to the accuracy.
Zaffalon et al. [33] discuss in details the case of comparing a cautious prediction with
a classical one under a 0/1 loss assumption, using a betting interpretation. They show
that the discounted accuracy, which rewards a cautious prediction Y class with 1/|Y | if
the true class is in Y , and zero otherwise, is a measure satisfying a number of appeal-
ing properties. However, they also show that discounted accuracy makes no difference
between a cautious classifier providing indeterminate predictions and a random classi-
fier: for instance, in a binary setting, a cautious classifier always returning both classes
would have the same value as a classifier picking the class at random, yet the deter-
minate classifier displays a lower variance (it always receives 1/2 as reward, while the
random one would receive a reward of 1 half of the time, and 0 the other half).

This is why a decision maker that wants to value cautiousness should consider mod-
ifying discounted accuracy by a risk-adverse utility function [33]. Here, we consider
the u65 function: Let (xi, �i), i = 1, . . . ,n be the set of test data and Yi our (possibly
imprecise) predictions, then u65 is

u65 =
1
n

n

∑
i=1

−0.6d2
i + 1.6di,

where di = 1(Yi)
(�i)/|Yi| is the discounted accuracy. It has been shown in [33] that this

approach is consistent with the use of F1 measures [12,1] as a way to measure the

Table 4. Data set details

Name #instances #features #classes

autoPrice 159 16 5
bank8FM 8192 9 5

bank32NH 8192 33 5
boston housing 506 14 5

california housing 20640 9 5
cpu small 8192 13 5

delta ailerons 7129 6 5
elevators 16599 19 5

delta elevators 9517 7 5
friedman 40768 11 5
house 8L 22784 9 5

house 16H 22784 17 5
kinematics 8192 9 5
puma8NH 8192 9 5
puma32H 8192 33 5

stock 950 10 5
ERA 1000 5 9
ESL 488 5 9
LEV 1000 5 5
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quality of indeterminate classifications. In fact, it is shown in [33] that u65 is less in
favor of indeterminate classifiers than the use of F1 measure.

4.3 Results

In this section, our method is tested on 19 datasets of the UCI machine learning repos-
itory [16], whose details are given in Table 4. As there is a general lack of benchmark
data sets for ordinal classification data, we used regression problems that we turned
into ordinal classification by discretizing the output variable, except for the data sets
LEV that has 5 ordered classes and ESL, ERA that have 9 ordered classes. The re-
sults reported in this section are obtained with a discretization into five classes of equal
frequencies. We also performed experiments on the other data sets, using 7 and 9 dis-
cretized classes, obtaining the same conclusions.

The results in this section are obtained from a 10-fold cross validation. To build
the dichotomy trees, we selected at each node the split A = {yi,yi+1, . . . ,yk} and B =
{yk+1, . . . ,y j} of C = {yi,yi+1, . . . ,y j} that maximised the u65 measure on the bina-
rized data set. We use ordinal logistic regression (logreg) as a base line classifier to
compare our results. For each decomposition method, Frank & Hall (F) and nested
dichotomies (N), we compared the naive Bayes classifier (B) with its indeterminate
counterpart (NCC), picking an hyper-parameter s = 2 for the IDM in Eqs. (5)- (6). The
naive Bayes classifier was used in a classical way to provide determinate predictions

Table 5. u65 Results (and method rank) obtained on the different methods. Log= logistic regres-
sion, B = Naive Bayes classifier, C = Naive credal classifier, A= Alonso et al. prediction method,
F = Frank & Hall, N = Nested Dichotomies.

Log B/F B/F/A C/F B/N B/N/A C/N
autoPrice 52.2 (5) 58.5 (3) 39.7 (7) 53.8 (4) 59.1 (1) 51.3 (6) 58.6 (2)
bank8FM 68.2 (2) 67.4 (3) 37.3 (7) 68.3 (1) 63.9 (5) 54.9 (6) 64.8 (4)
bank32NH 43.3 (4) 43.6 (3) 30.2 (7) 47.8 (1) 42.9 (5) 40.2 (6) 46.7 (2)

boston hous. 55.6 (4) 55.1 (5) 34.1 (7) 55.8 (3) 56.1 (2) 43.9 (6) 57.4 (1)
california hous. 47.6 (5) 48.2 (4) 32.9 (7) 48.6 (2) 48.3 (3) 43.5 (6) 48.7 (1)

