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Abstract. In this paper we propose an efficient and compact processor
for a ring-LWE based encryption scheme. We present three optimiza-
tions for the Number Theoretic Transform (NTT) used for polynomial
multiplication: we avoid pre-processing in the negative wrapped convo-
lution by merging it with the main algorithm, we reduce the fixed com-
putation cost of the twiddle factors and propose an advanced memory
access scheme. These optimization techniques reduce both the cycle and
memory requirements. Finally, we also propose an optimization of the
ring-LWE encryption system that reduces the number of NTT operations
from five to four resulting in a 20% speed-up. We use these computa-
tional optimizations along with several architectural optimizations to
design an instruction-set ring-LWE cryptoprocessor. For dimension 256,
our processor performs encryption/decryption operations in 20/9 μs on
a Virtex 6 FPGA and only requires 1349 LUTs, 860 FFs, 1 DSP-MULT
and 2 BRAMs. Similarly for dimension 512, the processor takes 48/21
μs for performing encryption/decryption operations and only requires
1536 LUTs, 953 FFs, 1 DSP-MULT and 3 BRAMs. Our processors are
therefore more than three times smaller than the current state of the art
hardware implementations, whilst running somewhat faster.

Keywords: Lattice-based cryptography, ring-LWE, Polynomial multi-
plication, Number Theoretic Transform, Hardware implementation.

1 Introduction

Lattice-based cryptography is considered a prime candidate for quantum-secure
public key cryptography due to its wide applicability [27] and its security proofs
that are based on worst-case hardness of well known lattice problems. The learn-
ing with errors (LWE) problem [26] and its ring variant known as ring-LWE [17]
have been used as a solid foundation for several cryptographic schemes. The
significant progress in the theory of lattice-based cryptography [19,20,25] has
recently been followed by practical implementations [1,7,9,22,23,28].
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The ring-LWE based cryptosystems operate in a polynomial ring Rq =
Zq[x]/〈f(x)〉, where one typically chooses f(x) = xn + 1 with n a power of
two, and q a prime with q ≡ 1 mod 2n. An implementation thus requires the
basic operations in such a ring Rq, with multiplication taking up the bulk of the
resources both in area and time. An efficient polynomial multiplier architecture
therefore is a pre-requisite for the deployment of ring-LWE based cryptography
in real world systems.

The most important hardware implementations of polynomial multipliers for
the rings Rq are [1,9,22,23]. In [9], a fully parallel butterfly structure is used for
the polynomial multiplier resulting in a huge area consumption. For instance,
even for medium security, their ring-LWE cryptoprocessor does not fit on the
largest FPGA of the Virtex 6 family. In [22], a sequential polynomial multiplier
architecture is designed to use the FPGA resources in an efficient way. The mul-
tiplier uses a dedicated ROM to store all the twiddle factors which are required
during the NTT computation. In [23] the authors integrated the polynomial mul-
tiplier [22] in a complete ring-LWE based encryption system and propose several
system level optimizations such as a better message encoding scheme and com-
pression technique for the ciphertext. The work [1] tries to reduce the area of
the polynomial multiplier by computing the twiddle factors whenever required,
but as we will show, this could be improved substantially by re-arranging the
loops inside the NTT computation. Furthermore, the paper does not include an
implementation of a complete ring-LWE cryptoprocessor.

Our contributions: In this paper we present a complete ring-LWE based en-
cryption processor that uses the Number Theoretic Transform (NTT) algorithm
for polynomial multiplication. The architecture is designed to have small area
and memory requirement, but is also optimized to keep the number of cycles
small. In particular, we make the following contributions:

1. During the NTT computation, the intermediate coefficients are multiplied by
the twiddle factors that are computed using repeated multiplications. In [22]
a pre-computed table (ROM) is used to avoid this fixed computation cost.
The more compact implementation in [1] does not use ROM and computes
the twiddle factors by performing repeated multiplications. In this paper we
reduce the number of multiplications by re-arranging the nested loops in the
NTT computation.

2. The implementations [1,22] use negative wrapped convolution to reduce the
number of evaluations in both the forward and backward NTT computations.
However, the use of the negative wrapped convolution has a pre- and post-
computation overhead. In this paper we basically avoid the pre-computation
which reduces the cost of the forward NTT.

3. The intermediate coefficients are stored in memory (RAM) during the NTT
computation. Access to the RAM is a bottleneck for speeding-up the NTT
computation. In the implementations [1,22], FPGA-RAM slices are placed
in parallel to avoid this bottleneck. In this paper we propose an efficient
memory access scheme which reduces the number of RAM accesses, optimizes
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the number of block RAMs and still achieves maximum utilization of the
computational blocks.

4. The Knuth-Yao sampler [28] is slow due to the costly bit scanning opera-
tion. We reduce the cycle count using fast table lookup operations. We also
optimize the area of the Knuth-Yao [28] sampler by reducing the width of
the ROM. For the standard deviation 3.33 the area-optimized sampler con-
sumes only 32 slices and is thus more compact and faster than the Bernoulli
sampler in [24].

5. The proposed optimization techniques are applied to design a compact ar-
chitecture for the NTT computation. We also implement pipelines in the
architecture targeting high-speed applications. The pipeline technique de-
rives an optimal pipeline depth for the architecture to achieve the fastest
computation time.

6. Finally, we optimize one of the most popular ring-LWE encryption schemes
by reducing the number of NTT computations from five to four, thereby
achieving a nearly 20% reduction in the computation cost.

The above optimizations result in a very compact architecture that is three
times smaller than the current state of the art implementation [23] and even
runs somewhat faster.

The remainder of the paper is organized as follows: In Section 2 we provide a
brief mathematical background on ring-LWE and the NTT. Section 3 contains
our optimization techniques of the NTT and Section 4 presents the actual ar-
chitecture of our optimized NTT algorithm. A pipelined architecture is given
in Section 5. In Section 6, we propose an optimization of an existing ring-LWE
encryption scheme and propose an efficient architecture for the complete ring-
LWE encryption system. Finally, Section 7 reports on the experimental results
of this implementation.

