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Abstract. RSA-CRT is the most widely used implementation for RSA
signatures. However, deterministic and many probabilistic RSA signa-
tures based on CRT are vulnerable to fault attacks. Nevertheless, Coron
and Mandal (Asiacrypt 2009) show that the randomized PSS padding
protects RSA signatures against random faults. In contrast, Fouque et al.
(CHES 2012) show that PSS padding does not protect against certain
non-random faults that can be injected in widely used implementations
based on the Montgomery modular multiplication.

In this paper, we prove the security of an infective countermeasure
against a large class of non-random faults; the proof extends Coron and
Mandal’s result to a strong model where the adversary can choose the
value of the faulty signatures modulo one of the prime factors of the
RSA modulus. This fault model is clearly strictly more general than
Coron and Mandal’s, and it captures most of the non-random faults of
Fouque et al. Such non-random faults induce, together with the infec-
tive countermeasure, more complex probability distributions than in the
original proof; we analyze them using careful estimates of character sums
over finite fields. The security proof is formally verified using appropri-
ate extensions of EasyCrypt, and provides the first application of formal
verification to provable (i.e. reductionist) security in the context of fault
attacks.

Keywords: Fault Attacks, PSS, RSA-CRT, Infective countermeasure,
Formal Verification, EasyCrypt.

1 Introduction

Signature schemes are among the most widely used constructions in cryptog-
raphy. Although there is much interest in signature schemes based on elliptic
curves, RSA signatures are still widely used. Moreover, many implementations
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of RSA, including OpenSSL and implementations for embedded devices such as
smartcards, use the well-known Chinese Remainder Theorem (CRT) technique
for computing modular exponentiations more efficiently: exponentiations using
the CRT can be expected to be 4 times faster than those using full-size ex-
ponents. However, when unprotected, RSA-CRT is vulnerable to the so-called
Bellcore attack, first introduced by Boneh, DeMillo and Lipton [7], and later
refined [3,29,9]. An adversary who knows the padded message and can inject a
fault in one of the half exponentiations can efficiently factor the public modulus
using a single faulty signature and a GCD computation.

Many countermeasures have been proposed to mitigate this vulnerability, in-
cluding extra computations and sanity checks of intermediate and final results
(see [25]). The simplest such protection is to verify the signature before releas-
ing it. This is reasonably cheap since the public exponent e is usually small.
Another approach is to use an extended modulus, as in Shamir’s trick [26] and
its later refinements which also protect CRT recombination using Garner’s for-
mula [6,12,28,13]. Finally, redundant exponentiation algorithms [19,25] such as
the Montgomery Ladder can be used. Regardless of the approach, RSA—-CRT
fault countermeasures tend to be rather costly: for example, Rivain’s counter-
measure [25,20] has a stated overhead of 10% compared to an unprotected im-
plementation, and is purportedly more efficient than previous works [19,28,20].

Boneh et al.’s original fault attack does not apply to RSA signatures with
probabilistic encoding functions, but some extensions of it were proposed to at-
tack randomized ad-hoc padding schemes such as ISO 9796-2 and EMV [14,17].
At Asiacrypt 2009, Coron and Mandal [15] paved the way of provable security
against side-channel attack in a practical setting by proving that RSA-PSS is
secure against random faults in the random oracle model. Injecting a fault on
the half-exponentiation modulo the second factor ¢ of N produces a result that
can be modeled as uniformly distributed modulo ¢, and the result of such a
fault cannot be used to break RSA—PSS signatures. It is tempting to conclude
that using RSA-PSS should enable signers to dispense with costly RSA—-CRT
countermeasures. However, Fouque et al. [18] show that it is possible to break
RSA-PSS using certain non-random faults if the result is not checked. Indeed,
they obtain a key recovery attack with a few faulty signatures on CRT imple-
mentations of RSA-PSS that use the state-of-the-art modular multiplication
algorithm of Montgomery [22]. Thus, even with PSS, it remains important to
check the signature before releasing it.