cpu small 58.8 (3) 57 (5) 40.9 (7) 57.1 (4) 60.8 (2) 54.1 (6) 61.1 (1)
delta ail. 50.2 (6) 53.5 (4) 31.8 (7) 53.8 (3) 54.2 (2) 52.1 (5) 54.9 (1)
elevators 42.7 (2) 39.0 (5) 30.5 (7) 39.2 (4) 42.6 (3) 37.9 (6) 42.9 (1)
delta elev. 46.5 (6) 49.9 (5) 34.3 (7) 50.4 (4) 50.8 (3) 53.2 (1) 51.2 (2)
friedman 53.2 (5) 63.8 (2) 32 (7) 64.5 (1) 62.2 (4) 47.3 (6) 63 (3)
house 8L 39.9 (6) 49.6 (2) 34.9 (7) 49.8 (1) 49.4 (4) 43.9 (5) 49.6 (3)

house 16H 41.4 (6) 47.5 (4) 35.3 (7) 47.6 (3) 50.0 (2) 43.9 (5) 50.2 (1)
kinematics 37.7 (5) 44.9 (3) 28.8 (7) 46.2 (1) 44.4 (4) 37.5 (6) 45.4 (2)
puma8NH 30.3 (6) 46.5 (4) 29.7 (7) 47.6 (3) 47.7 (2) 42.9 (5) 48.3 (1)
puma32H 30.5 (6) 48.6 (3) 29.7 (7) 50.9 (1) 47.7 (4) 40.6 (5) 49.9 (2)

stock 61.2 (6) 72.4 (3) 41.7 (7) 71.5 (4) 75.1 (1) 61.2 (5) 74.2 (2)
ERA 23.2 (5) 23.2 (4) 14.1 (7) 28.5 (1) 22.5 (6) 26.8 (2) 26.6 (3)
ESL 12.7 (7) 55.7 (4) 28.1 (6) 53.4 (5) 57 (2) 63 (1) 56.5 (3)
LEV 46.3 (6) 60.5 (2) 44.9 (7) 60.4 (3) 59.8 (4) 61.6 (1) 59.6 (5)

Avg. rank 5 3.6 6.9 2.6 3.1 4.7 2.1
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and (B/A) with the F1 measure of Alonso et al. [1] to produce indeterminate predictions
(details about this latter method can be found in [1]).

Table 5 show the obtained results in terms of u65 (that reduces to classical accuracy
for the three determinate methods) as well as the rank of each classifier. Using Demsar’s
approach by applying the Friedman statistic on the ranks of algorithm performance for
each dataset, we obtain a value of 68.16 for the Chi Square, and a 26.8 statistic for
the F-distribution. Since the statistic is 1.7 for a p-value of 0.05, we can safely reject
the null hypothesis, meaning that the performances of the classifiers are significatively
different. This shows that in average the introduced indeterminacy (or cautiousness) in
the predictions is not too important and is compensated by more reliable predictions.
We use Nemenyi test as a post-hoc test, and obtain that two classifiers are significantly
different (with p-value 0.05) if the difference between their mean rank is higher than
2.06.

1 2 3 4 5 6 7

B/F/A
Log
B/N/A

B/F
B/N
C/F
C/N

Fig. 3. Post-hoc test results on algorithms. Thick lines links non-significantly different algorithms.

Figure 3 summarises the average ranks of the different methods and shows which one
are significatively different from the others. We can see that, although techniques using
probability sets (C/N and C/F) have the best average rank, they are not significantly dif-
ferent from their determinate Bayesian counterpart (B/N and B/F) under u65 measure.
This is not surprising, since the goal of such classifiers is not to outperform Bayesian
methods, but to provide more reliable predictions when not enough information is avail-
able. It should also be recalled that the u65 measure is only slightly favourable to inde-
terminate classifiers, and that other measures such as F1 and u80 would have given better
scores to indeterminate classifiers.

An interesting result is that Alonso et al. [1] method, that use a precise probabilistic
models and produce indeterminate predictions through the use of specific cost functions
(the F1 measure in our case), performs quite poorly, in particular when applied with the
Frank and Hall decomposition (B/F/A). This can be explained by the fact that Alonso et
al. [1] method will mainly produce indeterminate classifications when the labels having
the highest probabilities will have close probability values, i.e., when there will be some
ambiguity as to the modal label. However, it is well known that the naive Bayes classi-
fier tends to overestimate model probabilities, therefore acting as a good classifier for
0/1 loss functions, but as a not so good probability density estimator. This latter feature
can clearly be counter-productive when using Alonso et al. [1] method, that relies on
having good probability estimates. On the other hand, indeterminate classification using
probability sets can identify situations where information is lacking, even if the under-
lying estimator is poor. Our results indicate that, while the two methods both produce
indeterminate classifications, they do so in very different ways (and therefore present
different interests).
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Table 6 shows the mean imprecision of indeterminate predictions for all the methods
producing such predictions. This sheds additional light on the bad performances of the
B/F/A method, which tends to produce rather imprecise predictions without necessarily
counterbalancing them with an higher reliability or accuracy. For the other methods, the
mean imprecision is comparable.