2 Background

In this section we present a brief mathematical overview of the ring-LWE prob-
lem, the encryption scheme we will be optimizing and the NTT.

2.1 The LWE and Ring-LWE Problem

The learning with errors (LWE) problem is a machine learning problem that is
equivalent to worst-case lattice problems as shown by Regev [26] in 2005. Since
then, the LWE problem has become popular as a basis for developing quantum
secure lattice-based cryptosystems.

The LWE problem is parametrized by a dimension n ≥ 1, an integer modulus
q ≥ 2 and an error distribution, typically a discrete Gaussian distribution Xσ

over the integers with deviation σ and mean 0. The probability of sampling an
integer z ∈ Z in the Gaussian distribution Xσ is given by ρσ(z)/ρσ(Z) where

ρσ(z) = exp
(
−z2

2σ2

)
and ρσ(Z) =

∑+∞
z=−∞ ρσ(z). Note that some authors use
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the parameter s =
√
2πσ to define the Gaussian distribution or even denote the

parameter s by σ to add to the confusion.
For a uniformly chosen s ∈ Z

n
q , the LWE distribution As,X over Z

n
q × Zq

consists of tuples (a, t) where a is chosen uniformly from Z
n
q and t = 〈a, s〉 + e

mod q ∈ Zq and e is sampled from the error distribution X . The search version
of the LWE problem asks to find s given a polynomial number of pairs (a, t)
sampled from the LWE distribution As,X . In the decision version of the LWE
problem, the solver needs to distinguish with non-negligible advantage between
a polynomial number of samples drawn from As,X and the same number of
samples drawn from Z

n
q × Zq. For hardness proofs of the search and decision

LWE problems, interested readers are referred to [15].
The initial LWE encryption system in [26] is based on matrix operations

which are quite inefficient and result in large key sizes. To achieve computational
efficiency and to reduce the key size, an algebraic variant of the LWE called ring-
LWE [17] uses special structured ideal lattices. Such lattices correspond to ideals
in rings Z[x]/〈f〉, where f is an irreducible polynomial of degree n. For efficiency
reasons, the ring is often taken as Rq = Zq[x]/〈f〉 with f(x) = xn + 1, where
n is a power of two and the prime q is taken as q ≡ 1 mod 2n. The ring-LWE
distribution on Rq × Rq consists of tuples (a, t) with a ∈ Rq chosen uniformly
random and t = as + e ∈ Rq, where s ∈ Rq is a fixed secret element and e
has small coefficients sampled from the discrete Gaussian above. The resulting
distribution on Rq will also be denoted Xσ.

The ring-LWE based encryption scheme that we will use was introduced in
the full version of [17] and uses a global polynomial a ∈ Rq. Key generation,
encryption and decryption are as follows:

1. KeyGen(a) : Choose two polynomials r1, r2 ∈ Rq from Xσ and compute
p = r1 − a · r2 ∈ Rq. The public key is (a, p) and the private key is r2. The
polynomial r1 is simply noise and is no longer required after key generation.

2. Enc(a, p,m) : The message m is first encoded to m̄ ∈ Rq. Three polynomials
e1, e2, e3 ∈ Rq are sampled from Xσ. The ciphertext then consists of two
polynomials c1 = a · e1 + e2 and c2 = p · e1 + e3 + m̄ ∈ Rq.

3. Dec(c1, c2, r2) : Compute m′ = c1 · r2 + c2 ∈ Rq and recover the original
message m from m′ using a decoder.

One of the simplest encoding functions maps a binary message m to the poly-
nomial m̄ ∈ Rq such that its i-th coefficient is (q − 1)/2 iff the i-th bit of m is 1
and 0 otherwise. The corresponding decoding function then simply reduces the
coefficientsm′i ofm

′ in the interval (−q/2, q/2] and decodes to 1 when |m′i| > q/4
and 0 otherwise.

2.2 Parameter Sets

To enable fair comparison with the state of the art [23], we have chosen to
instantiate the cryptoprocessor for the same parameter sets (n, q, s) (recall s =√
2πσ), namely P1 = (256, 7681, 11.32) and P2 = (512, 12289, 12.18). Note that
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the choice of primes is not optimal for fast modular reduction. To estimate the
security level offered by these two parameter sets we follow the security analysis
in [16] and [14] which improves upon [15,29]. Apart from the dimension n, the
hardness of the ring-LWE problem mainly depends on the ratio q/σ, where
clearly the problem becomes easier for larger ratios. Although neither parameter
set was analyzed in [16], parameter set P1 is similar to the set (256, 4093, 8.35)
from [16] which requires 2105 seconds to break, or still over 2128 elementary
operations. For paramater set P2 we expect it to offer a high security level
consistent with AES-256 (following [9]).

We limit the Gaussian sampler in our implementation to 12σ to obtain a neg-
ligible statistical distance (< 2−90) from the true discrete Gaussian distribution.
Although one can normally sample the secret r2 ∈ Rq also from the distribution
Xσ, we restrict r2 to have binary coefficients.

2.3 The Number Theoretic Transform

There are many efficient algorithms in the literature to perform polynomial
multiplication and a survey of fast multiplication algorithms can be found in
[2]. In this section we review the Number Theoretic Transform (NTT) which
corresponds to a Fast Fourier Transform (FTT) where the roots of unity are
taken from a finite ring instead of the complex numbers.