Infective Countermeasures. Checking results before release is a simple and
practical security measure, but it is not sufficient by itself, since simple tests
can be easily bypassed by flipping the outcome of a comparison [2,27]. Infective
countermeasures are an alternate approach in which results are released all the
time, but become gibberish when faulty computations occur: a fault (usually not
controlled by the adversary) results in a random value, which consequently makes
the faulty signature random. From a security point of view, since faults may not
be random, we may not be able to prove that the faulty output is fully random.
However, one may ask that the output be independent of secret information even



208 G. Barthe et al.

in the presence of non-random faults. Infective countermeasures have been used
before by Canetti and Goldwasser [10] to deal with fault-injecting adversaries
when decrypting ciphertexts in a distributed manner. One such countermeasure
for RSA-CRT was proposed by Boscher, Handschuh and Trichina [8]. In their
technique, the signer computes the signature S and recomputes ¥y’ = S¢ mod N
to check the signature against the padded message y, before returning S + y; -
(y mod p)+y, —(y mod q) if y' = y, and an error otherwise. Even if the adversary
bypasses the verification 3’ = y, the output signature mixes the fault and correct
signature in a non-trivial way. Still, this countermeasure was later attacked by
Trichina and Korkikyan [27] for deterministic padding schemes. We tackle the
problem of masking faulty signatures so as to prevent the exploitation of faults
and protect validity checks.

Our Contributions. In this paper we generalize the fault model from [16] and
consider a very powerful adversary able to inject non-random faults. More pre-
cisely, we let the adversary set the value modulo ¢ of the computed signatures
to an arbitrary value of his choice. Clearly, since he could choose that value ran-
domly, the model is strictly more powerful than the one considered by Coron and
Mandal. In addition, it captures many other types of faults, such as the “null
faults” and “constant faults” introduced by Fouque et al. [18]. If such a signa-
tures is directly returned to the adversary, he can clearly factor the modulus, but
we consider a simple countermeasure to avoid that problem. The countermea-
sure, described in Fig. 1, uses infective techniques, mixing additional randomness
into faulty signatures in a provably secure way. In practice, we show that our
random infection masks faulty signatures enough for us to prove the security
of RSA-PSS under the RSA assumption in the random oracle model if enough
additional randomness is provided. Concretely, we sample a random value r’
and add ' - (y — y') to the signature mod N, where y is the original padded
message and g3’ is the padded message recovered from the signature. When the
signature is computed correctly, (y — y’) is zero and the correct signature is
returned. If the signature is faulty, we show that the masked output is statis-
tically close to uniform and hence leaks no secret information. We prove such
results in two key lemmas corresponding to [15, Lemmas 1, 2]. Since our faults
are non-random, the probability distributions are more complex; we use careful
estimates of exponential sums attached to corresponding rational functions to
establish their regularity. We only analyze this countermeasure when the validity
check is performed in the standard way (by computing the public permutation),
but our random infection might also be used to protect other checks such as
Rivain’s [25,20]. A discussion of the faults we model can be found in Section 2.

The second contribution of the paper is a formal proof of security of the coun-
termeasure using EasyCrypt!, a computer-aided framework that has previously
been used to reason about the security of cryptographic constructions—but was
never applied to fault attacks and countermeasures. Our proof is the first appli-
cation of formal verification to provable security against fault attacks, as other
works [11,23,24] applying formal verification to fault attacks are focused on prov-

! https://www.easycrypt.info
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Figure 1. Protected signing algorithm

1: function SIGN(sk,pk, m) > sk = (dp, dg, ap,q, N), pk = (e, N)
2: r + {0, 1} > Start of PSS padding
3 w <+ H(m,r)
4: st < G(w) @ (]| 0Fs ko)
5: y < 0s2ip(0 || w | st)
6.
7
8

op — y* mod p > Signature computation
Oq y% mod ¢
: o+ (ap-op+aq o) mod N > ap = q- (¢! mod p) and similarly for cy
9: y < o0°mod N
10: r’ +{0,1}*\{0} > Infective countermeasure
11: o' «—o+7r(y—y)mod N
12: return i2osp(c’)

ing the correctness of the countermeasures (that is, that the protected program
either returns the same result as the original program, or fails), but do not
provide any provable security guarantees. Apart from increasing our confidence
in the effectiveness of the countermeasure, our formal proof reveals a glitch in
the proof of Coron and Mandal [15], and also paves the way for formally veri-
fying the effectiveness of the countermeasures on standard implementations of
PKCS probabilistic signing, in the same way that [1] uses an older prototype of
EasyCrypt [5] to prove security of an implementation of PKCS encryption.

Related work. Christofi et al. [11] use a combination of program transformation
and verification techniques for proving Vigilant’s countermeasure for CRT-RSA.
They take a source program p and output a program p that contains all possible
faulty behaviors of p. Then, they show that the program p either returns a value
that matches the value returned by p on the same input, or else returns an error,
they conclude that the program is correct for all faults. While it is a natural
guarantee to seek, their theorem does not constitute a proof of security in the
sense of provable security, but rather a heuristic to validate a countermeasure
implementation.