Table 6. Mean imprecision of predictions (rank)

B/F/A C/F B/N/A C/N
autoPrice 2.22 (3) 2.25 (4) 1.03 (1) 1.93 (2)
bank8FM 2.06 (4) 1.06 (1) 1.55 (3) 1.08 (2)

bank32NH 2.11 (4) 1.78 (2) 2.01 (3) 1.72 (1)
boston housing 2.23 (4) 1.36 (2) 1.11 (1) 1.51 (3)

california housing 2.17 (4) 1.04 (2) 1.6 (3) 1.04 (1)
cpu small 2.38 (4) 1.03 (1) 1.2 (3) 1.04 (2)

delta ailerons 2.54 (4) 1.03 (1) 1.62 (3) 1.06 (2)
elevators 2.47 (4) 1.03 (1) 1.39 (3) 1.04 (2)

delta elevators 2.47 (4) 1.05 (2) 1.63 (3) 1.04 (1)
friedman 2.06 (3) 1.06 (1) 2.17 (4) 1.06 (2)
house 8L 2.24 (4) 1.01 (1) 1.43 (3) 1.02 (2)

house 16H 2.28 (4) 1.02 (1) 1.25 (3) 1.03 (2)
kinematics 2.12 (3) 1.21 (2) 2.36 (4) 1.2 (1)
puma8NH 2.16 (4) 1.12 (2) 1.89 (3) 1.1 (1)
puma32H 2.47 (4) 1.43 (1) 1.91 (3) 1.5 (2)

stock 2.21 (4) 1.15 (3) 1.04 (1) 1.14 (2)
ERA 4.02 (4) 2.81 (3) 2.24 (1) 2.32 (2)
ESL 3.62 (4) 2.27 (3) 1.39 (1) 1.84 (2)
LEV 2.05 (4) 1.18 (2) 1.52 (3) 1.12 (1)

Figures 4 displays the non-discounted accuracy (that is, we count 1 each time the true
class is in the prediction, whether its determinate or not) on those instances where the
use of NCC returned an indeterminate classification. On those instances, the accuracy
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Fig. 4. Non-discounted accuracy of the NBC vs NCC methods for both decompositions on inde-
terminate instances
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of the determinate version (NBC) is on average 10 % lower than the accuracy displayed
in Table 5. In contrast, the non-discounted accuracy of the indeterminate version on
these instances is much higher, meaning that the indeterminacy actually concerns hard-
to-classify instances.

5 Conclusions

In this paper, we have proposed two methods to learn cautious ordinal classifiers, in
the sense that they provide indeterminate predictions when information is insufficient
to provide a reliable determinate one. More precisely, these methods extend two well-
known binary decomposition methods previously used for ordinal classification, namely
Frank & Hall decomposition and nested dichotomies. The extension consists in allow-
ing one to provide interval-valued probabilistic estimates rather than precise ones for
each binary problem, the width of the interval reflecting our lack of knowledge about
the instances.

Our experiments on different data sets show that allowing for cautiousness in ordinal
classification methods can increase the reliability of the prediction, while not providing
too indeterminate predictions. More specifically, indeterminacy tends to focus on those
instances that are hard to classify for determinate classifiers. We could probably improve
both the efficiency of inferences, e.g., by studying extensions of labelling trees to impre-
cise trees [3], or their accuracy by using more complex classifiers, e.g., credal averaging
techniques [11]. Yet, as the number m of labels in ordinal classification is usually small,
and as the advantages of using binary decompositions are usually lower when using com-
plex estimation methods, the benefits of such extensions would be limited.

In these experiments, we have focused on the 0/1 loss and its extensions to indeter-
minate classification u65, which is more favourable to determinate classifier than the F1

measure proposed by Alonso et al. [1].The reason for this is that 0/1 loss is the only
one to which the results of Zaffalon et al. [33] that allows to compare determinate and
indeterminate classifiers apply. Yet, our approaches can easily handle generic losses
(in contrast with the multi-class naive credal classifier [32]), as shows Section 3 and
Eqs (1)- (2). Also, there are loss functions such as the absolute error that are at least as
natural to use in an ordinal classification problem as the 0/1 loss function. Our future
efforts will therefore focus on determining meaningful ways to compare cost-sensitive
determinate and indeterminate classifiers. Another drawback of using 0/1 loss func-
tion [24], shown by Examples 1 and 2, is that we may obtain indeterminate predictions
containing non-consecutive labels. We expect that considering other losses such as L1

loss could solve this issue.
In addition to that, we plan to apply the methods developed in this paper to more

complex problems that can be reduced as a set of ordinal classification problems, such
as graded multi-label [7] or label ranking [6].
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