The FFT and NTT. Recall that the n-point FFT (with n = 2k) is an efficient

method to evaluate a polynomial a(x) =
∑n−1

j=0 ajx
j ∈ Z[x] in the n-th roots

of unity ωi
n for i = 0, . . . , n − 1 where ωn denotes a primitive n-th root of

unity. More precisely, on input the coefficients [a0, . . . , an−1] and ωn, the FFT
computes FFT ([aj], ωn) = [a(ω0

n), a(ω
1
n), . . . , a(ω

n−1
n )] in θ(n log n) time. Due

to the orthogonality relations between the n-th roots of unity, we can compute
the inverse FFT simply as 1

nFFT (·, ω−1n ).
The NTT replaces the complex roots of unity by roots of unity in a finite

ring Zq. Since we require elements of order n, q is chosen to be a prime with
q ≡ 1 mod 2n. Note furthermore that the NTT immediately leads to a fast
multiplication algorithm in the ring Sq = Zq[x]/(x

n − 1): indeed, given two
polynomials a, b ∈ Sq we can easily compute their (reduced) product c = a·b ∈ Sq

by computing

c = NTT−1ωn

(
NTTωn(a) ∗NTTωn(b)

)
, (1)

where ∗ denotes point-wise multiplication.
The NTT computation is usually described as recursive, but in practice we

use an in-place iterative version taken from [4] that is given in Algorithm 1. For
the inverse NTT, an additional scaling of the resulting coefficients by n−1 is
performed. The factors ω used in line 8 are called the twiddle factors.

Multiplication in Rq. Recall that we will use Rq = Zq[x]/〈f〉 with f = xn+1
and n = 2k. Since f(x)|x2n − 1 we could use the 2n-point NTT to compute
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Algorithm 1: Iterative NTT
Input: Polynomial a(x) ∈ Zq [x] of degree n− 1 and n-th primitive root ωn ∈ Zq of unity
Output: Polynomial A(x) ∈ Zq[x] = NTT(a)
begin1

A← BitReverse(a);2
for m = 2 to n by m = 2m do3

ωm ← ωn/m
n ;4

ω ← 1 ;5
for j = 0 to m/2− 1 do6

for k = 0 to n− 1 by m do7
t← ω ·A[k + j + m/2] ;8
u← A[k + j] ;9
A[k + j] ← u + t ;10
A[k + j + m/2]← u− t ;11

end12
ω ← ω · ωm ;13

end14

end15

end16

the multiplication in Rq at the expense of three 2n-point NTT computations
and a reduction by trivially embedding the ring Rq into Sq, i.e. expanding the
coefficient vector of a polynomial a ∈ Rq by adding n extra zero coefficients.
However, we can do much better by exploiting the special relation between the
roots of xn + 1 and x2n − 1 using a technique known as the negative wrapped
convolution.

Indeed, using the same evaluation-interpolation strategy used above for the
ordinary NTT, we conclude that we can efficiently multiply two polynomials
a, b ∈ Rq if we can quickly evaluate them in the roots of f . These roots are

simply ω2j+1
2n for j = 0, . . . , n − 1 (since the even exponents give the roots of

xn − 1) and as such can be written as ω2n · ωj
n. These evaluations can thus be

computed efficiently using a classical n-point NTT (instead of a 2n-point NTT)
on the scaled polynomials a′(x) = a(ω2n ·x) and b′(x) = a(ω2n ·x). The point-wise
multiplication gives the evaluations of c(x) = a(x)b(x) mod f(x) in the roots of
f , and the classical inverse n-point NTT thus results in the coefficients of the
scaled polynomial c′(x) = c(ω2n · x). To recover the coefficients ci of c(x), we
therefore simply have to compute ci = c′i · ω−i2n . Note that the scaling operation
by n−1 can be combined with the multiplications of c′i by ω−i2n .

3 Optimization of the NTT Computation

In this section we optimize the NTT and compare with the recent hardware
implementations of polynomial multipliers [1,22,23]. First, the fixed cost involved
in computing the powers of ωn is reduced, then the pre-computation overhead in
the forward negative-wrapped convolution is optimized, and finally an efficient
memory access scheme is proposed that reduces the number of memory accesses
during the NTT and also minimizes the number of block RAMs in the hardware
architecture.
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3.1 Optimizing the Fixed Computation Cost

In line 13 of Algorithm 1 the computation of the twiddle factor ω ← ω · ωm is
performed in the j-loop. This computation can be considered as a fixed cost.
However in [1,22] the j-loop and the k-loop are interchanged, such that ω is
updated in the innermost loop which is much more frequent than in Algorithm 1.
To avoid the computation of the twiddle factors, in [22] all the twiddle factors
are kept in a pre-computed look-up table (ROM) and are accessed whenever
required. As the twiddle factors are not computed on-the-fly, the order of the
two innermost loops does not result in an additional cost. However in [1] a more
compact polynomial multiplier architecture is designed without using any look-
up table and the twiddle factors are simply computed on-the-fly during the NTT
computation. Hence in [1], the interchanged loops cause substantial additional
computational overhead. In this paper our target is to design a very compact
polynomial multiplier. Hence we do not use any look-up table for the twiddle
factors and follow Algorithm 1 to avoid the extra computation of [1].

3.2 Optimizing the Forward NTT Computation Cost

Here we revisit the forward negative-wrapped convolution technique used in
[1,22,23]. Recall that the negative-wrapped convolution corresponds to a classical
n-point NTT on the scaled polynomials a′(x) = a(ω2n · x) and b′(x) = (ω2n · x).
Instead of first pre-computing these scaled polynomials and then performing a
classical NTT, it suffices to note that we can integrate the scaling and the NTT
computation. Indeed, it suffices to change the initialization of the twiddle factors
in line 5 of Algorithm 1: instead of initializing ω to 1, we can simply set ω = ω2m.
The rest of the algorithm remains exactly the same, and no pre-computation is
necessary. Note that this optimization only applies to the NTT itself and not to
the inverse NTT.