Rauzy and Guilley [24] develop symbolic methods to analyze fault attacks
against RSA-CRT implementations. They model arithmetic computations as al-
gebraic expressions, and define a simplification procedure for expressions. Given
an expression e (representing the algorithm to be attacked), their tool tests for
all possible faulty variants é of e if the expression ged(IV,e — é) simplifies to
a prime factor of the RSA modulus. If some expression é is found, then the
algorithm is considered insecure. Their tool is useful to find fault attacks on
an algorithm, but only provides guarantees of security against a restricted class
of attackers. Moreover, it is specialized to deterministic signature schemes and
cannot deal with randomized paddings like PSS.

Moro et al. [23] focus on the specific class of instruction skip attacks, in which
an adversary forces to skip the execution of a targeted instruction. To protect
against skip attacks, they transform a program p into a fault-tolerant program
P, by providing for each instruction a possible replacement for execution in the
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presence of instruction skip faults. Using a model checker, they establish the
equivalence between executing the instruction without faults and executing the
replacement sequence of instructions with instruction skip faults. Their approach
is general, and significantly improves resistance against instruction skip attacks.
However, it is not suitable for obtaining the strong guarantees required by prov-
able security.

2  Our Results

Instead of considering the many possible faults an adversary could inject in Fig. 1,
we give the adversary access to two distinct oracles (Fig. 2) that compute valid
signatures (oracle §) and generalize faulty signatures (oracle ), as justified in
Section 2. As discussed, our fault model is independent of the algorithm used to
compute modular exponentiation. We therefore use simpler definitions for public
and secret key, where a public key pk is composed of a public exponent e and
a modulus N, and a secret key sk is composed of a private exponent d and a
modulus N.

Throughout the security proof, we consider a fixed k that serves as the size
of the modulus and signatures. In particular, we assume that the modulus is
balanced, that is N = p-q is such that 251 < N < 2F and 2F/2-1 < p < ¢ < 2F/2,
PSS padding is computed using two hash functions #/, outputting bitstrings of
length kj,, and G, producing bitstrings of length kg, where £k, +k; +1 = k. In
addition, the padding scheme uses a random salt of length ky < k4. For simplicity,
we model # as a function from {0,1}* x {0,1}* to {0,1}*", and G as a function
from {0, 1}}”‘ to {0, 1}k9. This is done without loss of generality. In algorithm

Figure 2. Oracles in our fault model

oracle $(m)
r + {0, 1}Fo
w < H(m,r)
st = G(w) @ (r||0%~"0)

1: oracle ¥(m,a)
20 r+ {01}
3 w < H(m,r)
4: st < G(w) @ (]| 0Fa—F0)
y <— 0s2ip(0 || w || st) 5: y <— 0s2ip(0 || w | st)
o+ y*mod N 6: o+ y*mod N
7 r" « {0,1}*\{0}
8 o —ytapt(atr-(y—a®))-a,
9 return i2osp(c’)

return i2osp (o)

1:
2
3
4
5
6
7
1: oracle V(m,o)

2: r L

3 s + 0s2ip(o)

4 if 0 < s < N then

5 y < s mod N

6 bl||w]| st + i20sp(y)
7 rlly e st @ 6(w)
8 W' H(m,T)

9 r=b=0Aw=w' Ay =0Fs"Fo
10: return r
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and game descriptions, we denote with i2osp and o0s2ip the conversions between
integers and their binary representations. For simplicity, i2osp always produces
a bitstring of length k.

Under the Generalized Riemann Hypothesis, we reduce the UF-CMA2 security
of the faulty signature scheme presented in Fig. 2, where the adversary is given
access to the faulty signature oracle along with the valid signature oracle and
the random oracles # and G, to the one-way security of RSA. We consider a
forgery valid even if it was produced by the faulty signature oracle. In the rest of
this paper, we use S to denote the valid signature oracle, F to denote the faulty
signature oracle, X to denote the RSA key generation algorithm, and % for the
PSS verification algorithm. Subscripts identify the game in which a particular
oracle appears. We denote with QX the set of query-response pairs for queries
made to oracle X so far.