3.3 Optimizing the Memory Access Scheme

The NTT computation requires memory to store the input and intermediate
coefficients. When the number of coefficients is large, RAM is most suitable for
hardware implementation [1,22,23]. In the innermost loop (lines 8-to-11) of Al-
gorithm 1, two coefficients A[k+j] and A[k+j+m/2] are first read from memory
and then arithmetic operations (one multiplication, one addition and one sub-
traction) are performed. The new A[k + j] and A[k+ j +m/2] are then written
back to memory. During one iteration of the innermost loop, the arithmetic cir-
cuits are thus used only once, while the memory is read or written twice. This
leads to idle cycles in the arithmetic circuits. The polynomial multiplier in [22]
uses two parallel memory blocks to provide a continuous flow of coefficients to
the arithmetic circuits. However this approach could result in under-utilization
of the RAM blocks if the coefficient size is much smaller than the word size (for
example in the ring-LWE cryptosystem [17]). In the literature there are many



378 S.S. Roy et al.

papers on efficient memory management schemes using segmentation and effi-
cient address generation (see [18]) for the classical FFT algorithm. Another well
known approach is the constant geometry FFT (or NTT) which always main-
tains a constant index difference between the processed coefficients [21]. However
the constant geometry algorithm is not in-place and hence not suitable for re-
source constrained platforms. In [1] memory usage is improved by keeping two
coefficients A[k] and B[k] of the two input polynomials A and B in the same
memory location. We propose a memory access scheme which is designed to
minimize the number of block RAM slices and to achieve maximum utilization
of computational circuits present in the NTT architecture.

Since the two coefficients A[k+ j] and A[k + j +m/2] are processed together
in Algorithm 1, we keep the two coefficients as a pair in one memory location.

Let us analyze two consecutive iterations of the m-loop (line 3 in Algorithm 1)
for m = m1 and m = m2 where m2 = 2m1. In the m1-loop, for some j1 and k1
(maintaining the loop bounds in Algorithm 1) the coefficients (A[k1+ j1], A[k1+
j1 + m1/2]) are processed as a pair. Then k increments to k1 + m1 and the
processed coefficient pair is (A[k1+m1+ j1], A[k1+m1+ j1+m1/2]). Now from
Algorithm 1 we see that the coefficient A[k1 + j1] will again be processed in
the m2-loop with coefficient A[k1 + j1 +m2/2]. Since m2 = 2m1, the coefficient
A[k1 + j1 + m2/2] is the coefficient A[k1 + j1 + m1] which is updated in the
m1-loop for k = k1 + m1. Hence during the m1-loop if we swap the updated
coefficients for k = k1 and k = k1 +m1 and store (A[k1 + j1], A[k1 + j1 +m1])
and (A[k1 + j1 +m1/2], A[k1 + j1 + 3m1/2]) as the coefficient pairs in memory,
then the coefficients in a pair have a difference of m2/2 in their index and thus
are ready for the m2-loop. The operations during the two consecutive iterations
k = k1 and k = k1 +m1 during m = m1 are shown in Algorithm 2 in lines 8-15.
During the operations u1, t1, u2 and t2 are used as temporary storage registers.

A complete description of the efficient memory access scheme is given in Al-
gorithm 2. In this algorithm for all values of m < n, two coefficient pairs are
processed in the innermost loop and a swap of the updated coefficients is per-
formed before writing back to memory. For m = n, no swap operation is required
as this is the final iteration of the m-loop. The coefficient pairs generated by Al-
gorithm 2 can be re-arranged easily for another (say inverse) NTT operation by
performing address-wise bit-reverse-swap operation. Appendix A describes the
memory access scheme using an example.

4 The NTT Processor Organization

In this section we present an architecture for performing the forward and back-
ward NTT using the proposed optimization techniques. Our NTT processor
(Figure 1) consists of three main components: the arithmetic unit, the memory
block and the control-address unit.

The Memory Block is implemented as a simple dual port RAM. To accom-
modate two coefficients, the word size is 2
log q� where q is the prime modulus.
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Algorithm 2: Iterative NTT : Memory Efficient Version
Input: Polynomial a(x) ∈ Zq [x] of degree n− 1 and n-th primitive root ωn ∈ Zq of unity
Output: Polynomial A(x) ∈ Zq[x] = NTT(a)
begin1

A← BitReverse(a); /* Coefficients are stored in the memory as proper pairs */2
for m = 2 to n/2 by m = 2m do3

ωm ← m-th primitiveroot(1) ;4
ω ← squareroot(ωm) or 1 /* Depending on forward or backward NTT */ ;5
for j = 0 to m/2− 1 do6

for k = 0 to n/2− 1 by m do7
(t1, u1)← (A[k + j + m/2], A[k + j]) /* From MEMORY[k+j] */ ;8
(t2, u2)← (A[k+m+ j +m/2], A[k+m+ j]) /* MEMORY[k+j+m/2] */ ;9
t1 ← ω · t1 ;10
t2 ← ω · t2 ;11
(A[k + j + m/2], A[k + j])← (u1 − t1, u1 + t1) ;12
(A[k + m + j + m/2], A[k + m + j])← (u2 − t2, u2 + t2) ;13
MEMORY [k + j] ← (A[k + j + m], A[k + j]) ;14
MEMORY [k + j + m/2]← (A[k + j + 3m/2], A[k + j + m/2]) ;15

end16
ω ← ω · ωn ;17

end18

end19
m← n ;20
k ← 0 ;21
ω ← squareroot(ωm) or 1 /* Depending on forward or backward NTT */ ;22
for j = 0 to m/2− 1 do23

(t1, u1)← (A[j + m/2], A[j]) /* From MEMORY[j] */ ;24
t1 ← ω · t1 ;25
(A[j + m/2], A[j])← (u1 − t1, u1 + t1) ;26
MEMORY [j] ← (A[j + m/2],A[j]) ;27
ω ← ω · ωm ;28

end29

end30

In FPGAs, a RAM can be implemented as a distributed or as a block RAM.
When the amount of data is large, block RAM is the ideal choice.