Figure 3. Initial and Final Games

1: game UF-CMA 1: game OW-RSA

2: (e, d,N)+ x() 2 (e, d,N)+ x()
3: (m,s) « 25759 (e, N) 3: z* + [0..N)

4: b+« Y(m,s) 4: y* 2" mod N
5: win < b A (m,s) ¢ Q° 5: z <+ Z(e,N,y")
6 return win 6 return z = z*

Theorem 1 (UF-CMA security of protected PSS in the presence of
faults). Assume that the Generalized Riemann Hypothesis holds. For all 6 > 0,
there exists a constant ks > 0 depending only on & such that given a CMA ad-
versary A against the faulty signature scheme (X, S, F, V) that makes at most
qsr queries to H, qg queries to G, qs queries to S and qy queries to F, we build
a one-way inverter T such that

Pr[uF-cMAa : win] < Pr[OW-RS4 :z = z*] + €

with
60_(qﬂ+q5+qf)~(q5{+Qg+q5+qar)+q9~q¢~3+1+
- o
(qs +qs) - (2-qu +qs + q7) + qu + qs —p

1 ks
92ko +2’“71+qf.2}€5.2 ’
2

Remark 1. The constant ks is as in Lemma 1. As observed in Remark 2, for
large enough N, it suffices to take p slightly larger than a given m to bound the
final term by 27™. In addition, as mentioned in Remark 3, we assume that p is
chosen slightly larger than kj, so that the assumptions of Lemma 3 are satisfied.
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Fault Model Justification. In this section, we justify our fault model, de-
scribed by oracle F(m,a) in Fig. 2. Our faulty signature oracle computes the
correct padded message y, samples ' and returns o’ = y? -, + (a+7'(y—a®))-a,
with a € Z/qZ chosen by the adversary.

We allow multiple faults to be injected, but only during the RSA-CRT com-
putation (lines 6-7 of the protected signing Fig. 1). More precisely, we con-
sider a scenario where the computation modulo p is correct whereas those mod-
ulo ¢ is faulted to result in a constant a chosen by the adversary, i.e. oy =
(y? mod p, a) € Z/pZ x 7. Then, using our countermeasure we obtain:

/

o' =or+1'(y—o0})
= ydap +aga+1r'(y - (ydap + aqa)°)
=yl + (a +7'(y — a®))ay.

Our fault model leverages the results of Coron and Mandal in [15] who treated
the case of random faults against PSS scheme, and those of Fouque et al. [18]
who proposed various faults: “null faults” (forcing a small register to 0), “con-
stant faults” (forcing a small register to a constant) and “zero high-order bits
faults” (forcing part of a small register to 0). When applied during the RSA-
CRT computations using Montgomery multiplication, Fouque et al. showed that
both “null faults” and “constant faults” result in a chosen, fixed value for the
the signature modulo ¢, and those highly non-random faults are thus captured
by our model together with the random faults of Coron and Mandal.

3 Statistical Lemmas

We need several results on the regularity of the probability distributions related
to the infective countermeasure. Recall that the statistical distance between a
random variable X on a finite set S and the uniform distribution is defined as:

Ay(X) = ; ~Z’Pr[X:s]— é‘ .
sES

We say that X is o0-statistically close to uniform when A;(X) < 4.

Our proofs rely on character sums over Z/qZ. We refer to [21] or the full
version of this paper [4] for basic properties of Dirichlet characters and character
sums. The main statistical result can be stated as follows.

Lemma 1. Consider integer intervals X = [1,X], W = [wp,wp + W) whose
lengths X, W satisfy X,W < q, and for all t € Z/qZ, denote by T(X, W;t) =
XZV (1+V(X,W;t)) the number of solutions (z,w) € X x W of the congruence
zw =t (mod q). Assuming that the Generalized Riemann Hypothesis holds, then
for all 6 > 0, there exists a constant ks > 0 depending only on & (and not

q, X, W) such that:

3/246
Yo vowin < M

te€Z/qZ \/XW
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In particular, the distribution of the products xw mod q is statistically close to
uniform in Z/qZ whenever XW > ¢*+39,

Proof. Note first that all elements of X’ are invertible modulo ¢, whereas at most
one element of W is divisible by ¢. Denote by W* the number of elements of
W which are invertible modulo ¢, which is thus equal to W or W — 1. We then
have:

q

W

On the other hand, for ¢t # 0, we can express T(X,W;t) as a sum over the
multiplicative characters modulo ¢. Indeed, the orthogonality of characters en-
sures that, for all z, w, we have > x(zw)x(t) =¢—1if 2w =t (mod ¢) and 0
otherwise. Hence:

T(X,W;t) = 712 > xlaw)x(t)

(z, w)GXXW

_ AW YT e,

q— 1
x#m (z,w)EXXW

T(X,W;0)=X-(W—-W*) <X andhence |V(X,W;0)<

by putting aside the contribution of the trivial character yo. Write that equality

as T(X,W;t) = }gzvl (14 V*(t)). We then have:

V= e Y Y (),

X#X0 (z,w)EXXW
and we can express the sum of the squared deviations |V* (t)|2 as:
DISDIE NS DD DIt w) 3 00)(®):
t#0 XX #Xxo T, w,z’ w’ t#£0

The sum over ¢ on the right-hand side is equal to ¢ — 1 if x = x’ and vanishes
otherwise, so that:

SIVOF = e XX xexeu) = ol 3 Iseof

t#0 X#Xo0 T,w,z’ W’ X7#X0

where S(x) = > cx X(%) D2,y X(w). Now since X' is an interval of the form

(1, X], 1 TEX X(.’L‘)| < 05X1/2q6
for some constant ¢s > 0 (see e.g. [21, Eq. (13.2)]). Hence:
2,26 2
26 c5q°(g—1)
SOl € e dX® Y Y i < 0
t#0 X (w,w)eEW?

by using orthogonality again. Then, the Cauchy—Schwarz inequlity yields:

Z Ve 3q*t Ja—1< csq®(q — 1)3/2
pord XW= - VW
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Finally, observe that for t # 0, we have:

N4 P . 4 o
V(X W;t) = XWT(X,W,t) L= v i1 (1+V*@®) -1
(¢-1W (¢-DW
On the last line, the first term is bounded in absolute value by qﬁl ’V*(t) , and
the second term by qzl W. As a result, we get:
S oveeown < ST+ L+ vio) < cad’?t 2
T T -1 w T VXw W

teZ/qZ t#0
which yields the stated result for ks = ¢5+ 2, say (as a coarse upper bound). 0O

We now discuss our key statistical lemmas. The first one ensures that the
faulty signature o/ = y¢ - oy + (a + 7' (y — ae)) - o is indistinguishable from a
uniform random element in Z/NZ if the nonce ' is large enough. We write x
instead of 7’ in the rest of this section.

Lemma 2. Let N = pq be a k-bit balanced RSA modulus and e the public ex-
ponent, 0 < y < 25=1 a random integer and x a random nonzero p-bit integer.
Fiz an arbitrary integer a. Assuming that the Generalized Riemann Hypothesis
holds, the statistical distance between the distribution of o’ = y®-a, + (a+x(y7
a®)) - ag mod N and the uniform distribution modulo N is bounded as:

N
A(o') < msq‘s\/XY < 2pig - 200K=P)/2

for any 6 > 0, with ks as in Lemma 1.

Proof. The statistical distance between the distribution of ¢’ and the uniform
distribution can be written as:

M=, Y

(s,t)EZ/pZXL/qZ

Pr
(z,y)€XXY

o' =s (mod p) 1
o' =t (mod q) N

where X and ) are the integer intervals [1, X] and [0,Y") with X =27 — 1 and
Y = 21 respectively. Let us estimate the probability

I = d
P(s,t)=  Pr o =s (modp)
(w,y)EX XY

o' =t (mod q)
appearing in that equation for some fixed (s,t) € Z/pZ x Z/qZ.

We have ¢/ = s (mod p) if and only if y¢ = s mod p, i.e. y = s° mod p.
Hence, the solutions of the first congruence are of the form y = (s° mod p) + pw
for w in the integer interval [0, W;), W, = [¥ med )1, Then, the second
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equation, which is equivalent to a + z(y — a®) = t (mod ¢), becomes z(pw +
(s¢ mod p) —a®) =t—a (mod ¢). This can be written in the form x(w+wg) = to

_ (s® mod p)—a® t—a

(mod q), with wq » mod ¢ and ¢y = » mod ¢g. The number of
solutions (z,w) is thus T(X, Ws; o), with W, = [wo, wo + W). Hence:

! T (X Ws;to) = Ve y WSV(X,WS;tO).

P =
(8= ¢y v gy

Note that W, depends only on s (not on t), and that ¢ — t¢ is a permutation of
Z/qZ. Thus, for fixed s, we can sum the previous equation over ¢t € Z/qZ, which
gives:

2.

te€Z/qZ

1 W, 1 W,
P(s,t)—ngq-’qY—N‘—&-qY S vi(x,wat).
te€Z/qZ

Now Y/p—1 < W, <Y/p+1, so that the first term on the right-hand side is
bounded by 1/Y. Thus, Lemma 1 yields:

2.

te€Z/qZ

W, K5q3/2+5 Héq1/2+5
@Y  VXW, /XY .p/2

1 1
P(s,t) — <
() N‘ Sy T
using the coarse upper bound W, /Y < 2/p. Summing further over s, we finally

obtain:
>

s,t

1 2N
P(s,t) — N‘ < g-irﬁ&q&\/XY

and hence the desired result, since p < VN and Y > X. O

Remark 2. Concretely, this result means that, for large enough N, it suffices to
take p slightly larger than m to obtain a statistical distance of 27™.

If we do not want to rely on the Riemann Hypothesis, we can obtain an
unconditional bound by replacing the use of GRH in Lemma 1 by the Pdlya—
Vinogradov inequality (or the Burgess bound). However, statistical indistin-
guishability from uniform then requires somewhat larger values of p: at least
k/4 4+ m + o(1) with Pdlya—Vinogradov or k/8 + m + o(1) with the Burgess
bound.

The security proof requires another statistical lemma which ensures that the
adversary has a negligible probability of querying the correct value w < (M, r)
given a faulty signature. The proof, which uses Lemma 1 in a very similar way
as the proof of Lemma 2 (simply replacing the interval ) by a subinterval ),,),
is given in the full version of this paper [4].

Lemma 3. Let N,e,a,d,ks be as in Lemma 2. Assume that p > kn + 6k +
log,(4ks). For any choice of o’ € Z/NZ and any kp-bit value w’, the probability
that a solution (z,y) € [1,2°) x [0,2"71) of the equation o' = y* -, + (a+z(y—
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a®)) - aq (mod N) satisfies that the most significant ky bits w € [0,2") of y
coincides with w' is bounded as:

Remark 3. Concretely, this result means that we must choose p larger than ky,.

4 Security Proof

The sequence of games presented in this Section and formal justifications for
all transitions between games are formalized in EasyCrypt. However, Lemmas 2
and 3 are stated as axioms of the formalization. Formally proving these lemmas
is outside the scope of this work, as it would first require to formalize at least
those properties of additive characters used in our proof.

The hash functions G and A are modelled as random oracles. For clarity, we
display the initial definition of # on the left in Fig. 4. The initial definition
of G is similar. We assume two global maps h and ¢ are used to build the
random oracles. Our proof works mostly by transforming the random oracle #.
We therefore display the code for # for each transition, only displaying other
oracles when they suffer non-trivial changes.

Game (0. We initially transform both random oracles to keep track of the first
caller to make a particular query. It can be either the adversary (Adv), the
signature oracle (Sig), or the faulty signature oracle (FSig). Calls made by the
experiment when checking the validity of the forgery do not need to tag their
query as they are the last queries made to the random oracles and do not need
to update its state. We also extend the internal state of # with an additional
field for use later in the proof, and currently set to a default value L.

Figure 4. Initial transition: extending state

1: oracle #(m,r) 1: oracle #H,(m,r)
2 if (m,r) ¢ dom(h) then 2: if (m,r) ¢ dom(h) then
3: hlm, 7] « {0,1}*n 3: w « {0,1}*n
4 return h[m, ] 4: hm, r] « (w, ¢, L)
5 return 71 (h[m,r])

Pr[uf-cma™* """ : win] = Pr|Gameo : win)

Games 1 and 2. In Game 1, we anticipate a call to G on the output of # every
time A is called. When # is called by either one of the signing oracles, we
return the result of that call to G as well as the result of the current # query,
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Figure 5. Games 1 and 2: anticipating calls to G and removing signing collisions

1: oracle #;(c, m,r) 1: oracle %4(c,m, 1)
2: if (m,r) ¢ dom(h) then 9. .o(m,r) ¢ dom(h) V ¢ = FSig vV
3: w + {0,1}Fn ' (¢ = Sig A w2(h[m, r]) = FSig)
4: him,r] < (w,c, L) then .
5: st + G(c,w) 3: w {0, 1}""
6: else 4: st {0, 1}*
T w < w1 (h[m, 1)) 5: if ¢ # FSig VvV (m,r) ¢ dom(h)
8: if ¢ = Adv then then
9: st | 6: him,r] + (w,c, L)
10: else 7 if ¢ # FSig V w ¢ dom(g) then
11: st < G(c,w) 8: glw] < (st @ (r]|0%s7*0) ¢)
12: return (w, st) 9: else
10: w 71 (h[m,r])
11: if ¢ = Adv then
12: st L
13: else
14: (w, st) + L
15: return (w, st)
Pr[Gameo : win] < Pr[Game2 : win] + (gs + g5 + q7) - (%’2':0‘1% 4 + QM2:;LQ5 + QT>