The Arithmetic Unit (NTT-ALU) is designed to support Algorithm 2 along
with other operations such as polynomial addition, point-wise multiplication and
rearrangement of the coefficients. This NTT-ALU is interfaced with the memory
block and the control-address unit. The central part of the NTT-ALU consists
of a modular multiplier and addition/subtraction circuits.

Now we describe how the different components of the NTT-ALU are used
during the butterfly steps (excluding the last loop for m = n). First, the memory
location (k + j) is fetched and then the fetched data (t1, u1) is stored in the
input register pair (H1, L1). The same also happens for the memory location
(k + j +m/2) in the next cycle. The multiplier computes ω ·H1 and the result
is added to or subtracted from L1 using the adder and subtracter circuits to
compute (u1 + ωt1) and (u1 − ωt1) respectively. In the next cycle the register
pair (R1, R4) is updated with (u1 − ωt1, u1 + ωt1). Another clock transition
shifts the contents of (R1, R4) to (R2, R5). In this cycle the pair (R1, R4) is
updated with (u2 − ωt2, u2 + ωt2) as the computation involving (u2, t2) from
the location (k + j + m/2) lags by one cycle. Now the memory location (k +
j) is updated with the register pair (R4, R5) containing (u2 + ωt2, u1 + ωt1).
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Fig. 1. Hardware Architecture for NTT

Finally, in the next cycle the memory location (k + j + m/2) is updated with
(u2 − ωt2, u1 − ωt1) using the register pair (R2, R3). The execution of the last
m-loop is similar to the intermediate loops, without any data swap between the
output registers. The register pair (R2, R5) is used for updating the memory
locations. In Figure 1, the additional registers (H2, H3 and L2) and multiplexers
are used for supporting operations such as addition, point-wise multiplication
and rearrangement of polynomials. The Small-ROM block contains the fixed
values ωm, ω2n, their inverses and n−1. This ROM has depth of order log(n).

The Control-and-Address Unit consists of three counters for m, j and k
in Algorithm 2 and comparators to check the terminal conditions during the
execution of any loop. The read address is computed from m, j and k and then
delayed using registers to generate the write address. The control-and-address
unit also generates the write enable signal for the RAM and the control signals
for the NTT-ALU.

5 Pipelining the NTT Processor

The maximum frequency of the NTT-ALU is determined by the critical path (red
dashed line in Figure 1) that passes through the modular multiplier and the adder
(or subtracter) circuits . To increase the operating frequency of the processor,
we implement efficient pipelines based on the following two observations.
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Observation 1. During the execution of any m-loop in Algorithm 2, the com-
putations (multiplication, addition and subtraction) involving a coefficient pair
have no data dependency on other coefficient pairs. Such a data-flow structure
is suitable for pipeline processing as different computations can be pipelined
without inserting bubbles in the datapath.

Assume that the modular multiplier has dm pipeline stages and that the
output is latched in a buffer. In the (dm + 1)th cycle after the initialisation of
ω · t1, the buffer is updated with the result ω · t1. Now we need to compute
u1 + ω · t1 and u1 − ω · t1 using the adder and subtracter circuits. Hence we
delay the data u1 by dm cycles so that it appears as an input to the adder and
subtracter circuits in the (dm + 1)th cycle. This delay operation is performed
with the help of a shift register L1, . . . , Ldm+1 as shown in Figure 2.

Observation 2. Every increment of j in Algorithm 2 requires a new ω (line
17). If the multiplier has dm pipeline stages, then the register-ω in Figure 1 is
updated with the new value of ω in the (dm+2)th cycle. Since this new ω is used
by the next butterfly operations, the data dependency results in an interruption
in the chain of butterfly operations for dm + 1 cycles. In any m-loop, the total
number of such interruption cycles is (m/2− 1) · (dm + 1).

To reduce the number of interruption cycles, we use a small look-up table
to store a few twiddle factors. Let the look-up table (red dashed rectangle in
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Figure 2) have l registers containing the twiddle factors (ω, . . . ωωl−1
m ). This look-

up table is used to provide the twiddle factors during the butterfly operations
for say j = j′ to j = j′ + l− 1. The next time j increments, new twiddle factors
are required for the butterfly operations. We multiply the look-up table with
ωl
m to compute the next l twiddle factors (ωωl

m, . . . ωω2l−1
m ). The multiplications

are independent of each other and hence can be processed in a pipeline. The
butterfly operations are resumed after ωωl

m is loaded in the look-up table. Thus
using a small-look-up table of size l we reduce the number of interruption cycles
to (m2l − 1) · (dm + 1). In our architecture we use l = 4; a larger value of l will
reduce the number of interruption cycles, but will cost additional registers.

Optimal Pipeline Strategy for Speed. During the execution of any m-loop
in Algorithm 2, the number of butterfly operations is n/2. In the pipelined NTT-
ALU, the cycle requirement for the n/2 butterfly operations is slightly larger than
n/2 due to an initial overhead. The state machine jumps to the ω calculation
state m

2l − 1 times resulting in (m2l − 1) · (dm + 1) interruption cycles. Hence the
total number of cycles spent in executing any m-loop can be approximated as
shown below:

Cyclesm ≈ n

2
+ (

m

2l
− 1) · (dm + 1)

Let us assume that the delay of the critical path with no pipeline stages is
Dcomb. When the critical path is split in balanced-delay stages using pipelines,
the resulting delay (Ds) can be approximated as Dcomb

(dm+da)
, where dm and da are

the number of pipeline stages in the modular multiplier and the modular adder
(subtracter) respectively. Since the delay of the modular adder is small compared
to the modular multiplier, we have da 
 dm. Now the computation time for the
m-loop is approximated as

Tm ≈ Dcomb

(dm + da)

[n
2
+ (

m

2l
− 1) · (dm + 1)

] ≈ Ds
n

2
+ Cm .