allowing broad simplifications to the signing oracles. In Game 2, we deal with
collisions on r and w values in the signing oracles. In later steps of the proof,
we will need the control-flow of the faulty signature oracle to be completely
independent from both r and w, and we modify the oracle to allow these later
transformations. Fresh queries are treated normally. Non-fresh queries made by
the signing oracles are resampled as fresh if the previous query had been made by
the faulty signature oracle. Non-fresh queries made by the faulty signature oracle
are resampled, but not stored into the state. Game 1 is perfectly indistinguishable
from Game 0, and Game 2 can be distinguished from Game 1 if either i. (lines 2,
5 and 6) the fresh r used in #-queries made by the signing oracles collides with
a previously used r (with probability at most (g5 + q¢) - (g + qs + q5) - 2750);
ii. (lines 4, 7 and 8) or the fresh w used in G-queries made by the signing oracles
collides with a previously used w (with probability at most (gs + qs +q¢) - (¢5 +
Qs +qs+qy)-27%r). Note that the value stored in g[w] at line 8 in #4 is uniformly
distributed since st is.

Game 3. Given that # now samples both bitstrings that compose the final
padded message, we compute the entire signature in # when called by either
one of the signing oracles. We transform the experiment to sample an integer x*
and compute y* = z*° mod N to serve as one-way challenge. We embed it in
the state when replying to # queries made by the adversary. Everything up to
this point has been set up so that the signing oracles can simply use ws(h[m, r])
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as the padded message for m with salt r. Game 3 includes this simplification.
We introduce additional notation for clarity in the rest of the proof. Consider
the function:

y* -0°mod N if ¢ = Adv

fle,N),yec i 0 .
o€ mod N otherwise

For a set X C Z/NZ, we denote by pim(, y) . .(X) the uniform distribution on
the set S = {0 € Z/NZ| fe.n),y-,c(0) € X }.

Game 3 is indistinguishable from Game 2 exactly when z* is invertible. There-
fore, the probability that the adversary distinguishes the two games is exactly

pJ;?(;l. We have p+q—1< 2:+1 and 2k—1 < p-q and we can therefore bound

the probability of this simulation failing by 2~ 5+2_ Since the invertibility of z* is
important in some later steps, we in fact let # compute a response only when z*
is invertible. In the inverter, since z* is not public, we instead check the invert-
ibility of y*, which is equivalent. For simplicity, we omit discussions regarding
this detail in the rest of this section.

Figure 6. Games 3 and 4: Embedding one-way challenge and oracle queries in
F

1: oracle #;(c, m, )
(m,r) ¢ dom(h) V ¢ = FSig V

oracle #;(c,m, )
if (m,r) ¢ dom(h)Vc = FSig then

1:
2 if 2
(¢ = Sig A m2(h[m, r]) = FSig) 3: o pim(e’N%y*’c([0..2’“71))
then . ko1 4: Y < flenyyr.c(o)
3 o pim(, y) - ([0.2571)) 5: b|lw]| st + i20sp(y)
4: Y < flenyyr.c(0) 6: if ¢ # FSig then
5 bl|w]| st « i20sp(y) T him,r] + (w,c, o)
6: if ¢ # FSigV (m,r) ¢ dom(h) g. glw] « (st ® (]| 0Fa=%0) ¢)
then 9: else
T him,r] + (w,c,0) 10: w 1 (h[m, 7))
8: if ¢ # FSig Vw ¢ dom(g) then 3. if ¢ = Adv then
9: glw] « (st@ (r]| 0¥ %), ) 1o, st L
10: else 13: else
11: w + m1(h[m,r]) 14: (w, st) + L
12: if ¢ = Adv then 15: return (w, st)
13: st +— L
14: else
15: (w, st) « L
16: return (w, st)