Here Cm is constant (assuming da 
 dm) for a fixed value of m. From the above
equation we find that the minimum computation time can be achieved when
Ds is minimum. Hence we pipeline the datapath to achieve minimum Ds. The
DSP based coefficient multiplier is optimally pipelined using the Xilinx IPCore
tool, while the modular reduction block is suitably pipelined by placing registers
between the cascaded adder and subtracter circuits.

6 The Ring-LWE Encryption Scheme

The ring-LWE encryption scheme in [23] optimizes computation cost by keeping
the fixed polynomials in the NTT domain. The message encryption and decryp-
tion operations require three and two NTT computations respectively. In this
paper we reduce the number of NTT operations for decryption from two to one.
The proposed ring-LWE encryption scheme is described below:
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Fig. 3. Ring-LWE Cryptoprocessor

1. KeyGen(a) : Choose a polynomial r1 ∈ Rq from Xσ, choose another poly-
nomial r2 with binary coefficients and then compute p = r1 − a · r2 ∈ Rq.
The NTT is performed on the three polynomials a, p and r2 to generate ã,
p̃ and r̃2. The public key is (ã, p̃) and the private key is r̃2.

2. Enc(ã, p̃,m): The message m is first encoded to m̄ ∈ Rq. Three polynomials
e1, e2, e3 ∈ Rq are sampled from Xσ. The ciphertext is then computed as:

ẽ1 ← NTT (e1); ẽ2 ← NTT (e2)

(c̃1, c̃2)←
(
ã ∗ ẽ1 + ẽ2; p̃ ∗ ẽ1 +NTT (e3 + m̄)

)

3. Dec(c̃1, c̃2, r̃2) : Compute m′ as m′ = INTT (c̃1 ∗ r̃2 + c̃2) ∈ Rq and recover
the original message m from m′ using a decoder.

The scheme requires both encryption and decryption to use a common primitive
root of unity.

6.1 Hardware Architecture for the Ring-LWE Encryption Scheme

Figure 3 shows a hardware architecture for the ring-LWE encryption system. The
basic building blocks used in the architecture are: the memory file, the arithmetic
unit, the discrete Gaussian sampler and the control-address generation unit. The
arithmetic unit is the NTT-ALU that we described in the previous section. Here
we briefly describe the memory file and the discrete Gaussian sampler.
The Memory File is designed to support the maximum memory requirement
that occurs during the encryption of the message. Six memory blocks M0 to M5

are available in the memory file and are used to store ā, p̄, e1, e2, e3 and m̄
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respectively. The memory blocks have width 2
log q� bits and depth n/2. All six
memory blocks share a common read and a write address and have a common
data-input line, while their data-outputs are selected through a multiplexer.
Any of the memory blocks in the memory file can be chosen for read and write
operation. Due to the common addressing of the memory blocks, the memory
file supports one read and one write operation in every cycle.
The Discrete Gaussian Sampler is based on the compact Knuth-Yao sam-
pler [13] architecture proposed in [28] and have sufficiently large precision and
tail-bound to satisfy a maximum statistical distance of 2−90 to a true discrete
Gaussian distribution for both s = 11.32 and s = 12.18. Though the sampler in
[28] is very compact it is also quite slow due to sequential scanning of the prob-
ability bits. We improve the cycle requirement of the sampler using two look-up
tables. The first lookup table directly maps eight parallel random bits into a
sample value or an intermediate distance in the 8th column of the probability
matrix [28]. A successful look-up operation returns a sample and the sign of
the sample is determined by the 9th random bit. If the first look-up operation
fails, then another lookup is performed in the next 5 columns to get a sample
value or an intermediate distance in the 13th column of the probability ma-
trix. When the second lookup operation fails (probability<0.0016) then bit-scan
based Knuth-Yao random walk [28] is started with the initial distance obtained
from the second lookup operation.
The Cycle Count for the encryption and decryption operations can be min-
imized in the following way. During the encryption operation, first the three
error polynomials e1, e2 and e3 are generated by invoking the discrete Gaussian
sampler 3n times. Next the encoded message m̄ is added to e3 and then three
consecutive forward NTT operations are performed on e1, e2 and (e3 + m̄). Fi-
nally the ciphertext c̃1, c̃2 is obtained using two coefficient-wise multiplications
followed by two polynomial additions and two rearrangement operations. The
decryption operation requires one coefficient-wise multiplication, one polynomial
addition and finally one inverse NTT operation.

During the encryption operation, 3n samples are generated to construct the
three error polynomials. Our fast Knuth-Yao sampler architecture requires 805
and 1644 cycles for the dimensions 256 and 512 respectively on average to gener-
ate the three error polynomials. The polynomial addition and point-wise multi-
plication operations require n cycles each with a small overhead. The consecutive
processing of I forward NTTs share a fixed computation cost fcfwd and require
in total fcfwd + I × n

2 log(n) cycles. Similarly I consecutive inverse NTTs are
processed in fcinv + I× n

2 log(n)+ I×n cycles. One interesting point is that the
fixed cost fcinv is larger than fcfwd as it includes the computation of ωi

2n/N
(Section 2.3) for i = (0 . . . n−1). This observation has been used to optimize the
overall ring-LWE based encryption scheme in Section 6. The additional I × n
cycles during the inverse NTTs are required to multiply the coefficients by the
scaling factors. The rearrangement of polynomial coefficients after an NTT oper-
ation requires less than n cycles. From the above cycle counts for each primitive
operations, we see that the encryption and decryption operations require total
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Table 1. Performance and Comparison

Implementation Parameters Device LUTs/FFs/ Freq Cycles/Time(μs)

Algorithm DSPs/BRAM18 (MHz) Encryption Decryption

Our RLWE (256,7681,11.32) V6LX75T 1349/860/1/2 313 6.3k/20.1 2.8k/9.1

Our RLWE (512,12289,12.18) 1536/953/1/3 278 13.3k/47.9 5.8k/21

RLWE [23] (256,7681,11.32) V6LX75T 4549/3624/1/12 262 6.8k/26.2 4.4k/16.8

RLWE (512,12289,12.18) V6LX75T 5595/4760/1/14 251 13.7k/54.8 8.8k/35.4

RLWE-Enc[24] (256,4096,8.35) S6LX9 317/238/95/1 144 136k/946 -

RLWE-Dec 112/87/32/1 189 - 66k/351

ECC[3] Binary-233 V5LX85T 18097/-/5644/0 156 1.9k/12.3 1.9k/12.3

NTRU[12] NTRU-251 XCV1600E 27292/5160/14352/0 62.3 -/1.54 -/1.41

fcfwd + 3
2n log(n) + 10n and fcinv + n

2 log(n) + 3n cycles respectively along
with additional overhead. Our ring-LWE architecture has the fixed computation
costs fcfwd = 667 and fcinv = 1048 cycles for n = 256; and fcfwd = 1139 and
fcinv = 1959 cycles for n = 512.

7 Experimental Results

We have implemented the proposed ring-LWE cryptosystem on the Xilinx Virtex
6 FPGA for the parameter sets (n, q, s) : (256,7681,11.32) and (512,12289,12.18).
The area and performance results are obtained from the Xilinx ISE12.2 tool
after place and route analysis and are shown in Table 1. In the table we also
compare our results with other reported hardware implementations of the ring-
LWE encryption scheme. The HDL codes of our ring-LWE processors are freely
available and the results can be verified by the research community 1.

Our implementations are both fast and small thanks to the proposed com-
putational optimizations and resource efficient design style. The cycle counts
shown in the table do not include the cycles for data loading or reading oper-
ations. Our Knuth-Yao samplers have less than 2−90 statistical distances from
the corresponding true discrete Gaussian distributions and consume around 164
LUTs and have delay less than 2.5ns (with optimization goal for speed). Such
a small delay makes the sampler suitable for integration in the pipelined ring-
LWE processor under a single clock domain. We use nine parallel true random
bit generators [8,6] to generate the random bits for the sampler. The set of true
random bit generators consumes 378 LUTs and 9 FFs.

The first hardware implementation of the ring-LWE encryption scheme in [9]
uses a heavily parallel architecture to minimize the number of clock cycles for
the NTT computation. Due to the many parallel computational blocks, the ar-
chitecture is very large (0.29 million LUTs and 0.14 million FFs for n = 256)
and does not even fit on the largest FPGA of the Virtex 6 family. Performance
results such as cycle count and frequency are not reported in their paper. The ar-

1 Please contact the first author of the paper for the HDL codes.
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chitecture uses a Gaussian distributed array for sampling of the error coefficients
up to a tail-bound of ±2s.

The implementation in [23] is small and fast due to its resource-efficient design
style. A high operating frequency is achieved using pipelines in the architecture.
The architecture uses a ROM that keeps all the twiddle factors required during
the NTT operation. This approach reduces the fixed computation cost (fc) but
consumes block RAM slices in FPGAs. Additionally, the parallel RAM blocks
in the NTT processor result in a larger memory requirement compared to our
design. The discrete Gaussian sampler is based on the inversion sampling method
[5] and has a maximum statistical distance of 2−22 to a true discrete Gaussian
distribution. Since the inversion sampling requires many random bits to output
a sample value, an AES core is used as a pseudo-random number generator.
The AES core itself consumes an additional 803 LUTs and 341 FFs compared
to our true random number generator. Another reason behind the larger area
consumption of [23] compared to our architecture is due to the fact that the
architecture supports different parameter sets at synthesis time. Our ring-LWE
processor is also designed to achieve scalability for various parameter sets. In
our architecture the control block remains the same; while only the data-width
and the modular reduction block changes for different parameter sets. Hence
our architecture is also configurable by generating the HDL codes for various
parameter sets using a C program.

Although our architecture does not use a dedicated ROM for storing the twid-
dle factors, it still achieves slightly smaller cycle count and faster computation
time compared to [23]. The encryption scheme in [23] computes one forward and
two inverse NTTs; while our encryption scheme computes only forward NTTs
and hence does not require the 4n cycles for the scaling operation. Additionally
our negative convolution method is free from the precomputation that takes n
cycles in [23]. Hence we save 5n cycles in total during the NTT operations in
an encryption operation. Since the fixed computation cost fcfwd is smaller than
5n, we gain in cycle count for the encryption operation. The decryption opera-
tion in our case is trivially faster than [23] as only one NTT is performed. We
also reduce the area and memory requirement significantly compared to [9,23].
This reduction is achieved by our resource-efficient design decisions such as 1)
absence of a dedicated ROM for the twiddle factors, 2) an efficient RAM access
and storage scheme, 3) use of one modular multiplier, 4) use of a smaller and
faster (low-delay) discrete Gaussian sampler, and finally 5) the resource sharing
between different computations.

A very recent paper [24] proposes ring-LWE encryption and decryption ar-
chitectures targeting small area at the cost of performance. The implementation
uses a quadratic-complexity multiplier instead of a complicated NTT based poly-
nomial multiplier. Additionally the special modulus also saves some amount of
area as the modular reduction is free of cost. However if we consider a sim-
ilar quadratic-complexity multiplication based architecture in the dimension
n = 512, then the cycle requirement will be nearly 40 times compared to our
NTT-based ring-LWE processor. Our target was to use FPGA resources more
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efficiently without affecting the performance and to achieve similar speed as
[23]. The paper [24] also designs a compact Bernoulli sampler that consumes 37
slices for the standard deviation 3.33 and is thus smaller in area compared to
the Knuth-Yao sampler in [28]. The Bernoulli sampler requires on average 96
random bits and 144 cycles to output a sample. In the contrast the Knuth-Yao
sampler [28] requires on average 5 random bits and 17 cycles per sample and is
thus faster than the Bernoulli sampler. In this paper we have reduced the area
consumption of the Knuth-Yao sampler [28] by reducing the width of the ROM
and the scan-register from 32 bits to 12 bits and by simplifying the control unit.
These area optimizations do not affect the cycle requirement of the sampler, but
result in an area of only 32 slices for the overall sampler. The area optimized
Knuth-Yao sampler is both smaller and faster compared to the Bernoulli sampler
in [24].