Pr[Game3 : win] < Pr[Game4 : win]
" qc-qr3
+ q;[’ﬁgj + (12]";:,

Pr[Game2 : win] < Pr[Game3 : win] + 9= 5+2
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Game 4. In this game, we stop keeping track of the random oracle queries made
by the faulty signature oracle. This is an important step towards being able
to apply Lemma 2, which only discusses the statistical distance between two
distributions on ¢’, rather than (w, o). Note that, in Coron and Mandal’s proof,
Lemma 2 is applied before this transition, in a context in which its premises
are not fulfilled. By removing data about random oracle queries, we introduce
observable changes in the game’s behaviour whenever the adversary queries #
with an r that was used previously in a faulty signature query, or whenever the
adversary queries G with an w that was used previously in a faulty signature
query. We bound the probability of the adversary guessing an w value using
Lemma 3. Since the view of the adversary does not depend on r values sampled by
the faulty signature oracle (see Fig. 7), the probability of the adversary guessing
an r value used in generating a faulty signature is easily bounded.

Game 5. Our main goal at this stage is to show that faulty signatures are in
fact indistinguishable from uniform randomness and can be simulated without
using the random oracles. Once this is done, we will be able to resume the proof
of security following more standard PSS proofs.

We now use Lemma 2 to completely simulate faulty signature oracle queries.
We focus on the faulty signature oracle, inlining and simplifying # knowing that
¢ = FSig. On the left, we display the simplified faulty signature oracle from
Game 4 for reference. We make use of elementary properties of the statistical

Figure 7. Game 5: sampling faulty signatures

1: oracle F,(m,¢,a) 1: oracle % (m,¢, a)

2 r« {0,1}%0 2. 1« {0,1}F

3: o4 pim ny e ([0.2°71)) 3: o +[0.N)

4: y < o mod N 4: return i2osp(c’)
5: r" « {0,1}”\0

6 o' —ylxa,+(a+(y—a))*ay,

7 return i2osp(o’)

—p

Sk
Pr[Gamed4 : win] < Pr[Game5 : win] + qy - 2-Kks -2 2

distance and Lemma 2 to bound the probability of distinguishing Games 5 and 6.
Note that sampling o in pim, yy ,« . ([O..2k*1)) and applying the public RSA
permutation to obtain y is perfectly equivalent to sampling y in [O..2k*1). In
the bound, the é and ks are as in Lemma 1.

Game 6. With the faulty signature oracle simplified away, we can now focus
on simulating the signature oracle. From now on, the ¢ argument to A can no
longer be FSig. More generally, it is impossible for any entry in h or g to be
tagged with FSig. The signature oracle we have defined at this point is not a
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valid simulator as it does not run in polynomial time. To ensure that it does, we
replace the sampling operation at line 3 in Fig. 6 (right) with the loop displayed
on the left of Fig. 8 to sample o. The adversary can distinguish the two games
whenever the loop finishes in a state where y does not start with a 0 bit. At

Figure 8. Game 6 and inverter: sampling o in polynomial time
oracle Z(e, N, y")
. (m, S) — ﬂﬂf7y§7,57,9'7(67 N)
o + 0s2ip(s)
y < o mod N

1: while (10 <y < 2" ") Ai < ko do 1:
2
3
4:
5: bl||wl| st + i20sp(y)
6.
7
8

2: o+ [0..N)
3: Y f(e,N),y*,c(U)
4: 14 1+1

[y st ® glw]
(W', Adv, u) < h[m, 7]
return o - u*

' ' ata Pr[Gameé : win] <
Priganes : win] < Prlganes - win) + %5 priomAsa = a4 4 b P
22

each iteration of the loop, the o sampled is invalid with probability at most é
The probability that all iterations produce an invalid o is therefore bounded by
z,lo, since all samples are independent. #; may now be queried g 4+ ¢s times,
allowing us to conclude.

Reduction All the oracles are simulated without using any secret data. We now
focus on building an inverter. The adversary can win in two disjoint cases:

— either the #H-query made by the verification algorithm is fresh (this occurs
with probability at most 27%»),

— or the #{-query made by the verification algorithm was previously made by
the adversary. If the query was made by the signature oracle, the forgery
cannot be fresh and the adversary cannot win.

In the latter case, the one-way challenge can then be recovered by the inverter
shown on the right of Fig. 8. The key observation is that, in case of a successful
forgery, we have y = 0 mod N (line 4) and y = y* - u® mod N (by invariant
on h). By definition of y* and the morphism and injectivity properties of RSA,
we therefore have o = z* - u. We need to also consider the case where a value
u stored in the h map by the adversary is not invertible, which occurs with
probability at most gy - 27%/2+1,

The final bound is obtained by transitively using the individual transition
bounds.
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