We also compare our results with other cryptosystems such as ECC andNTRU.
The ECCprocessor [3] over the NIST recommended binary fieldGF (2233) requires
12.3 μs to compute one scalar multiplication and is faster than our ring-LWE pro-
cessor. However the ECC processor is designed to achieve high speed and hence
consumes very large area compared to our ring-LWEprocessor.TheNTRUscheme
[12] is much faster than our ring-LWE processor due to its less complicated arith-
metic. However the parameters chosen for the implementation in [12] have security
around 64 bits [11]. Though secure parameter sets for the NTRU based encryption
have been proposed in [10], no hardware implementation for the secure parameter
sets is available in the literature.

8 Conclusion

This paper proposed several optimizations for implementing a ring-LWE based
encryption system. The first set of optimizations improved the NTT by reduc-
ing the computation cost of the twiddle factors, avoiding the pre-computation
during the forward NTT, and deriving an efficient memory access scheme that
increases the utilization of the arithmetic components and the memory blocks.
A further optimization reduced the number of NTTs required in the encryp-
tion scheme from five to four. The proposed optimizations are implemented in
an efficient cryptoprocessor for the ring-LWE encryption system that not only
is three times smaller in area and memory than any other reported implemen-
tations, but also even faster. These features make the architecture suitable for
resource constrained platforms. Furthermore, the paper investigated architec-
tural acceleration to meet the high speed requirement for real-time applications
and proposes an optimal pipeline strategy that results in a very fast computation
time whilst using minimum area and memory. Although the paper focuses on im-
plementation of the ring-LWE based encryption system, we finally remark that
the proposed optimization techniques for the NTT computation are applicable
for other lattice based cryptosystems where similar polynomial multiplications
are performed.
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22. Pöppelmann, T., Güneysu, T.: Towards Efficient Arithmetic for Lattice-Based

Cryptography on Reconfigurable Hardware. In: Hevia, A., Neven, G. (eds.) Latin-
Crypt 2012. LNCS, vol. 7533, pp. 139–158. Springer, Heidelberg (2012)
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Appendix A

Table 2 shows the memory contents during the execution of Algorithm 2 for
n = 16. The column-heading represents (m, j, k) during the iterations. The end
loop in line 19 of Algorithm 2 for m = 16 performs no swap and is shown in the
table using � symbol.

Appendix B

Our ring-LWEcryptoprocessor has one instruction-register, one iteration-register,
one read-memory-index-queue and one write-memory-index-queue (Figure 4).
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Table 2. Memory content during the steps in a 16-point NTT

Address Initial (2,0,0) (2,0,6) (4,0,0) (4,0,4) (4,1,4) (8,3,0) (16,7,0)�

0 A1 A0 A2 A0 A2 A0 A4 A0 A4 A0 A4 A0 A8 A0 A8 A0

1 A3 A2 A3 A1 A3 A1 A5 A1 A9 A1 A9 A1

2 A5 A4 A6 A4 A6 A2 A6 A2 A6 A2 A10 A2 A10 A2

3 A7 A6 A7 A5 A7 A3 A11 A3 A11 A3

4 A9 A8 A10 A8 A12 A8 A12 A8 A12 A4 A12 A4

5 A11 A10 A11 A9 A13 A9 A13 A5 A13 A5

6 A13 A12 A14 A12 A14 A10 A14 A10 A14 A6 A14 A6

7 A15 A14 A15 A13 A15 A11 A15 A7 A15 A7

Instruction

Iteration

Memory IndexMemory Index

Read_Memory_Index_Queue Write_Memory_Index_Queue
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em
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Fig. 4. Instruction Execution Hardware

The read and write memory-index-queues are loaded with the memory indexes.
Since our ring-LWE cryptoprocessor has six memory blocks M0 to M5, the in-
dexes are in the range 0 to 5. The instruction is stored in the Instruction register
and the number (I) of consecutive NTT operations is kept in the Iteration register.
The following instructions are supported by the processor.

1. LOAD : A memory block indexed by WtQ0 is loaded with n coefficients.
Since two coefficients are processed in a cycle, the instruction takes n/2 + ε
cycles.

2. ENCODE-LOAD : A memory block indexed by WtQ0 is loaded with an
encoded message. The input message bits are first encoded using the en-
coder and then loaded in the memory block as proper coefficient-pairs. This
instruction requires n+ ε cycles.

3. GAUSSIAN-LOAD : A memory block indexed by WtQ0 is loaded with n
samples. The cycle count for this operation depends on the standard devia-
tion and n.
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4. FNTT/INTT : Is used to perform inplace forward or inverse NTT. The num-
ber of consecutive NTTs is stored in the iteration-register and the indexes
of the memory blocks are kept in the read-memory-index-queue

5. ADD/CMULT : Two memory blocks indexed by RdQ0 and RdQ1 are added
or coefficient-wise multiplied. The result is stored in the memory block in-
dexed by WtQ0. These two instructions require n+ ε cycles.

6. REARRANGE : Performs rearrangement of coefficient pairs in a memory
block indexed by RdQ0. This instruction requires less than n cycles.

7. READ : The contents of a memory block indexed by RdQ0 are read. This
instruction requires n/2 + ε cycles.
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